Supplementary Materials

Fig. S1. Cell clonality and stability analysis of the PEM-R cells. (A) Colony formation assay was performed using A549 and A549/PEM cells that were treated using PEM or DMSO as the control for 2 weeks, with the results evaluated using analysis of variance $(\mathrm{n}=5)$. (B) The two PEM-R cell lines were allowed to grow or remain in culture for 8 weeks after thawing, and the resistance indexes were presented $(\mathrm{n}=3)$. (C) The growth rates of PEM-R cells and their parental cells were calculated by counting the numbers of cells from day 1 to day 5 , with the results evaluated using analysis of variance $(\mathrm{n}=3)$. NS: not statistically significant, ${ }^{* * *} P<0.001$.

Fig. S2. The distribution of UCHL1 protein in NSCLC cells. The ratio of the intranuclear UCHL1 fluorescence intensity to the total UCHL1 fluorescence intensity in H1299 cells, H1299/PEM cells, A549 cells, and A549/PEM cells was shown and evaluated using the Mann-Whitney test ($\mathrm{n}=3$). NS: not statistically significant.

Fig. S3. Colony forming efficiency and the role of LDN57444 in the survival of NSCLC cells. (A) The ubiquitin protein levels in H1299/PEM cells after treatment for 48 h using LDN57444 (LDN) or DMSO was shown. The CCK-8 assay was used to evaluate survival of H1299 cells and H1299/PEM cells (B), and A549 cells and A549/PEM cells (C) after 48 h of treatment using LDN or DMSO, and the results were evaluated using analysis of variance ($\mathrm{n}=3$). (D) The colony formation assay was performed for A549/PEM-shNC and -shUCHL1 cells treated using PEM or

DMSO for 2 weeks, and the results were evaluated using analysis of variance $(\mathrm{n}=5)$. NS: not statistically significant, ${ }^{*} P<0.05,{ }^{* *} P<0.01,{ }^{* * *} P<0.001$.

Fig. S4. UCHL1 plays vital roles in progression of the cell cycle in A549 cells and its derived cells. In the presence of PEM or DMSO, the levels of cell cycle-associated proteins (c-Myc and Cyclin D1) were evaluated using western blot for A549 cells and A549/PEM cells (A), and A549/PEM cells with UCHL1 silencing (C). Flow cytometry was performed to evaluate changes in the cell cycle of A549 cells and A549/PEM cells (B), and A549/PEM cells with UCHL1 silencing (D), with the results evaluated using analysis of variance $(\mathrm{n}=5) .{ }^{*} p<0.05,{ }^{* *} p<0.01$.

Fig. S5. UCHL1 promotes DNA repair through regulating ERCC1. Western blot showing $\gamma \mathrm{H} 2 \mathrm{AX}$ levels (A) and ERCC1 levels (C) in NSCLC cells that were treated using PEM or DMSO for $24 \mathrm{~h}(\mathrm{n}=5)$. (B) The mRNA levels of DNA repair enzymes in NSCLC cells were determined using real-time quantitative PCR ($\mathrm{n}=5$). (D) Western blot analysis of ERCC1 and $\gamma \mathrm{H} 2 \mathrm{AX}$ levels in A549/PEM-shNC and A549/PEM-shUCHL1 cells treated using PEM and DMSO. NS: not statistically significant, ${ }^{*} P<0.05,{ }^{* *} P<0.01$.

Fig. S6. The mRNA levels and activity of TS in NSCLC cells. Real-time quantitative PCR analysis of TS (TYMS) levels in H1299 and its derived cells (A) and in A549 and its derived cells (B) was shown and the results were evaluated using the Mann-Whitney test $(\mathrm{n}=5)$. The enzyme activity of TS (C) was evaluated in H1299/PEM-shUCHL1 cells transfected using either an empty vector lentivirus (-VEC) or $T S$-containing lentivirus (-TS), and the results were evaluated using
analysis of variance $(\mathrm{n}=5)$. NS: not statistically significant, ${ }^{*} p<0.05,{ }^{* *} p<0.01$.

Fig. S7. H1299/PEM cells were resistant to PEM in vivo. The H1299 cells and H1299/PEM cells were subcutaneously injected into BALB/c nu/nu mice, which received weekly intraperitoneally treatments using $100 \mathrm{mg} / \mathrm{kg}$ PEM or the vehicle (10% DMSO in PBS). The tumor sizes (A) and body weights (B) were analyzed using analysis of variance $(\mathrm{n}=5)$. (C) Tumor lysates were resolved and the UCHL1 levels were analyzed using western blot $(\mathrm{n}=5)$. (D) The mRNA levels of $U C H L 1$ were also determined using real-time quantitative $\operatorname{PCR}(\mathrm{n}=5) .{ }^{* *} p<0.01$.

