Interleukin-22 drives a metabolic adaptive reprogramming to maintain mitochondrial fitness and treat liver injury

Wei Chen^{1,2,#}, Wenjing Zai^{1,3,#}, Jiajun Fan¹, Xuyao Zhang¹, