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Abstract 

Rationale: Systemic lupus erythematosus (SLE) is a multi-organ autoimmune disease characterized by 
autoantibody production by hyper-activated B cells. Although mesenchymal stem cells (MSCs) ameliorate 
lupus symptoms by inhibiting T cells, whether they inhibit B cells has been controversial. Here we address 
this issue and reveal how to prime MSCs to inhibit B cells and improve the efficacy of MSCs in SLE. 
Methods: We examined the effect of MSCs on purified B cells in vitro and the therapeutic efficacy of 
MSCs in lupus-prone MRL.Faslpr mice. We screened chemicals for their ability to activate MSCs to inhibit 
B cells. 
Results: Mouse bone marrow-derived MSCs inhibited mouse B cells in a CXCL12-dependent manner, 
whereas human bone marrow-derived MSCs (hMSCs) did not inhibit human B (hB) cells. We used a 
chemical approach to overcome this hurdle and found that phorbol myristate acetate (PMA), phorbol 
12,13-dibutyrate, and ingenol-3-angelate rendered hMSCs capable of inhibiting IgM production by hB 
cells. As to the mechanism, PMA-primed hMSCs attracted hB cells in a CXCL10-dependent manner and 
induced hB cell apoptosis in a PD-L1-dependent manner. Finally, we showed that PMA-primed hMSCs 
were better than naïve hMSCs at ameliorating SLE progression in MRL.Faslpr mice. 
Conclusion: Taken together, our data demonstrate that phorbol esters might be good tool compounds 
to activate MSCs to inhibit B cells and suggest that our chemical approach might allow for improvements 
in the therapeutic efficacy of hMSCs in SLE. 
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Introduction 
Systemic lupus erythematosus (SLE) is an 

autoimmune disease characterized by the production 
of autoantibodies to ubiquitous self-antigens [1]. 
Although various abnormalities of immune cells have 
been implicated in SLE pathogenesis, excessive B cell 
activation seems to play a crucial role [2]. Mesen-

chymal stem cells (MSCs) are multipotent adult stem 
cells that have emerged as a promising therapy for the 
treatment of SLE. Adoptive transfer of MSCs to lupus- 
prone MRL.Faslpr mice increased their survival and 
decreased anti-dsDNA antibody level and nephritis 
[3-9]. In clinical studies, MSCs improved renal 
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functions and decreased autoantibody production 
[10-15]. As to the underlying mechanisms, MSCs 
inhibit T cell functions by producing such soluble 
mediators as IL-10, nitric oxide (NO), tumor growth 
factor (TGF)-β, prostaglandin E2 (PGE2), and indole-
amine 2,3-dioxygenase (IDO) [16-18]. In addition, 
MSCs suppress T cell functions by CCL2- and Fas- 
dependent contact inhibition [19, 20]. MSCs also 
inhibit the functions of dendritic cells, neutrophils, 
and natural killer cells, but enhance those of 
regulatory T cells [21-24]. However, whether MSCs 
inhibit B cells has been controversial. Some studies 
have shown that MSCs inhibit proliferation, antibody 
and cytokine production, and migration of B cells 
[25-28]. But others reported that MSCs cannot inhibit 
the proliferation of and antibody production by B cells 
[29, 30], and even enhance B cell functions [23, 31]. 
Reportedly, MSCs indirectly inhibit B cell 
proliferation through the inhibition of T cells [29, 32]. 

Since B cells play a crucial role in SLE 
progression, it is essential to understand the effect of 
MSCs on B cells. In this study, we first investigated 
whether mouse and human MSCs inhibited B cells or 
not. We found that mouse MSCs (mMSCs) inhibited 
mouse B (mB) cells, but human MSCs (hMSCs) did 
not inhibit human B (hB) cells, suggesting a species 
difference in MSC effects on B cells. Then, we 
extended the scope of our study to find chemicals that 
could improve hMSC functions. We found that 
phorbol esters activated hMSCs to inhibit hB cells and 
enhanced the therapeutic activity of hMSCs in a SLE 
mouse model. We suggest here that a chemical 
approach might be useful to generate clinically useful 
hMSCs for the treatment of SLE patients. 

Materials and Methods 

Preparation of MSCs 
hMSCs were generated from bone marrow (BM) 

cells aspirated from the posterior iliac crest of healthy 
donors. Mononuclear cells were collected by density 
gradient centrifugation (Ficoll-Paque; GE Healthcare 
Bio-Sciences AB, Uppsala, Sweden) and were cultured 
at 2 × 107 cells/T175 flask in CSBM-A06 medium 
(Corestem Inc., Gyeonggi, Korea) containing 10% fetal 
bovine serum (BD Biosciences, Franklin Lakes, NJ, 
USA), 2.5 mM L-glutamine, and penicillin/ 
streptomycin (WelGene, Gyeonggi, Korea) in a 5% 
CO2 incubator at 37 °C. Medium was changed every 
3–4 days and non-adherent cells were removed. 
Adherent cells were sub-cultured on day 10 or 11 
(passage 1). hMSCs were used in experiments at 
passages 3–5 [33]. The surface marker profile of 
hMSCs was CD29+CD44+CD73+CD105+CD90+CD34− 

CD45−HLA-DR− (data not shown). All hMSC studies 

were approved by the Institutional Review Board of 
Hanyang University Hospital and were carried out in 
accordance with the approved guidelines. All 
participants provided written informed consent. 

mMSCs were generated from the BM cells of 
tibiae and femurs of 6–8-week-old C3H/HeN mice 
(Orient Bio, Gyeonggi, Korea). Red blood cells were 
lysed with ACK buffer, and BM cells were cultured at 
1 × 107 cells/well of a 6-well plate in α-MEM medium 
containing 10% fetal bovine serum, 2 mM 
L-glutamine, and penicillin/streptomycin in a 5% CO2 
incubator at 37 °C. Medium was changed every 3 days 
and non-adherent cells were removed. Adherent cells 
were sub-cultured on day 10 or 11 (passage 1) and 
used in experiments at day 17–21 [33]. The surface 
marker profile of mMSCs was Sca-1+CD44+CD73+ 

CD45−CD11b−CD11c−Gr-1−MHC-II− (data not shown). 
All animal studies were approved by the Chungbuk 
National University Animal Experimentation Ethics 
Committee and were carried out in accordance with 
the approved guidelines. 