Fig. S8. The roles of UCHL1 in the PEM resistance of H1299PEM cells in vivo. The H1299/PEM-shNC cells and -shUCHL1 cells were subcutaneously injected into BALB/c nu/nu mice, which received weekly intraperitoneally treatments using 100 $\mathrm{mg} / \mathrm{kg}$ PEM or the vehicle (10% DMSO in PBS). The tumor sizes (A) and body weights (B) were analyzed using analysis of variance $(n=5)$. (C) The tumors were removed from the sacrificed mice (upper panel) and the final volumes were evaluated using analysis of variance (bottom panel). NS: not statistically significant, ${ }^{*} p<0.05$, ${ }^{* *} p<0.01$.

Table S1. The relationships between UCHL1 levels and clinicopathological characteristics of 220 NSCLC patients

		N	UCHL1 expression		\boldsymbol{P}
			Low	High	
Total cases		220	113	107	
Sex					
	Male	108	43	65	$P=0.008^{* *}$
	Female	112	70	42	
Age (years)					
	<60	71	32	39	$P=0.1973$
	≥ 60	149	81	68	
Tobacco smoking (years \times packs)					
	≥ 20 (heavy)	119	54	65	${ }^{a} P=0.0570$
	<20 (light/never)	24	16	8	
	NA	77	43	34	
Pathological TNM stage					
	I-II	171	88	83	$P=0.9565$
	III-IV ${ }^{\text {b }}$	49	25	24	
Chemotherapeutics					
	Chemosensitive	170	94	76	$P=0.0315^{*}$
	Chemoresistant	50	19	31	

N , number; NA, not available. Analyses were performed using the χ^{2} test, ${ }^{*} p<0.05,{ }^{* *} p<0.01$.
${ }^{a}$ Denotes a significant difference between heavy and light/never tobacco smoking.
${ }^{\mathrm{b}}$ Only three patients were pathologically diagnosed with stage IV disease.

Table S2. Multivariate analysis of clinical characteristics related to UCHL1 expression

		OR	95\% CI	\boldsymbol{P}
	Chemotherapy response			
UCHL1 expression	Chemosensitive	Reference		
(high vs. low)	Sex	2.227	$1.136-4.367$	0.020^{*}
	Male			
	Female	Reference		
		0.392	$0.226-0.681$	$0.001^{* *}$

OR, odds ratio; CI, confidence interval. ${ }^{*} p<0.05,{ }^{* *} p<0.01$.

Table S3. Primers used for the real-time quantitative PCR

Primer name	Sequence ($5^{\prime}-3^{\prime}$)
human UCHL1	CCTGTGGCACAATCGGACTTA
	CATCTACCCGACATTGGCCTT
mouse UCHLI	AGGGACAGGAAGTTAGCCCTA
	AGCTTCTCCGTTTCAGACAGA
human GAPDH	GGAAGATGGTGATGGGATT
	GGATTTGGTCGTATTGGG
mouse GAPDH	AGGTCGGTGTGAACGGATTTG
	GGGGTCGTTGATGGCAACA
human XRCC1	TCAAGGCAGACACTTACCGAA
	TCCAACTGTAGGACCACAGAG
human ERCC1	CTACGCCGAATATGCCATCTC
	GTACGGGATTGCCCCTCTG
human MSH2	AGTCAGAGCCCTTAACCTTTTTC
	GAGAGGCTGCTTAATCCACTG
human PRKDC	CTGTGCAACTTCACTAAGTCCA
	CAATCTGAGGACGAATTGCCT
human TYMS	CTGCTGACAACCAAACGTGTG
	GCATCCCAGATTTTCACTCCCTT
mouse TYMS	GATTCAGATTACTCGGGACAAGG
	CAGAGCATAGCTGGCAATGT

UCHL1, ubiquitin C-terminal hydrolase L1; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; XRCC1, X-ray repair cross complementing $1 ; E R C C 1$, excision repair cross-complementing $1 ; M S H 2$, mutS homolog $2 ;$ PRKDC, protein kinase, DNA activated, catalytic polypeptide; TYMS, thymidylate synthetase.

Table S4. The relationships between chemotherapy regimens and responses in 63 NSCLC patients

	N	Chemotherapy response		\boldsymbol{P}
		Chemosensitive	Chemo- resistant	
Total cases	63	32	31	
Containing pemetrexed (with platinum)	36	21	15	0.1669
Without pemetrexed (platinum plus paclitaxel [14], plus gemcitabine [8], plus vinorelbine [5])	27	11	16	

N , number. Analyses were performed using the χ^{2} test, ${ }^{*} p<0.05$.

