

Figure S1. Transcriptome analysis of TSA-treated rat islets. (A) Insulin content of rat islets pretreated with 200 nM TSA for 24 h and stimulated with 3.3, 8.3, and 16.7 mM glucose (3.3G, 8.3G, and 16.7G) for 1 h. (B) GO analysis of upregulated genes by TSA in rat islets. (C) The top 10 most enriched pathways of TSA-upregulated genes in KEGG pathway analysis. (D) Insulin content of rat islets pretreated with 5 mM SB for 24 h and stimulated with 3.3, 8.3, and 16.7 mM glucose for 1 h. (E) Heatmap shows relative expression levels of genes involved in glucose metabolism in TSA-treated islets. (F) Heatmap shows relative expression levels of transcription factors critical for β -cell function in TSA-treated islets.

Figure S2. HDAC1 regulates insulin secretion and serotonin release of rat islets. (A) INS-1 cells were treated with 200 nM TSA, 3 μ M MS-275, and 10 μ M CI-994 for 24 h, and cell viability was determined by CCK-8 assay. (B and C) After rat islets were transfected with control vector (CON) or HDAC1 silencing adenovirus (Si-HDAC1) for 48 h, *Hdac1* mRNA expression and glucose (16.7 mM)-stimulated insulin secretion were detected. (D) Rat islets were pretreated with 3 μ M MS-275 at 3.3 mM glucose for 24 h, then stimulated with 3.3 and 16.7 mM glucose (3.3G and 16.7G) for 1 h, and serotonin release was measured. (E) Rat islets were pretreated with or without 3 μ M MS-275 in the presence or absence of 1 μ M HTR2B inhibitor SB204741 (HTR2Bi) or 100 nM HTR3 inhibitor Ramosetron (HTR3i) for 24 h, and glucose-stimulated insulin secretion was detected. **P*<0.05, ***P*<0.01 vs. control (CON). #*P*<0.05 vs. MS-275-16.7G, ##*P*<0.01 vs. MS-275-3.3G.

Figure S3. Phenotypes of β -cell-specific Tph1 transgenic rat line #20. (A) Tph1 mRNA levels (*n*=5) in islets isolated from wild-type (WT) and Tph1 transgenic male rat line #20 (Tg-20). (B and C) Tph1 and flag protein levels in islets from WT and Tg-20 rats. Body weight (D) and food intake (E) of WT and Tph1 transgenic rats (*n*=10). (F) Fasted and fed blood glucose levels of WT and Tg-20 rats (*n*=7-10). (G) Fasted and fed serum insulin levels of WT and Tg-20 rats (*n*=7-9). (H and I) Blood glucose (*n*=9-10) and serum insulin (*n*=6) concentrations were measured during IPGTT. (J) Blood glucose levels were measured after insulin injection (*n*=6). (K) Islets isolated from WT and Tg-20 rats were stimulated with 3.3 and 8.3 mM glucose for 1 h, and then insulin secretion was assayed. All the experiments were performed on 10-week-old WT and Tph1 transgenic rats. **P*<0.05, ***P*<0.01, ****P*<0.001 vs. control mice (WT).

Figure S4. Phenotypes of aging β -cell-specific Tph1 knockout mice. (A and B) Fasting and random blood glucose in 36-week-old WT and β Tph1KO mice (*n*=8-10). (C) IPGTT of 36-week-old WT and β Tph1KO mice (*n*=6). (D) Insulin tolerance test of 36-week-old WT and β Tph1KO mice (*n*=8). (E) Insulin content of islets isolated from 24-week-old WT and β Tph1KO mice under 3.3 and 16.7 mM glucose (3.3G and 16.7G) stimulation (*n*=3). **P*<0.05, ***P*<0.01 vs. control mice (WT).

Figure S5. Effect of HDAC1 on β -cell PKA-Tph1 signaling. (A) INS-1 cells were transfected with control vector (CON) or HDAC1-overexpressing adenovirus (HDAC1), and then stimulated with or without 5 μ M foskolin (FSK) for 1 h. Phosphorylation of PKA substrate was determined. (B) After INS-1 cells were treated with 3 μ M MS-275 and 10 μ M CI-994 for 1 h, cellular cAMP levels were determined by ELISA assay. (C) Detection of acetylation levels in ectopically expressed Prkaca and Prkacb in HEK-293T cells. (D) *Tph1* mRNA expression levels in INS-1 cells transfected with control vector, Prkaca wildtype or K62Q adenovirus treated with or without 5 μ M forskolin for 24 h. (E) *Tph1* mRNA expression in INS-1 cells incubated with 3 μ M MS-275 (MS) in the presence or absence of 10 μ M H89 for 24 h. (F) *Tph1* mRNA expression levels in INS-1 cells incubated with 10 nM Exendin-4 and 3 μ M MS-275 for 24 h. Data are expressed as mean \pm SEM of three independent experiments. **P*<0.05, ***P*<0.01 vs. Vector or control (CON). #*P*<0.05.

Gene	Species	Forward	Reverse	
name				
Tph1	Rat	TGCGACATCAACCGAGAA	GCAGAAGTCCAGGTCAGAAAT	
Tph2	Rat	CAGGGTTACTTTCCTCCATCG	AGCAGGTTGTCTTCGGGTCA	
Ddc	Rat	CCCAGGAGCCAGAAACATA	GGGGAAGTAAGCGAAGAAGT	
18S	Rat	CACGGGTGACGGGGAATCAG	CGGGTCGGGAGTGGGTAATTTG	
Tph1	Mouse	GAAGACAACATCCCGCAACT	AAAGGCTAACCCCGACAGA	
Actin	Mouse	TGTACCCAGGCATTGCTGAC	CTGCTGGAAGGTGGACAGTG	

Table S1. S	Sequences	of primers	for	RT-PCR