Priming of hMSCs with chemicals 
hMSCs were treated with phorbol myristate 

acetate (PMA; 10 ng/mL) for 24 h, washed three times 
with medium, and used immediately in experiments. 
We also treated hMSCs with various chemicals for 24 
h at the concentrations indicated in Table S1. 

Preparation of B cells and mitogen assay 
Human peripheral blood mononuclear cells 

were donated by the Chungbuk Red Cross Blood 
Center (Cheongju, Korea). Lymphocytes were isolated 
from these cells by density gradient centrifugation 
(Ficoll-Paque) [34]. hB cells were isolated from 
lymphocytes using a human B cell isolation kit 
(Miltenyi Biotec, Auburn, CA, USA). mB cells were 
purified from spleen cells of MRL.Faslpr mice by a 
negative depletion method using mouse B cell 
isolation kit (Miltenyi Biotec) [9]. Purity of hB and mB 
cells was typically >90%. B cells (1 × 105 cells/well) 
and MSCs (0.01–0.1 × 105 cells/well) were added in 
200 µL to the wells of 96-well plates. CpG-oligo-
deoxynucleotide (ODN; 5 μg/mL) was used to 
activate hB cells, and lipopolysaccharide (LPS; 1 
μg/mL) was used to activate mB cells. To measure B 
cell proliferation, cells were pulsed with [3H]- 
thymidine (113 Ci/nmol; NEN, Boston, MA, USA) at 
a concentration of 1 μCi/well for the last 18 h and 
were harvested on day 3 using an automated cell 
harvester (Inotech, Dottikon, Switzerland). The 
amount of [3H]-thymidine incorporated into the cells 
was measured using a Wallac Microbeta scintillation 
counter (Wallac, Turku, Finland) [3]. 
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Time-lapse imaging and transwell assay 
For time-lapse imaging, dishes were pre- 

warmed for 24 h in a 5% CO2 incubator at 37 °C. MSCs 
(70 µL of 0.3 × 106 cells/mL) were seeded into the left 
chamber and B cells (70 µL of 1 × 106 cells/mL) into 
the right chamber of culture-insert µ-Dish35mm culture 
dishes (ibidi GmbH, Martinsried, Germany). Cell- 
containing dishes were incubated for 3 h under the 
microscope and then inserts were carefully removed. 
Time-lapse imaging was performed with a Biostation 
IM-Q microscope (Nikon, Tokyo, Japan) equipped 
with a 10× magnification objective (numeric aperture 
0.5) and an environmental chamber kept at 37 °C and 
5% CO2. Images were acquired every 2 min for 12 h 
and were analyzed by using Imaris software 9.3.0 
(Oxford Instruments plc, Abingdon, UK). The number 
of migrating B cells was counted [4]. 

For transwell assay, B cells (1 × 106 cells/mL) 
were stained with 5-chloromethylfluorescein 
diacetate (CMFDA; 2 µM) at 37 °C for 15 min and 
washed three times with serum-free medium. B cells 
(1 × 105 cells; 100 µL) were added to each upper well 
of transwell plates with a 5-µm insert (Corning, 
Corning, NY, USA). Various concentrations of 
chemokines or MSCs were added to the lower wells in 
600 µL of complete RPMI 1640 medium. The number 
of B cells migrated to the lower well over 1.5 h was 
counted using a flow cytometer (FACSCalibur; BD 
Biosciences) [35]. In some experiments, B cells were 
pre-incubated with the CCR2 antagonist RS102895 (30 
µg/mL, Sigma-Aldrich, St. Louis, MO, USA) [36] or 
CXCL12 antagonist AMD3100 (300 µg/mL, Sigma- 
Aldrich) [37] for 1 h. 

Apoptosis assay 
hB cells (1 × 106 cells) and hMSCs (0.1 × 106 cells) 

were added in 2 mL onto 35-mm culture dishes (BD 
Biosciences) and cultured for 24 h. hB cell apoptosis 
was determined in three ways. First, hB cells were 
stained with anti-CD19 antibody conjugated with 
APC and then with FITC-annexin and propidium 
iodide for 15 min (FITC-Annexin V Apoptosis 
Detection Kit, BD Biosciences). hB cells were analyzed 
using a flow cytometer (FACSCalibur) and the data 
were processed using Cell Quest Pro software (BD 
Biosciences) [38]. Second, hB cells were stained with 
anti-CD19 antibody conjugated with APC and then 
labeled with FITC-ApoStat (Intracellular Caspase 
Detection ApoStat kit, Bio-Techne, Minneapolis, MN, 
USA) for 1 h. hB cells were analyzed using a flow 
cytometer (FACSCalibur) and the data were 
processed using Cell Quest Pro software [39]. Third, 
CellEvent Caspase-3/7 Green ReadyProbes Reagent 
(Thermo Fisher Scientific, Carlsbad, CA, USA) was 
directly added to the co-culture of hB cells and hMSCs 

[40]. Time-lapse imaging was performed with a 
Biostation IM-Q microscope (Nikon) and images were 
acquired in two channels (phase contrast and green 
filter) every 10 min for 24 h [4]. Images were analyzed 
by using Imaris software 9.3.0. Green-fluorescent cells 
were considered apoptotic. 

