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Abstract 

Background: The oral microbiome may play an important role in colorectal carcinogenesis. However, few 
studies have investigated the association between oral microbiome and the development of colorectal cancer 
(CRC). We aimed to investigate whether oral health-colorectal tumor association has an underlying microbial 
basis, in the quest for novel non-invasive biomarkers for CRC. 
Methods: We collected oral swab samples from 161 patients with CRC, 34 patients with colorectal adenoma 
(CRA), and 58 healthy volunteers. The oral microbiota was assessed using 16S rRNA sequencing. We 
characterized oral microbiome, identified microbial markers, constructed and validated colorectal tumor (CRA 
and CRC) classifier. 
Results: Oral microbial composition and diversity were significantly different among the three groups, and the 
CRA group had the highest diversity. Analysis of the functional potential of oral microbiota demonstrated that 
the pathway involving cell motility was overrepresented in the CRA and CRC groups relative to that in the 
healthy controls. Moreover, a random forest model was constructed based on oral microbial markers, which 
could distinguish the colorectal tumor groups from the healthy controls and achieve a powerful classification 
potential in the discovery and validation cohorts. 
Conclusion: This study suggests a potential association between oral microbiome dysbiosis and colorectal 
cancer. Oral microbiota-based biomarkers may be helpful in predicting the risks for the development of CRA 
and CRC. 
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Introduction 
Colorectal cancer (CRC) is the third most 

common cancer and the second leading cause of death 
among malignant tumors worldwide [1, 2]. It mainly 
originates from an adenomatous polyp then develops 
into advanced colorectal adenoma (CRA) with high- 
grade dysplasia, and finally progresses to invasive 
cancer [3]. Many environmental factors, such as diet 
and lifestyle, are crucial for the gut microbial 
composition and function, which can affect the host 

gene expression, metabolic regulation, and local and 
systemic immune response, thereby influencing 
cancer development [4]. The gut microbiota has been 
recognized to play an important role in colorectal 
tumorigenesis, which may promote CRC 
development through inflammatory pathways, 
microbial metabolites, or the interference in the 
energy balance of cancer cells [5, 6]. Our previous 
work suggested a potential relationship between gut 
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microbiome and metabolome in CRC [7]. Adults 
produce >1000 mL of saliva per day on average, 
almost all of which enters the gastrointestinal tract [8]. 
The lower gastrointestinal tract is inoculated every 
day by approximately 1011 bacteria from the oral 
cavity, which can be detected in the oral and fecal 
microbiota of approximately 45% tested individuals 
[9]. As chemical converters, microbes metabolize both 
dietary-acquired and host-produced nutrients [10]. 
The resulting metabolites can promote genotoxicity 
and tumor suppression or progression through 
multiple mechanisms, such as the alteration of 
metabolic fluxes to promote anabolic metabolism, 
competitive enzymatic inhibition, and modification of 
signaling proteins [11]. Therefore, oral microbial 
communities may affect the gut microbial community 
structure [12]. 

The oral microbiome diversity is correlated with 
several human diseases including cancers [13]. Fan et 
al. found that oral microbiota may play a role in the 
etiology of pancreatic cancer [14]. Another study 
showed that the oral microbiome composition has 
potential implications for the early detection and 
prevention of esophageal cancers [15]. Microbiota 
dysbiosis refers to altered bacterial composition [16], 
and the study of oral and intestinal microbiota 
disorders is of great importance for exploring the 
mechanism of colorectal carcinogenesis [17-20]. 
However, few studies have focused on the differences 
in oral microbiota profiles between patients with CRA 
and CRC and those of healthy individuals. These 
three groups are consistent with the normal- 
adenoma-carcinoma sequence model, which reflects 
the evolution process of colorectal carcinogenesis [21, 
22]. In this study, we hypothesize that the oral health–
colorectal tumor association may have an underlying 
microbial basis. We further explored this potential 
oral–gut axis in the quest for novel non-invasive 
biomarkers for CRC. 