Table S5. Multidrug sensitivities of the two PEM-R NSCLC cell lines and their parental cell lines

Drug	IC50		Resistance index	p	IC50		Resistance index	p
	H1299	H1299/PEM			A549	A549/PEM		
Pemetrexed	$\begin{gathered} 0.66 \pm 0.13 \\ (\mu \mathrm{M}) \end{gathered}$	$\begin{gathered} 14.33 \pm 1.74 \\ (\mu \mathrm{M}) \end{gathered}$	23.99 ± 3.80	$0.0079^{* *}$	$\begin{gathered} 1.15 \pm 0.23 \\ (\mu \mathrm{M}) \end{gathered}$	25.28 ± 4.42 ($\mu \mathrm{M}$)	23.51 ± 2.90	$0.007{ }^{* *}$
Taxel	$\begin{gathered} 1.92 \pm 0.37 \\ (\mathrm{nM}) \end{gathered}$	$\begin{gathered} 18.24 \pm 4.60 \\ (\mathrm{nM}) \end{gathered}$	9.66 ± 1.59	$0.0079^{* *}$	$\begin{gathered} 3.18 \pm 0.35 \\ (\mathrm{nM}) \end{gathered}$	$\begin{gathered} 4.77 \pm 0.46 \\ (\mathrm{nM}) \end{gathered}$	1.62 ± 0.30	0.0556
Gemcitabine	$\begin{gathered} 0.13 \pm 0.03 \\ (\mu \mathrm{M}) \end{gathered}$	$\begin{gathered} 0.33 \pm 0.09 \\ (\mu \mathrm{M}) \end{gathered}$	3.26 ± 1.02	0.0952	$\begin{gathered} 2.54 \pm 0.80 \\ (\mu \mathrm{M}) \end{gathered}$	$\begin{gathered} 4.67 \pm 0.75 \\ (\mu \mathrm{M}) \end{gathered}$	2.42 ± 0.75	0.0556
5-fluorouracil	$\begin{gathered} 3.72 \pm 1.04 \\ (\mu \mathrm{M}) \end{gathered}$	$\begin{gathered} 46.30 \pm 5.68 \\ (\mu \mathrm{M}) \end{gathered}$	15.43 ± 3.20	$0.0079^{* *}$	$\begin{gathered} 2.00 \pm 0.09 \\ (\mu \mathrm{M}) \end{gathered}$	$\begin{gathered} 40.59 \pm 2.52 \\ (\mu \mathrm{M}) \end{gathered}$	20.16 ± 1.68	$0.007{ }^{* *}$
Docetaxel	$\begin{gathered} 1.84 \pm 0.77 \\ (\mathrm{nM}) \end{gathered}$	$\begin{gathered} 2.49 \pm 0.85 \\ (\mathrm{nM}) \end{gathered}$	2.08 ± 0.74	0.3095	$\begin{gathered} 1.93 \pm 0.41 \\ (\mathrm{nM}) \end{gathered}$	$\begin{gathered} 9.29 \pm 1.35 \\ (\mathrm{nM}) \end{gathered}$	4.12 ± 1.17	$0.0317{ }^{*}$
Carboplatin	$\begin{gathered} 8.10 \pm 0.96 \\ (\mu \mathrm{M}) \end{gathered}$	$\begin{gathered} 65.12 \pm 4.81 \\ (\mu \mathrm{M}) \end{gathered}$	8.62 ± 1.39	$0.0079^{* *}$	$\begin{gathered} 12.20 \pm 0.94 \\ (\mu \mathrm{M}) \end{gathered}$	$\begin{gathered} 135.78 \pm 6.49 \\ (\mu \mathrm{M}) \end{gathered}$	11.47 ± 1.25	$0.007{ }^{* *}$
Cisplatin	$\begin{gathered} 1.01 \pm 0.19 \\ (\mu \mathrm{M}) \end{gathered}$	$\begin{gathered} 13.86 \pm 2.64 \\ (\mu \mathrm{M}) \end{gathered}$	14.23 ± 2.16	$0.0079^{* *}$	$\begin{gathered} 0.79 \pm 0.13 \\ (\mu \mathrm{M}) \end{gathered}$	$\begin{gathered} 10.07 \pm 2.17 \\ (\mu \mathrm{M}) \end{gathered}$	13.28 ± 2.30	$0.007{ }^{* *}$

IC50: 50% inhibitory concentration. Sensitivities of the NSCLC cells to the drugs were determined using the
CCK-8 assay. The resistance index represents the ratio of the IC50 in the PEM-R cell to the IC50 in the parental cell for each drug. Statistical analyses were performed using the Mann-Whitney test $(\mathrm{n}=5),{ }^{*} p<0.05$ or ${ }^{* *} p<$ 0.01 .

Supplement figure 1

Supplement figure 2

Supplement figure 3
A

B

C

D

Supplement figure 4

Supplement figure 5

A

C

D

B

Supplement figure 6
A

C

B

Supplement figure 7

A

C

B

Supplement figure 8