Lupus-prone MRL.Faslpr mouse model 
MRL.MpJ-Tnfrsf6Faslpr/J (called MRL.Faslpr 

hereafter) mice lack Fas and spontaneously develop 
an SLE-like disease [20]. The onset and symptom 
severity in these mice depend on their genetic 
background. Female MRL.Faslpr mice die at an 
average age of 17 weeks and males at 22 weeks. 
Similar to SLE patients, MRL.Faslpr mice have a 
marked increase in anti-dsDNA antibodies in their 
blood and develop severe nephritis. Female 
MRL.Faslpr mice were purchased from the Jackson 
Laboratory (Bar Harbor, ME, USA). Mice were housed 
in specific pathogen-free conditions at 21–24 °C and 
40–60% relative humidity under a 12 h light/dark 
cycle and randomized into 3 groups. Mice were 
injected intravenously with PBS (vehicle, n = 6), 4 × 
104 naïve hMSCs/mouse (n = 6), or 4 × 104 PMA- 
hMSCs/mouse (n = 6) once at the age of 12 weeks. 
Survival rate and body weight were examined every 2 
weeks. Serum were collected every 3 weeks and 
stored at −70 °C until used. The levels of anti-dsDNA 
IgG and total IgG in serum and the levels of protein in 
urine were measured by using ELISA kits purchased 
from Alpha Diagnostic International (San Antonio, 
TX, USA), eBioscience (San Diego, CA, USA), and 
Sigma-Aldrich, respectively, according to the 
manufacturers’ instructions. 

Immunohistochemistry (IHC) 
Kidneys were isolated from the surviving 

MRL.Faslpr mice at 22 weeks of age, fixed with 4% 
formalin, and immersed in PBS [5]. After dehydration 
with ethanol and xylene, the tissues were embedded 
in paraffin and cut into 4-µm sections. After removing 
paraffin, sections were hydrated and heated in a 
microwave oven (650 W, 20 min) for antigen retrieval, 
after which endogenous peroxidase activity was 
blocked with 3% hydrogen peroxide. To detect 
immune cells in the kidney, sections were incubated 
with the following primary goat antibodies against 
mouse IgG (diluted 1:100; Jackson ImmunoResearch, 
West Grove, PA, USA), C3 complement (1:100; 
GeneTex, San Antonio, TX, USA), CD19 (1:100; 
BioLegend, San Diego, CA, USA), CD3 (1:100; Santa 
Cruz Biotechnology, Dallas, TX, USA), F4/80 (1:100; 
Santa Cruz Biotechnology), CD209b (1:100; Santa 
Cruz Biotechnology), and Foxp3 (1:50; Abcam, 
Cambridge, UK) at 4 °C overnight. Then all sections 
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were incubated with secondary antibody (anti-goat 
IgG conjugated with horseradish peroxidase; Vector 
Laboratories, Burlingame, CA, USA) for 1 h at room 
temperature. Signals were developed with a 
two-component high-sensitivity diaminobenzidine 
chromogenic substrate (Vector Laboratories) for 10 
min and the sections were counter-stained with 
hematoxylin. Stained area (%) was calculated with 
ImageJ software (NIH, Bethesda, MD, USA) as 
follows: IHC stained area (brown staining) / total area 
(brown + non-brown staining). 

RNA interference 
Small interfering RNAs (siRNAs) were 

purchased from Bioneer (Daejon, Korea). Their 
sequences are shown in Table S2. MSCs were 
transfected with 100 nM siRNAs using Lipofectamine 
RNAiMAX reagent (Thermo Fisher Scientific) 
following the manufacturer’s protocol. Cells were 
incubated at 37 °C in a CO2 incubator for 48 h [41]. 

RT-PCR, ELISA, and nitric oxide (NO) assay 
 Total RNA was isolated from MSCs using 

TRIZOL Reagent (Thermo Fisher Scientific). RNA was 
quantified using a spectrophotometer and stored at –
80 °C at a concentration of 1 mg/mL. cDNA was 
synthesized from 3 µg total RNA using an RT kit 
(Bioneer). PCR was used to examine the levels of 
mRNAs of chemokines, cytokines, and other proteins 
in spleen cells of MRL.Faslpr mice at 22 weeks of age. 
The primer sequences are shown in Table S3. PCR 
products were separated on 1% agarose gels and 
stained with 5 µg/mL ethidium bromide [33]. 

The levels of CCL2, CCL4, CCL5, CXCL10, 
CXCL12, IFN-γ, IL-10, PGE2, and TGF-β, accumulated 
in medium were measured by ELISA (Bio-Techne). 
The levels of IDO were measured by ELISA 
(BlueGene Biotech; Shanghai, China) [20]. The levels 
of IgM and IgG were determined by ELISA (Thermo 
Fisher Scientific). The level of nitrite accumulation in 
medium was used as an indicator NO production [43]. 
Briefly, the cell culture supernatants were mixed with 
an equal volume of Griess reagent (1% sulfanilamide, 
0.1% naphthylethyl-enediamine dihydrochloride, and 
2% phosphoric acid) and incubated at room 
temperature for 10 min. Nitrite concentrations were 
measured as optical density at 540 nm. 

Western blotting 
Cells were lysed in ice-cold cell lysis buffer (Cell 

Signaling Technology, Danvers, MA, USA; 20 mM 
Tris-HCl, pH 7.5; 150 mM NaCl; 1 mM Na2EDTA; 1 
mM EGTA; 1% Triton X-100; 2.5 mM sodium 
pyrophosphate; 1 mM β-glycerophosphate; 1 mM 
Na3VO4; 1 µg/mL leupeptin). Proteins were separated 

by 10% SDS-PAGE and transferred to a PDVF 
membrane (MilliporeSigma, Burlington, MA, USA). 
Membrane was blocked with 5% skim milk in TBS/ 
Tween-20 (TTBS) for 1 h and incubated with primary 
antibody in TTBS containing 5% BSA overnight. Anti-
bodies against mouse or human CCR2, CCR5, CXCR3, 
CXCR4, GAPDH, IDO, PKC-α, PKC-δ, phospho- 
STAT1, and STAT1 were purchased from Cell 
Signaling Technology. After washing, membranes 
were incubated with horseradish peroxidase– 
conjugated secondary antibody and signals were 
detected by enhanced chemiluminescence 
(Amersham Pharmacia Biotech, Piscataway, NJ, USA) 
[33, 42]. 
Phenotyping 

Cells were stained for 15 min at 4 °C with 
FITC-conjugated antibody against mouse CD4 or 
CD138 (BD Biosciences). Alternatively, cells were 
fixed using a Cytofix-Cytoperm Kit (BD Biosciences) 
and then stained with anti-Foxp3-APC or anti-IgG- 
APC antibody (eBiosciences, San Diego, CA, USA). 
Cells were analyzed using a flow cytometer 
(FACSCalibur) and the data were processed using 
Cell Quest Pro Software [44]. 

Statistical analysis 
Data are presented as the mean ± SEM of at least 

three independent in vitro experiments performed in 
triplicate or six mice. To determine statistical 
significance, p-values were calculated using one-way 
ANOVA (GraphPad Software, San Diego, CA, USA). 
Results 
mMSCs inhibit mB cells in a 
CXCL12-dependent manner 

 First, we used mMSCs generated from BM cells 
of C3H/HeN mice (H-2k) and splenic B cells isolated 
from lupus-prone MRL.Faslpr mice (H-2k). We found 
that mMSCs inhibited the proliferation of (Figure 1A) 
and IgM production (Figure 1B) by LPS-treated mB 
cells in a dose-dependent manner. mMSCs also 
inhibited the IgG production by mB cells activated 
with anti-CD40 antibody, IL-4, and IL-21 (Figure 
S1A). To assess whether mMSCs inhibit mB cells in a 
soluble factor- or contact-dependent manner, we used 
a transwell assay. When we added mMSCs and mB 
cells to the lower wells, thereby allowing cell-cell 
contact, mMSCs strongly inhibited mB cell 
proliferation (Figure 1C) and IgM production (Figure 
1D). When we added mMSCs to the upper wells and 
mB cells to the lower wells, thereby preventing direct 
cell-cell contact, mMSCs inhibited mB cell functions 
much more weakly (Figure 1C–D). These data imply 
that mMSCs inhibit mB cell functions mainly in a 
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contact-dependent manner and partially in a soluble 
factor-dependent manner. We confirmed that mMSCs 
produced the immunosuppressive soluble factors 
TGF-β, IL-10, PGE2, and NO (Figure 1E–F). 

Next, we examined how mMSCs inhibited mB 
cell functions in a contact-dependent manner. To 
examine the role of chemokines, we assessed the 
expression profiles of chemokines in mMSCs and 
chemokine receptors in mB cells. mMSCs expressed 
mRNAs for CCL2, CCL4, and CXCL12 (Figure 2A), 
and the corresponding proteins were detectable by 
ELISA in conditioned medium (Figure 2B). We also 
confirmed that mB cells expressed mRNAs and 
proteins of CCR2, CCR5, and CXCR4 (Figure 2C). 
Then we used siRNAs to knock down CCL2 and 
CXCL12 in mMSCs (Figure 2D) and performed 
transwell assay to assess mB cell migration towards 
mMSCs at the population level. mB cells migrated 
well to mMSCs transfected with negative control or 
CCL2 siRNAs, but not to mMSCs transfected with 
CXCL12 siRNA (Figure 2E). mB cells treated with the 
CXCR4 antagonist AMD3100 showed little migration 
toward mMSCs, while mB cells treated with the CCR2 
antagonist RS102895 migrated well to mMSCs (Figure 
2F). To confirm these results, we used time-lapse 
imaging at the single-cell level. We placed mMSCs 
transfected with negative control siRNA, CCL2 

siRNA, or CXCL12 on the left side of an imaging 
chamber and mB cells on the right side and acquired 
images every 2 min for 12 h (Movie S1). 
Representative images collected at 2-h intervals are 
shown in Figure 2G. The number of mB cells passing 
through the white box at each time point showed that 
negative control- and CCL2 siRNA-transfected 
mMSCs induced mB cell migration towards them, 
whereas CXCL12 siRNA-transfected mMSCs did not 
(Figure 2G). Overall, these data suggest that CXCL12 
produced by mMSCs induces mB cell migration. 

PMA-primed hMSCs inhibit hB cells in a 
CXCL10-dependent manner 

Next, we examined the effects of hMSCs 
generated from human BM cells on hB cells isolated 
from peripheral blood mononuclear cells of healthy 
donors. Unexpectedly, hMSCs did not inhibit IgM 
production by hB cells (Figure 3A). Thus, we screened 
a number of chemicals for their ability to activate 
hMSCs to inhibit hB cells (Table S1). Among these 
chemicals, three protein kinase C (PKC) activators 
(PMA, phorbol 12,13-dibutyrate, and ingenol 3- 
angelate) activated hMSCs so that they inhibited IgM 
production by ODN-treated hB cells (Figure 3B–C). 
PMA-primed hMSCs (called PMA-hMSCs hereafter) 
inhibited IgG production by hB cells activated with 

 
Figure 1. Effects of mMSCs on the proliferation of and IgM production by mB cells. (A–B) mMSCs (0.1–3 × 104 cells/well) and MRL.Faslpr mB cells (1 × 105 cells/well) 
were co-cultured for 72 h. LPS (1 µg/mL) was used to activate mB cells. The proliferation of and IgM production by mB cells were measured by the mitogen assay (A) and ELISA 
(B), respectively. (C–D) mMSCs (1 × 104 cells/well) were added to the upper (U) or lower (L) wells of transwell plates and mB cells (1 × 105 cells/well) to the L wells. After 
incubation with LPS for 72 h, the mitogen assay (C) and ELISA (D) were performed. (E) The levels of TGF-β, IL-10, and PGE2 accumulated in the culture medium of BM cells and 
mMSCs for 24 h were measured by ELISA. NO level was measured with Griess reagent. (F) Expression levels of COX-2, iNOS, and TGF-β mRNAs in BM cells and mMSCs were 
assessed by RT-PCR. *p < 0.01 (n = 3). 
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anti-CD40 antibody, IL-4, and IL-21 (Figure S1B). PKC 
inhibitor Go6983 abolished the ability of PMA-hMSCs 
to inhibit hB cells (Figure 3D). When we added 
PMA-hMSCs and hB cells together to the lower wells 
of transwell plates, PMA-hMSCs strongly inhibited 
hB cell IgM production, but, when we separated them, 
PMA-hMSCs did not (Figure 3E), suggesting that 
PMA-hMSCs inhibited hB cells mainly in a 
contact-dependent but not soluble factor-dependent 
manner. PMA did not increase the expression levels of 
immunosuppressive soluble factors, such as TGF-β, 
COX2, iNOS, or IDO, in hMSCs compared with naïve 
hMSCs (Figure 3F). PMA did not affect the 

phenotypes (Figure S2A), viability (Figure S2B), and 
proliferation (Figure S2C) of hMSCs. In addition, 
PMA did not affect the gene expression of IL-6 and 
IL-10 by hMSCs (Figure S2D). 