Methods 
Study design and oral sample collection 

Oral samples were prospectively collected from 
participants by rubbing the insides of both cheeks 
with a swab as described previously [23]. The swab 
containing the specimen was placed in a sterile tube 
and then stored at -80 °C until further use. None of the 
participants had recently suffered from oral disease, 
and no participants were treated with any drugs 
according the NIH Human Microbiome Project - Core 
Microbiome Sampling Protocol [24]. Oral samples 
from patients with CRC or CRA group were collected 
before any surgical procedure. For the CRC cohort, 
the exclusion criteria were: i) the diagnosis of 

hereditary or inflammation-associated CRC, and ii) an 
active preoperative treatment course. For the CRA 
cohort, the exclusion criteria were: i) the diagnosis of 
familial adenomatous polyposis, and ii) previous 
history of CRC. Finally, 253 eligible cases including 58 
healthy controls, 34 patients with CRA, and 161 
patients with CRC, were included in this study 
according to the recruitment process and randomly 
divided into the discovery phase and the validation 
phase (Figure 1). 

Oral DNA extraction for microbiome analysis 
Genomic DNA from oral swab samples was 

extracted using the Mag-Bind Blood & Tissue DNA 
HDQ 96 Kit (M6399-01, Omega, Inc, USA) according 
to the manufacturer's guidelines. DNA integrity and 
size were verified by 1.0% agarose gel electrophoresis, 
and DNA concentrations were determined using the 
NanoDrop spectrophotometer (NanoDrop, 
Germany). 

High-throughput 16S ribosomal RNA gene 
sequencing 

16S ribosomal RNA (rRNA) gene amplification 
was performed using the primers (319F: 5′-ACTCCTA 
CGGGAGGCAGCAG-3′; 806R: 5′-GGACTACHVGG 
GTWTCTAAT-3′) directionally targeting the V3 and 
V4 hypervariable regions of the 16S rRNA gene. To 
differentiate each sample and yield accurate 
phylogenetic and taxonomic information, the gene 
products were attached with forward and reverse 
error-correcting barcodes. The amplicons were 
quantified after purification. Then, the normalized 
equimolar concentrations of each amplicon were 
pooled and sequenced on the MiSeq PE300 
sequencing instrument (Illumina, USA) using 2 × 300 
bp chemistry according to the manufacturer's 
specifications. 

Sequencing data analysis 
Paired-end reads were assigned to samples 

based on their unique barcodes and truncated by 
cutting off the barcode and primer sequences. Then 
these paired-end reads were merged using the Fast 
Length Adjustment of SHort reads (FLASH) tool. To 
obtain high-quality clean tags, the raw tags were 
quality filtered under specific conditions using the 
QIIME pipeline (Version 1.7.0) [25]. Chimeric 
sequences were filtered using the Usearch software 
(Uparse v6.0.307). Sequences with a similarity 
threshold ≥97% were assigned to the same operational 
taxonomic units (OTUs) using the CD-HIT online tool 
(v. 4.6.1). Classification of representative sequences 
for each OTU was carried out and taxonomic data 
were then assigned to each representative sequence 
using the Ribosomal Database Project (RDP) classifier 
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based on the 11.5 revision of the RDP database. We 
also use the NT-16S database annotation results for 
correction. To study the phylogenetic relationship of 
different OTUs, multiple sequence alignments were 
conducted using the PyNAST software. OTU 
abundance was normalized using the sample with the 
least sequences as a standard. To estimate the OTU 
richness, a rarefaction curve was designed using the 
Mothur software package (http://www.mothur.org/ 
wiki/Main_Page). After the taxonomic assignment of 
OTUs, sequences were aligned for phylogenetic 
analysis. Alpha diversity was evaluated to analyze the 
complexity of microbial diversity for each sample 
through four indices (Chao1, Shannon, Simpson, and 
observed species) using the QIIME software. To 
evaluate microbial diversity between samples, beta 
diversity was evaluated by principal coordinate’s 
analysis (PCoA) and cluster analysis using QIIME 
software. The Wilcoxon rank-sum test and Welch’s 
t-test were used to compare bacterial abundance and 
diversity in oral swab samples from patients with 
CRC versus those from healthy subjects. The 
heatmaps were drawn based on the nonparametric 
Wilcox test (p < 0.05, q < 0.1) at the genus level. 