Next, we investigated how PMA-hMSCs 
inhibited hB cell functions in a contact-dependent 
manner. PMA increased the expression of CXCL10, 
but not of CCL2, CCL3, or CXCL12, by hMSCs (Figure 
4A). hB cells expressed the CXCL10 receptor CXCR3 
(Figure 4B). We decreased the expression of CCL2, 
CXCL10, and CXCL12 in PMA-hMSCs with specific 
siRNAs and used them in transwell assay. 
PMA-hMSCs transfected with CXCL10 siRNA did not 

 

 
Figure 2. Effects of mMSCs on the migration of mB cells. (A) Expression levels of chemokine mRNAs in BM cells and mMSCs were assessed by RT-PCR. (B) The levels 
of CCL2, CCL4, CCL5, and CXCL12 accumulated in culture medium of BM cells and mMSCs for 24 h were measured by ELISA. (C) Expression levels of chemokine receptors 
and their mRNAs in mB cells were assessed by western blotting and RT-PCR, respectively. (D) mMSCs were transfected with negative (neg) control, CCL2, or CXCL12 siRNA 
for 48 h. The levels of CCL2 and CXCL12 accumulated in culture medium for 24 h were measured by ELISA. (E–F) CMFDA-labeled mB cells (1 × 105 cells/well) were added to 
the upper wells of transwell plates with a 5-µm insert. mMSCs (0.3–3 × 104 cells/well), which had been transfected with negative control, CCL2-siRNA, or CXCL12-siRNA, were 
added to the lower wells (E). CMFDA-labeled mB cells were pre-treated with dimethyl sulfoxide (0.1%, Control), CCR2 antagonist RS102895 (30 µg/mL), or CXCR4 antagonist 
AMD3100 (300 µg/mL) for 1 h, washed three times, and added to the upper wells. mMSCs (0.3–3 × 104 cells/well) were added to the lower wells (F). After 1.5 h, the number 
of CMFDA-labeled mB cells migrating to the lower well was determined. (G) For time-lapse imaging, mMSCs (70 µL of 0.3 × 106 cells/mL) were seeded into the left chamber and 
mB cells (70 µL of 1 × 106 cells/mL) into the right chamber of culture-insert µ-Dish35mm culture dishes. Images were acquired every 2 min for 12 h after 1-h pre-incubation. 
Representative photos are shown (n = 3). The numbers of mB cells passing through the white boxes are shown. *p < 0.01 (n = 3). 
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induce hB cell migration, but other PMA-hMSCs 
attracted hB cells (Figure 4C). These results were 
confirmed by time-lapse imaging (Movie S2). 
Representative images collected at 2-h intervals are 
shown in Figure 4D. The number of hB cells passing 
through the white box at each time point showed that 
CXCL10 siRNA-transfected PMA-hMSCs did not 
induce hB cell migration (Figure 4D). Overall, these 
data suggest that PMA-hMSCs use CXCL10 to attract 
hB cells, unlike mMSCs, which use CXCL12. 

PMA-hMSCs inhibit hB cells in a 
PD-L1-dependent manner 

 Next, we examined how PMA-hMSCs directly 
inhibit hB cell functions after contact. PMA strongly 
increased the expression of PD-L1 and weakly that of 
PD-L2 and FasL by hMSCs (Figure 5A). Anti-PD-L1 
blocking antibody abolished the inhibitory capacity of 
PMA-hMSCs, but anti-PD-L2 and anti-FasL anti-
bodies did not (Figure 5B). PMA-hMSCs transfected 
with PD-L1 siRNA did not inhibit B cells, but 
PMA-hMSCs transfected with FasL siRNA inhibited 
hB cells well (Figure 5C). 

 Then, we examined whether PD-L1-expressing 
PMA-hMSCs can induce apoptosis of hB cells in three 
ways. First, we stained hB cells with annexin V and 
propidium iodide. PMA-hMSCs markedly increased 
the proportion of annexin V-positive apoptotic hB 

cells, but PMA-hMSCs transfected with PD-L1 siRNA 
did so only weakly (Figure 5D). Second, we labeled 
hB cells with FITC-VAD-FMK (ApoStat), a cell- 
permeable fluorescent pan-caspase probe. PMA- 
hMSCs increased pan-caspase activity in hB cells, but 
PMA-hMSCs transfected with PD-L1 siRNA did not 
(Figure 5E). Third, we labeled hB cells with the DEVD 
peptide conjugated to a nucleic acid-binding dye 
(CellEvent Caspase-3/7 Green ReadyProbes Reagent). 
Upon activation of caspase-3/7 in apoptotic cells, 
DEVD is cleaved and the free dye binds DNA, 
generating bright green fluorescence. By using time- 
lapse imaging, we showed that caspase-3/7 activity 
was higher in PMA-hMSCs than in PMA-hMSCs 
transfected with PD-L1 siRNA (Movie S3 and Figure 
5F). Overall, these data suggest that PMA-hMSCs 
activates caspases in a PD-L1-dependent manner, 
followed by hB cell apoptosis. 