Identification of microbial OTU-based 
markers 

A tenfold cross-validation was conducted on a 
random forest model to identify the optimal OTU- 
based markers as described previously [26]. This 
model could specifically distinguish the CRA or CRC 
groups from the healthy control group. 

Statistical analysis 
Associations between the clinical characteristics 

were performed by Pearson’s Chi-square test or 
Fisher’s exact test, as appropriate P values were 
two-tailed and adjusted using the false discovery rate 
(FDR). FDR values less than 0.05 were considered as 
statistically significant (*, <0.05; **, <0.01; ***, <0.001). 
All data were analyzed using GraphPad Prism v. 6.01 
(Graph Pad software, lnc, San Diego, California, 
USA), Microsoft Excel (Microsoft Corporation, Seattle, 
WA, USA), and R package v. 3.3.2 (R Foundation for 
Statistical Computing, Vienna, Austria, http://www. 
R-project.org/). 

Results 
Participant information and study design 

In total, 253 eligible cases including 58 healthy 
controls, 34 patients with CRA and 161 patients with 
CRC were included in this study according to the 
recruitment process and randomly divided into the 
discovery cohort and validation cohorts (Figure 1). 
There were no significant differences in the clinical 

characteristics, including age, gender, BMI, alcohol 
consumption, and smoking status among the three 
groups. Detailed clinical data for the studied 
individuals were shown in Table 1. 

 

Table 1. Clinical characteristics of the enrolled participants 

Characteristics Healthy control 
(n = 58) 

CRA 
(n = 34) 

CRC 
(n = 161) 

P value 

Age (mean ± SD)  50.71±11.34 51.88±7.67 59.25±10.71 0.114* 
BMI (mean ± SD) kg/m2 22.98±2.22 22.53±1.53 22.49±1.78 0.678* 
Sex     
Male 31 (53.4%) 20 (58.8%) 107 (66.5%) 0.192# 
Female 27 (46.6%) 14 (41.2%) 54 (33.5%)  
Smoking status     
Never smoker 48 (82.8%) 30 (88.2%) 120 (74.5%) 0.163# 
Former smoker 9 (15.5%) 2 (5.9%) 36 (22.4%)  
Current smoker 1 (1.7%) 2 (5.9%) 5 (3.1%)  
Alcohol consumption     
Never drink 33 (56.9%) 20 (58.8%) 98 (60.9%) 0.525# 
<1 standard drink per day 18 (31.0%) 11 (32.4%) 55 (34.1%)  
≥1 standard drink per day 7 (12.1%) 3 (8.8%) 8 (5.0%)  
Diabetes     
Yes  0 (0%) 0 (0%) 23 (14.3%)  
No 58 (100%) 34 (100%) 138 (85.7%)  
Tumor location     
Rectum - 17 (50.0%) 78 (48.5%) 0.984# 
Distal colon - 10 (29.4%) 48 (29.8%)  
Proximal colon - 7 (20.6%) 35 (21.7%)  
Tumor size (mean ± SD) - 0.8±0.3 (cm) 4.1±1.5 (cm)  
TNM stage     
Stage I - - 24 (14.9%)  
Stage II - - 66 (41.0%)  
Stage III - - 60 (37.3%)  
Stage IV - - 11 (6.8%)  

*One-way analysis of variance (ANOVA); 
#Pearson Chi-square test. 

 

Bacterial diversity of the oral microbiota 
The oral microbiota was assessed using 16S 

rRNA MiSeq sequencing. A total of 4,986,545 high- 
quality 16S rRNA gene sequences were identified, 
with a median read count of 17,693 (ranging from 
9677 to 75385) per sample. After the taxonomic 
assignment, 2181 OTUs were obtained (Table S1). The 
species accumulation curve of all samples successfully 
reached the asymptote, supporting the adequacy of 
our sampling efforts (Figure 2A). Likewise, relative 
bacterial evenness was evaluated by rank abundance 
curves, exhibiting similar patterns in all samples 
(Figure 2B). Alpha diversity indexes were calculated 
to assess the differences in bacterial diversity among 
the three groups (Table S2). Bacterial diversity was 
analyzed using sampling-based OTUs and presented 
by the Shannon and Simpson indexes. The results 
showed that oral microbial alpha diversity was 
significantly higher in the CRA and CRC groups than 
in the healthy controls, but was lower in the CRC 
group than in the CRA group (Figure 2C-D). 
Moreover, the Venn diagram showed that 1500 of the 
total 2181 OTUs were shared among the three groups, 
whereas 1550 of 2140 OTUs were shared between the 
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CRA and CRC groups. Notably, 266 OTUs were 
unique for the CRC group (Figure 2E). To display the 
microbiome space between samples, beta diversity 
was calculated using the unweighted UniFrac method 
and the principal coordinate nanlysis (PCoA) was 
performed. The results showed a gradually separated 
distribution of the oral microbial communities among 
these three groups (Figure 2F). 

Phylogenetic profiles of oral microbial 
communities 

The average composition of bacterial 
communities at the phylum, family, genus, and 
species levels was shown in Figure 3A-D, 
respectively. Bacteroidetes, Firmicutes, 
Actinobacteria, Proteobacteria, and Fusobacteria were 
the five dominant bacterial phyla in the three groups 
(Table S3). At the phylum level, Proteobacteria, 
Bacteroidetes, and Fusobacteria were significantly 
lower in the CRC group than in the CRA group 

(Figure S1A, Table S4). At the genera level, 
Fusobacterium, Prevotella, and Porphyromonas were 
significantly enriched in the CRA group compared 
with the CRC group (Figure S1B, Table S5). Phylum 
Fusobacteria and Bacteroidetes were significantly 
higher in the CRA group than in the control group 
(Figure S1C, Table S6). At the genus level, 
Fusobacterium, Prevotella, Porphyromonas and Veillonella 
were significantly higher, whereas Streptococcus, 
Gemella, and Megamonas were significantly lower in 
the CRA group than in the control group (Figure S1D, 
Table S7). Bacterial abundance at the phylum and 
genus levels was also compared between the CRC and 
control groups. The results showed that bacterial 
abundance was higher in the CRC group than in the 
control group, especially for the phyla Fusobacteria 
and Bacteroidetes, and the genera Fusobacterium, 
Prevotella, and Veillonella (Figure S1E-F, Table S8-9). 

 

 
Figure 1. Study design and flow diagram. Consecutive oral samples were prospectively collected from 60 healthy controls, 38 patients with CRA, and 164 patients with 
CRC according to the inclusion criteria. Finally, 58 healthy controls, 34 patients with CRA, and 161 patients with CRC were included and randomly divided into discovery and 
validation cohorts. In the discovery phase, we characterized the oral microbiome among 80 CRC, 17 CRA, and 29 healthy controls, identified microbial markers, and constructed 
CRC and CRA classifiers using a random forest model. In the validation phase, 81 CRC, 17 CRA, and 29 healthy controls were used to validate the diagnostic efficacy of CRC and 
CRA classifiers. Furthermore, all samples (161 CRC, 34 CRA, and 58 controls) were used in another independent validation phase. CRC, colorectal cancer; CRA, colorectal 
adenoma. 
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Figure 2. Bacterial diversity of the oral microbiota. (A) Species accumulation curve between number of samples. (B) The relative bacterial evenness was evaluated by the 
rank abundance curves. Oral microbial diversity was estimated by the Shannon index (C) and Simpson index (D). (E) A Venn diagram displayed the overlaps between groups. (F) 
Beta diversity was calculated using weighted UniFrac by PCoA. CRA, colorectal adenoma; CRC, Colorectal cancer; OTUs, Operational Taxonomy Units; PCoA, principal 
coordinates analysis. 