PMA-hMSCs are more efficient than naïve 
hMSCs in ameliorating lupus progression in 
MRL.Faslpr mice 

Finally, we examined the therapeutic activity of 
PMA-hMSCs in lupus-prone MRL.Faslpr mice. Our 
preliminary experiments showed that hMSCs at 4 × 
106 cells/injection completely prevented lupus 
progression in MRL.Faslpr mice. To compare the 
efficacy of hMSCs and PMA-hMSCs, we therefore 

 

 
Figure 3. Effects of PMA-hMSCs on IgM production by hB cells. (A) hMSCs (0.1–3 × 103 cells/well) and hB cells (1 × 105 cells/well) were co-cultured for 72 h. (B) 
hMSCs were treated with PMA (10 ng/mL) for 24 h and washed three times with medium. PMA-treated hMSCs (PMA-hMSCs; 0.1–3 × 103 cells/well) and hB cells (1 × 105 
cells/well) were co-cultured for 72 h. (C) hMSCs were treated with ingenol-3-acetate (I3A, 10 µg/mL) or phorbol 12,13-dibutyrate (PdBU, 10 µg/mL) for 24 h and washed three 
times with medium. Chemical-treated hMSCs (1 × 103 cells/well) were co-cultured with hB cells (1 × 105 cells/well) for 72 h. (D) hMSCs were treated with PMA in the presence 
or absence of the PKC inhibitor Go6983 (1 µg/mL) for 24 h. PMA-hMSCs were washed three times with medium. PMA-hMSCs (1 × 103 cells/well) were co-cultured with hB cells 
(1 × 105 cells/well) for 72 h. (E) PMA-hMSCs (1 × 103 cells/well) were added to the lower wells and hB cells (1 × 105 cells/well) to the upper wells of transwell plates with a 5-µm 
insert. CpG-oligodeoxynucleotide (ODN, 5 µg/mL) was used to activate hB cells. IgM production by hB cells was measured by ELISA (A–E). (F) Total RNA was isolated from 
chemically untreated hMSCs (UN) or PMA-treated hMSCs (PMA). Gene expression levels were assessed by RT-PCR. *p < 0.01 (n = 3). 
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injected lower numbers of hMSCs and PMA-hMSCs 
(4 × 104 cells/injection). All mice (n = 6) that received 
PMA-hMSCs survived up to 30 weeks of age, which 
was much longer than control and hMSC-injected 
groups (Figure 6A). Regardless of PMA priming, 
hMSCs did not affect body weight (Figure 6B), and no 
untoward effects were noted. In another experiment, 
when 50% of control mice survived (22 weeks of age), 
we sacrificed the surviving mice. The serum levels of 
anti-dsDNA (Figure 6C) and total IgG (Figure 6D) 
antibodies and the levels of protein in urine (Figure 
6E) were much lower in PMA-hMSC-treated mice 
than in the control and hMSC-treated mice. The 
deposition of IgG and C3 complement in the kidney 
was significantly decreased in PMA-hMSC-treated 
mice in comparison with the control and 
hMSC-treated mice (Figure 6F). The expression of all 
inflammatory cytokines tested (IL-1β, IL-12, IFN-γ, 
and TNF-α) in the spleen was also lower in 
PMA-hMSC-treated mice than in the control and 
hMSC-treated mice (Figure 6G). The frequency of 

Foxp3-expressing CD4+ Treg cells was higher and that 
of IgG-producing CD138+ plasma cells was lower in 
the spleens of PMA-hMSC-treated mice than in those 
of the control and hMSC-treated mice (Figure 6H). 
The infiltration of T cells, B cells, macrophages, and 
dendritic cells into the kidney was significantly 
decreased in PMA-hMSC-treated mice in comparison 
with the control and hMSC-treated mice (Figure 7). In 
contrast, the infiltration of Treg cells into the kidney 
was significantly increased in PMA-hMSC-treated 
mice in comparison with the control mice (Figure 7). 
Overall, our data suggest that PMA-hMSCs 
ameliorate the development of SLE-like disease in 
MRL.Faslpr mice more effectively than do naïve 
hMSCs. 

Since we injected PMA-hMSCs into the 
xenogeneic MRL.Faslpr mice, we examined whether 
PMA-hMSCs inhibited mB cells. hMSCs did not 
inhibit the proliferation of or IgM production by mB 
cells from MRL.Faslpr mice (Figure 8A). However, 
hMSCs inhibited well the proliferation of and IFN-γ 

 

 
Figure 4. Effects of PMA on the migration of hMSCs. (A) hMSCs were activated with PMA for 24 h. Chemokine expression levels were measured by RT-PCR and ELISA. 
UN, untreated. (B) Expression levels of chemokine receptors in hB cells were assessed by RT-PCR. (C) PMA-hMSCs were transfected with negative-control, CCL2, CXCL10, 
or CXCL12 siRNA for 48 h, and chemokine expression levels were analyzed by RT-PCR. PMA-hMSCs (0.03–0.3 × 104 cells/well) were added to the lower wells and 
CMFDA-labeled hB cells (1 × 105 cells/well) to the upper wells of transwell plates with a 5-µm insert. After 1.5 h, the number of CMFDA-labeled hB cells migrating to the lower 
well was determined. (D) For time-lapse imaging, hMSCs (70 µL of 0.3 × 106 cells/mL) were seeded into the left chamber and hB cells (70 µL of 1 × 106 cells/mL) into the right 
chamber of culture-insert µ-Dish35mm culture dishes. Images were acquired every 2 min for 12 h. Representative photos are shown. The numbers of hB cells passing through the 
white boxes are shown. *p < 0.01 (n = 3). 
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production by concanavalin A (ConA)-activated T 
cells from the same mice (Figure 8B). PMA-hMSCs 
inhibited both IgM production by mB cells (Figure 8C) 
and IFN-γ production by mouse T cells (Figure 8D). 
We found that 1-day priming of hMSCs with PMA 
was enough to activate hMSCs to inhibit mB cells 
(Figure 8E). We also proved that mMSCs, hMSCs, and 
PMA-hMSCs inhibited IFN-γ production by T cells 
activated with anti-CD3 and anti-CD28 antibody, 
which mimicked TCR-dependent T cell activation 
(Figure S1C–D). Overall, our data suggest that the 
improved efficacy of PMA-hMSCs in MRL.Faslpr mice 
might be due to the dual inhibition of T and B cells. 