 

Functional and correlation network analysis of 
oral microbiota 

Microbiota imbalance induces systematic 
metabolic alterations [27, 28], while metabolic 
dysfunction can in turn influence microbiota 
composition [29]. To study the functional and 
metabolic changes in oral microbial communities, all 
OTUs were aligned into the Phylogenetic 
Investigation of Communities by Reconstruction of 
Unobserved States (PICRUSt) built-in reference 
database [30, 31]. A principal component analysis was 
then performed using the total KEGG pathways data 
generated from all samples (Figure 4A). PICRUSt 

analysis identified 20 KEGG pathways with 
significant differential abundance between the CRA 
and CRC groups (Figure 4B), 13 KEGG categories 
between the CRC group and the healthy controls 
(Figure 4C), and 27 KEGG categories between CRA 
groups and healthy controls (Figure 4D). As shown in 
Figure 4B-D, the membrane transport pathway was 
decreased in the CRA group compared with that of 
CRC group and control group. In addition, the 
pathway involved in cell motility was over-
represented while the pathway involved in 
carbohydrate metabolism was inhibited, in the CRA 
and CRC groups relative to those in the control group. 
The association between differential bacteria and 
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metabolic pathways was investigated using 
correlation heatmaps. As the results showed, genera 
Streptococcus was negatively correlated with cell 
motility, endocrine system, and common oncogenic 
pathways, while genera Fusobacterium, Prevotella, 
Leptotrichia, Selenomonas, and Lachnoanaerobaculum 
were positively correlated with the endocrine system 
and oncogenic pathways (Figure S2A-C). 

Given the significant dysbiosis of the oral 
microbiome in the CRA and CRC groups, as reflected 
by differences in bacterial composition, diversity, and 
function among the three groups, we focused on the 
20 OTUs shared among the three groups and 
clustered them based on the abundance profiles 
(Figure 4E). Finally, we identified two kinds of oral 
bacterial co-abundance groups (CAGs): the pathogen 
CAG (e.g. Fusobacterium, Treponema and 
Porphyromonas) and the biofilm CAG (e.g. 
Streptococcus, Faecalibacterium, and Rothia). The 
abundance of pathogen CAG was higher in the CRA 
and CRC groups than that in the control group 

(Figure S3A), while the opposite results were 
observed for bacterial abundance of biofilm CAG 
(Figure S3B). A stringent network analysis was also 
performed to obtain further insight with respect to 
correlative bacterial populations at the genus level. 
Despite the apparent dissimilarity of the microbial 
composition when comparing the three groups, the 
resulting network comprising 20 genera showed 
significant co-occurrence and anti-occurrence (Figure 
4F). The oral pathogen Fusobacterium co-occurred with 
8 other genera, namely, Leptotrichia, Capnocytophaga, 
Treponema, SR1_genera_incertae_sedis, Porphyromonas, 
Alloprevotella, Prevotella, and Lachnoanaerobaculum, 
many of which were categorized as oral pathogens. In 
contrast, Fusobacterium showed mutual exclusion with 
Streptococcus. We also found that the pathogenic 
genera belonging to the Firmicutes phylum 
(Veillonella, Actinomyces, Leptotrichia, Selenomonas, and 
Lachnoanaerobaculum) were closely connected to each 
other. 

 

 
Figure 3. Oral microbiota composition. Average composition of bacterial community at the phylum (A), family (B), genus (C) and species (D) levels. CRA, colorectal 
adenoma; CRC, Colorectal cancer. 
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Figure 4. Oral microbial functional dysbiosis in patients with CRA and CRC. (A) Differential KEGG pathways were analyzed using PICRUSt, and PCoA analysis was 
conducted for the three groups. Significant differences between CRC and CRA group (B), CRC and control group (C), and CRA and control group (D) were presented 
respectively. (E) Heatmap showing Spearman correlation coefficients of 20 genera shared among CRA, CRC, and healthy controls. (F) Bacterial co-occurrence and 
anti-occurrence were investigated and presented as a network, with nodes representing bacterial genera (colored according to phylum) and edges representing interactions (red 
= co-occurrence, blue = mutual exclusion) at p < 0.01. CRA, colorectal adenoma; CRC, colorectal cancer; PCoA, principal coordinates analysis; KEGG, Kyoto encyclopedia of 
genes and genomes. 
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Figure 5. Identification and validation of microbial OTU-based markers of CRA. (A) In the discovery set, a ten-fold cross-validation was performed on a random 
forest model between 17 CRA samples and 29 controls. Five OTUs were selected as the optimal marker set by random forest models. (B) The POD index achieved an AUC 
value of 95.94% (95% CI: 90.83%-100%). (C) The POD value was significantly higher in the CRA oral samples than in the controls (p = 2.7 × 10–7). In the validation phase, the 
average POD value was significantly higher in the 17 patients with CRA versus the 29 controls (p = 0.0014) (D), and the POD index achieved an AUC value of 94.12% (95% CI: 
87.52%-100%) (E). All samples including 34 CRA and 58 controls were used to verify POD reliability. The average POD value was significantly higher in CRA samples than in the 
controls (p = 9.1 × 10–13) (F), and the POD achieved an AUC value of 94.8% (95% CI: 90.67%-98.94%) (G). AUC, area under the curve; CV Error, the cross-validation error; CRA, 
colorectal adenoma; OTUs, operational taxonomic units; POD, probability of disease. 

 

Identification and validation of oral microbial 
OTU-based markers for CRA and CRC 

To explore the value of the oral microbiome for 
CRA diagnosis, a random forest classifier model was 
constructed to specifically distinguish the CRA from 
the healthy control groups: a ten-fold cross-validation 
was performed in the discovery phase (data from 17 
CRA cases and 29 healthy controls). As a result, five 
OTU markers were selected as the optimal marker set 
(Figure 5A, Table S10). The probability of disease 
(POD) index was calculated using the identified 
optimal five OTU set for both the discovery cohort 

and the validation cohort. In the discovery phase, the 
POD index achieved an area under the curve (AUC) 
value of 95.94% (95% CI: 90.83%-100%) (Figure 5B), 
and the POD value was significantly higher in the 
CRA group than in the control group (p = 2.7 × 10–7, 
Figure 5C). In the validation phase (data from 17 CRA 
cases and 29 healthy controls), the average POD value 
was also significantly higher in the CRA group than in 
the control group (p = 0.0014, Figure 5D), and the 
AUC was 94.12% (95% CI: 87.52%–100%) (Figure 5E). 
Moreover, to further confirm the diagnostic potential 
of this random forest model, all samples (34 CRA 
cases and 58 healthy controls) were used to verify the 
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POD reliability. The result also showed that the 
average POD value was significantly higher in the 
CRA group than in the control group (p = 9.1 × 10–13, 
Figure 5F), achieving an AUC value of 94.8% (95% CI: 
90.67%–98.94%) (Figure 5G). 

Similarly, the diagnostic value of the CRC oral 
microbiome was investigated. In the discovery phase 
(data from 80 CRC cases and 29 healthy controls), five 
OTU markers were selected as the optimal marker set 
(Figure 6A, Table S11). The POD index achieved an 
AUC value of 76.42% (95% CI: 67.1%–85.74%) (Figure 
6B), and the POD value was significantly higher in the 
CRC group than in the control group (p = 2.7 × 10–5, 

Figure 6C). In the validation phase (data from 81 CRC 
cases and 29 healthy controls), the average POD value 
was also significantly higher (p = 0.027, Figure 6D) in 
the CRC group than in the control group and the POD 
index achieved an AUC value of 63.86% (95% CI: 
51.72%–75.99%) (Figure 6E). Furthermore, all samples 
(from 161 CRC cases and 58 healthy controls) were 
used to verify the POD reliability. This result also 
showed that the average POD value was significantly 
higher in the CRC group than in the control group (p 
= 2.7 × 10–14, Figure 6F), achieving an AUC value of 
83.74% (95% CI: 77.09%–90.39%) (Figure 6G). 

 

 
Figure 6. Identification and validation of oral microbial OTU-based markers of CRC. (A) A ten-fold cross-validation was conducted on a random forest model 
between 80 CRC samples and 29 controls in the discovery set, and five OTU markers were selected as the optimal marker set. (B) The POD index achieved an AUC value of 
76.42% (95% CI: 67.1% to 85.74%). (C) The POD value was significantly higher in the CRC oral samples than in the controls (p = 6 × 10–6). In the validation phase, the average 
POD value was significantly higher in 81 patients with CRC versus 29 controls (p = 2.7 × 10–5) (D), and the POD index achieved an AUC value of 77.67% (95% CI: 68.86%–86.49%) 
(E). All samples, including 161 CRC and 58 control samples, were used to verify POD reliability. The average POD value was significantly higher in the CRC samples than in the 
controls (p = 2.7 × 10–14) (F), and the POD achieved an AUC value of 83.74% (95% CI: 77.09%–90.39%) (G). AUC, area under the curve; CV Error, the cross-validation error; 
CRC, colorectal cancer; OTUs, operational taxonomic units; POD, probability of disease. 
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Collectively, our results indicate the powerful 
potential diagnostic efficacy of the POD index based 
on oral microbial markers from patients with CRA or 
CRC. 