Discussion 
Two approaches have been proposed to improve 

the functions of MSCs. One is MSC priming with 
cytokines and growth factors. IFN-γ, TNF-α, IL-17, 
and IL-1β are well known to enhance the immuno-
suppressive properties of MSCs by upregulating the 
secretion of IDO, PGE2, and TGF-β [45-49]. The second 
approach is MSC priming with chemicals, which 
might be more cost effective than priming with 
cytokines. Valproic acid, sphingosine-1-phosphate, 
5-aza-2’-deoxycytidine, dimethyloxalylglycine, 2- 
chloro-N6-cyclopentyl-adenosine, rapamycin, and 

 
Figure 5. Effects of PMA-hMSCs on the viability of hB cells. (A) hMSCs were activated with PMA for 24 h. Expression levels of the death ligands PD-L1, PD-L2, and FasL 
were measured by RT-PCR and flow cytometric analysis. UN, untreated. (B–C) PMA-hMSCs (1 × 103 cells/well) were co-cultured with hB cells (1 × 105 cells/well) for 72 h in 
the presence of blocking antibodies against PD-L1, PD-L2, or FasL (B). PMA-hMSCs, which had been transfected with PD-L1 or FasL siRNA, were co-cultured with hB cells (C). 
ODN (5 µg/mL) was used to activate hB cells. IgM production by hB cells was measured by ELISA assay. (D–F) PMA-hMSCs (0.1 × 106 cells), which had been transfected with 
PD-L1 siRNA, were cultured with hB cells (1 × 106 cells) in 35-mm culture dishes for 24 h. hB cells were stained with anti-CD19-APC and then stained with FITC-Annexin V and 
propidium iodide (PI). Cells were analyzed using a flow cytometer (D). hB cells were stained with anti-CD19-APC and Intracellular Caspase Detection ApoStat kit and analyzed 
using a flow cytometer (E). CellEvent Caspase-3/7 Green ReadyProbes Reagent was added to the culture of hB cells and hMSCs, and the cells were imaged every 10 min for 24 
h with a Biostation IM-Q microscope (Nikon). Green fluorescent cells were considered apoptotic (F). *p < 0.01 (n = 3). 
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all-trans retinoic acid enhance the differentiation, 
proliferation, and tissue-homing ability of MSCs 
[50-55]. In this study, we investigated in detail the 
effects of chemicals on the ability of MSCs to suppress 
the functions of B cells and found that PMA improves 
the suppressive activity of hMSCs on hB cells. 
Compared to naïve hMSCs, PMA-hMSCs strongly 
inhibited IgM production by hB cells. 

The first question addressed in this study is how 
PMA-hMSCs inhibit B cells. It is well documented 
that MSCs can inhibit T cells through both contact- 
and soluble factor-dependent mechanisms [16-18, 24, 
56, 57]. However, PMA-hMSCs inhibit hB cells mainly 
in a contact-dependent manner, but not through 
soluble factors. When those cells were separated in 
our transwell assay, PMA-hMSCs did not affect hB 
cells, but allowing their contact resulted in PMA- 
hMSCs strongly and significantly inhibiting hB cells. 

The second question is how PMA-hMSCs contact 
hB cells. Our data suggest an important role of 
CXCL10 produced by adherent PMA-hMSCs in 
migration of non-adherent hB cells. It is well known 
that serum levels of CXCL10 are increased in SLE 
patients and are strongly correlated with disease 
activity [58]. In lupus-prone MRL/lpr mice, the 
number of CXCR3-positive plasma B cells is increased 
in the secondary lymphoid organs during the 
development of lupus nephritis [59]. Importantly, the 
nephritic kidney shows high expression of CXCL10 
[60], which increases the migration of CXCR3-positive 
plasma B cells from the secondary lymphoid organs 
into the inflamed kidney. Our data that PMA-hMSCs 
transfected with CXCL10 siRNA did not attract B cells 
suggest an additional role of CXCL10 in that this 
chemokine optimizes the interaction between MSCs 
and B cells, which might happen in the nephritic 

 

 
Figure 6. In vivo efficacy of PMA-hMSCs in MRL.Faslpr mice. (A–B) MRL.Faslpr mice were intravenously injected with PBS (control), naïve hMSCs (4 × 104 cells 
/injection), or PMA-hMSCs (4 × 104 cells/injection) once at the age of 12 weeks. Survival was measured every week (A) and body weight (B) every 2 weeks up to 30 weeks of 
age. *p < 0.01 (n = 6). (C–H) Injections were performed as in (A). Surviving mice were sacrificed at the age of 22 weeks. The serum levels of anti-dsDNA IgG (C) and total IgG 
(D) were measured every 3 weeks. Proteinurea levels were measured at the age of 22 weeks (E). Kidney sections were stained with antibodies against IgG and C3 complement 
(F). Total RNA was isolated from spleen cells and the expression levels of inflammatory cytokine genes (IL-1β, IL-12, IFN-γ, and TNF-α) were examined by RT-PCR (G). The 
ratios of Foxp3-expressing CD4+ Treg cells (CD4+Foxp3int) and IgG-producing CD138+ plasma cells (CD138+IgGint) in the spleen were measured by flow cytometry (H). *p < 
0.01 (n = 6). 
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kidney. CCL2 and CXCL12 appear not to be involved 
in PMA-hMSC-induced attraction of hB cells. Two 
interesting aspects are worth noting. First, mMSCs 
use a different chemokine, CXCL12, to induce mB cell 
migration. CXCL12 siRNA-transfected mMSCs were 
unable to induce mB cell migration, and a CXCR4 
antagonist blocked mB cell migration to mMSCs. 
Second, MSCs use CCL2 to attract T cells. 
CCL2-deficient MSCs can neither attract T cells nor 
inhibit T cell functions [4]. MSCs use CCL2 for the 
recruitment and subsequent contact-dependent 
inhibition of inflammatory Th17 cells and for the 
homing of Tregs and myeloid-derived suppressor 
cells to the damaged organs in models of 
experimental autoimmune encephalomyelitis and 
experimental autoimmune uveitis [61, 62]. Overall, 
our data suggest that MSCs use different chemokines 
to attract T and B cells in a species-dependent manner. 