Discussion 
Accumulating evidence shows that the oral 

microbiome is capable of ectopic colonization and 
producing an extraordinarily wide range of microbial 
metabolites with the potential to promote 
tumorigenesis via modulation of pathways related to 
energy homeostasis, nutritional intake, and 
immunologic balance [32-34]. Farrell et al. observed 
associations between variations of patients' oral 
microbiota with pancreatic cancer and chronic 
pancreatitis [35]. Lu et al. identified microbiota 
dysbiosis of tongue coat in patients with liver 
carcinoma, which may provide novel and 
non-invasive potential diagnostic biomarker of liver 
carcinoma [36]. Another study have shown that a high 
abundance of oral commensal bacteria such as 
Corynebacterium and Kingella correlated with a 
decreased risk of head and neck squamous cell cancer 
[37]. Although there are some studies on the 
relationship between oral microbiota and CRC, the 
results are not consistent [17]. In this study, we aimed 
to delineate the community structure and function of 
the oral microbiome from patients with CRA and CRC 
and to further establish diagnostic markers for CRA 
and CRC based on oral microbial OTUs. 

First, we evaluated the oral microbiome diversity 
and found that CRC group and CRA group have a 
higher diversity than healthy controls. Notably, the 
oral microbiota of CRA group exhibited the highest 
diversity. It was reported that oral bacterial diversity 
is higher in oral diseases, such as in periodontal 
disease [38]. By hematogenous and enteral routes, oral 
pathogenic bacteria can translocate to the gastro-
intestinal tract and induce various gastrointestinal 
diseases, which suggested that the higher diversity of 
oral microbiota in CRA group may be a high risk for 
gastrointestinal tumorigenesis [39]. Fusobacterium is 
known to be associated with colorectal adenomas and 
carcinoma [40-42]. In this study, we found an 
enrichment of Fusobacterium in the oral cavity of 
patients with colorectal tumors, especially in CRA 
group. Therefore, we speculate that the enrichment of 
Fusobacterium in the oral cavity may lead to its 
colonization in the colonic mucosa and further 
promote colorectal carcinogenesis, which indicates 
that Fusobacterium may serve as a “driver” in 
colorectal carcinogenesis [43]. By contrary, 
Fusobacterium may serve as a “passenger” according 
to the classic “driver-passenger model” by Tjalsma et 
al. [44]. Thus, the definite role of this oral species to 

CRC pathogenesis is still a matter of debate. 
Interestingly, the abundance of Fusobacterium was 
significantly lower in the CRC group than in the CRA 
group. Several studies have shown that Fusobacterium 
was enriched in the tumor tissue of CRC compared to 
CRA [43, 45], but different sample types and different 
detection methods may result in ambiguous results. 
In this study, the sample type was oral swab rather 
than tumor tissues. We speculated that the abundance 
of Fusobacterium in oral cavity may not be consistent 
with that in the tumor tissues. Moreover, 
Fusobacterium may involve in colorectal 
carcinogenesis in the adenoma stage, and the increase 
of Fusobacterium in oral cavity may be a specific 
clinical manifestation of CRA stage. This 
inconsistency is strange and interesting, and the 
mechanism involved this inconsistency need to be 
further studied. Furthermore, we found a significant 
change in the oral bacteria composition of the CRC 
group relative to that of the healthy controls. Flemer 
et al. found that several oral taxa were differentially 
abundant in CRC compared with controls in western 
populations [23]. However, the differentiated 
composition of oral microbiome in our study is 
distinct from that of Flemer et al., which may be due 
to the different dietary structure and different races of 
the subjects. Together, these results indicate a 
significant global shift in the oral microbiota among 
the three groups. 