The next question is how PMA-hMSCs inhibit hB 
cells after contact. Our data suggest a key role for 
PD-L1. PD-1 is broadly expressed on B cells and other 
immune cells, including T cells [63]. Although PD-1 
interacts with PD-L1 and PD-L2, PD-L1 might act as 
the primary ligand of PD-1 [64]. Unlike PD-L2, PD-L1 
induces a considerable conformational change of PD-1 
and is widely expressed on most cell types, including 
dendritic cells, macrophages, endothelial cells, and 

placenta cells [64, 65]. PD-L1 has been extensively 
studied as a negative regulator of the immune 
response that enables tumor cells to escape T cell 
immunity [66, 67], and as an inducer of peripheral 
tolerance to prevent autoimmune diseases [66, 68]. 
MSCs highly express PD-L1 upon activation with 
IFN-γ or TNF-α, although naïve MSCs express it very 
weakly [64, 69, 70]. IFN-γ treated MSCs inhibit 
cytokine production, proliferation, and differentiation 
of T cells and induce T cell apoptosis in a PD-L1- 
dependent manner, although some discrepancies are 
reported depending on the experimental conditions 
[63, 64, 69, 71-73]. MSCs inhibit B cell antibody 
production in a PD-1-dependent contact-inhibition 
manner [69]. In agreement with these data, our data 
show that PMA-hMSCs inhibit hB cell functions in a 
PD-L1-dependent manner, which was proved by 
siRNA and blocking-antibody experiments. 

The implications of our study are limited by 
several caveats. First, we did not clarify the signaling 
in PMA-hMSCs. PMA activates PKCs and 
subsequently activates several transcription factors, 
such as NF-AT and NF-κB [74, 75], which are able to 
increase the mRNA expression of CXCL10 and PD-L1 
[66, 76, 77]. It is also unclear how long PKC activation 
in hMSCs is maintained after washing out PMA. Our 

 

 
Figure 7. Immunohistochemical analysis. Kidney sections used in Figure 6F were stained with antibodies against CD3 (T cells), CD19 (B cells), F4/80 (macrophages), 
CD209b (dendritic cells), or Foxp3 (Treg cells). 
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preliminary experiments demonstrated that the 
amount of PKCs in the cytosol of hMSCs decreased 
from 1 h and PKC almost disappeared 24 h after the 
onset of PMA treatment (Figure S3A). After removing 
PMA, the amount of PKCs in the cytosol of hMSCs 
was maintained at low level up to 3 days and 
increased from 4 days (Figure S3B). The gene 
expression of PD-L1 in hMSCs was maintained up to 2 
days and decreased from 3 days after washing out 
PMA (Figure S3C). Further studies to delineate the 
detailed signaling cascades in PMA-hMSCs are 
needed, because elucidation of the underlying 
mechanism would enable us to develop a strategy for 
the generation of MSCs with potent 
immunosuppressive activities. Second, we did not 
study the negative role of PD-1 signaling in B cell 
activation. Although much has been learned about the 
inhibitory mechanisms of PD-1 signaling in T cell 
activation, little is known about how PD-1 inhibits B 
cell activation [71]. Thus, further studies are required 
to reveal the detailed inhibitory mechanisms of PD-1 
signaling in B cell activation. Third, our experimental 
system, which uses MSCs and purified B cells, is not 

identical to in vivo conditions, since the interaction 
between MSCs and B cells is extremely complicated 
and is likely affected by many different factors in vivo. 
However, our system might be optimal for 
investigating their interaction because it is easily 
controllable and can be expected to yield reproducible 
data since there are few interfering factors [78]. 

Despite these shortcomings, the results of this 
study provide several insights into the mechanisms of 
B cell inhibition by MSCs. First, mMSCs inhibit mB 
cells, but hMSCs do not inhibit hB cells, which 
suggests a species difference in MSC effects on B cells. 
Second, phorbol ester priming of hMSCs can increase 
their immunosuppressive capacity against hB cells. 
Third, PMA-hMSCs inhibit hB cells via unique 
mechanisms using CXCL10 and PD-L1. Fourth, in 
comparison with naïve hMSCs, PMA-hMSCs have 
better therapeutic efficacy in vivo in an SLE mouse 
model. Most importantly, our data provide a clue on 
how to generate hMSCs effective for the treatment of 
patients with SLE and other autoimmune diseases 
characterized by excessive B cell activation. 

 

 
Figure 8. Effects of PMA-hMSCs on xenogeneic mB cells. (A) hMSCs (0.03–1 × 104 cells/well) and MRL.Faslpr mB cells (1 × 105 cells/well) were co-cultured for 72 h. LPS 
(1 µg/mL) was used to activate mB cells. The proliferation of and IgM production by mB cells were measured by the mitogen assay and ELISA, respectively. (B) hMSCs (0.03–
1 × 104 cells/well) and MRL.Faslpr mT cells (1 × 105 cells/well) were co-cultured for 72 h. Concanavalin A (ConA, 1 µg/mL) was used to activate mT cells. The proliferation of and 
IFN-γ production by mT cells were measured by the mitogen assay and ELISA, respectively. (C–D) hMSCs (1 × 104 cells/well) were activated with PMA (3–30 ng/mL) for 24 h 
and then co-cultured with mB cells (1 × 105 cells/well) (C) or mT cells (1 × 105 cells/well) (D). (E) hMSCs were activated with PMA (10 ng/mL) for 1 to 7 days and then 
co-cultured with mB cells. *p < 0.01 (n = 3). 
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