Next, we conducted a functional analysis using 
PICRUSt. The results showed that the membrane 
transport pathway was decreased in the CRA groups 
and CRC groups compared with that in the healthy 
controls, which may have a potential impact on the 
anti-tumor immune response, such as the response 
mediated by bacterial outer membrane vesicles [46]. 
In contrast, the cell motility pathway was found to be 
overrepresented in the CRA and CRC groups, which 
can promote tumor invasion and migration [47]. 
Moreover, we identified two kinds of CAGs 
(pathogen CAGs and biofilm CAGs) from the top 20 
bacterial genera among the three groups. Bacteria 
from the pathogen CAG such as Fusobacterium, 
Treponema and Porphyromonas were previously shown 
to be involved in the late colonization of oral biofilms 
and human diseases including CRC and juvenile 
periodontitis [48-51]. Since the pathogenicity of this 
type of bacteria is more worthy of attention, we define 
them as the pathogen CAGs. In addition, several 
genera such as Streptococcus, Faecalibacterium, and 
Rothia existed in the early formation of tooth biofilm, 
which play a non-pathogenic role in healthy tooth 
pockets or have potential probiotic effects [52]. 
Accordingly, we define them as biofilm CAGs. 
Streptococcus, a biofilm CAG, has promising results in 
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treatment of halitosis, which often concurrent with 
digestive tract microbial disorders during the 
colorectal carcinogenesis [53, 54]. In this study, the 
decrease of Streptococcus in the oral cavity of CRA 
group may contribute to microbiota dysbiosis- 
associated colorectal carcinogenesis. Interestingly, the 
stringent network analysis showed that Fusobacterium 
(pathogen CAG) and Streptococcus (biofilm CAG) are 
mutually exclusive, indicating that there may be a 
biological antagonism between the two CAGs. 
Overall, these data further suggest an oral microbiota 
dysbiosis in CRC and CRA groups relative to healthy 
controls. 

Finally, we identified specific oral microbial 
markers to distinguish CRA or CRC patients from 
healthy controls and verified their diagnostic efficacy 
using random forest classification models. The results 
show that the classifier based on the five optimal OTU 
markers can effectively distinguish CRA or CRC 
patients from healthy controls in discovery cohort and 
validation cohort. These findings suggest that 
biomarkers based on the oral microbiota may help 
predict the risk of CRA and CRC. Hong et al. found 
that microbiome dysbiosis in early aberrant crypt foci 
legion can be used as a biomarker for potential CRC 
development [55]. However, colonoscopy used in the 
study of Hong is an invasive method, whilst oral swab 
in our study is non-invasive that makes patients more 
compliant. 

Nevertheless, there are some limitations about 
this study. First, we just compared the difference in 
oral microbiota compositions among the three groups, 
rather than do some research about the potential 
mechanism involved in colorectal carcinogenesis. 
Second, we just conducted a single-center study 
instead of a multi-center research, while the 
composition and activity of gut microbiota depends 
on many factors. The biomarkers are strongly 
ethnicity-dependent and should be validated in wide 
range of population. Third, metabolomics detection 
techniques, which can clarify the alteration of oral 
metabolites, may help us better understand the 
microecosystem network of oral microbial dysbiosis. 
Finally, methods of collecting oral microbes mainly 
include tongue coating, saliva, oral wash, and oral 
swabs [56]. In this study, only oral swabs were used to 
collect samples, which may lead to biased results due 
to uneven distribution of oral microbiome. 

Conclusions 
Oral microbial dysbiosis was found to be a 

common state in patients with CRA and CRC. 
Dysbiosis of the oral pathogen CAG (e.g. 
Fusobacterium, Treponema and Porphyromonas) and the 
biofilm CAG (e.g. Streptococcus, Faecalibacterium, and 

Rothia) may be important risks for colorectal 
carcinogenesis. Oral microbiota-based biomarkers can 
serve as a promising non-invasive tool for the 
detection of CRA and CRC. Further studies, such as 
constructing the special xenograft based on the target 
microbiota for in vivo and in vitro study, are needed to 
dissect the mechanisms of oral microbiota dysbiosis in 
colorectal carcinogenesis. 
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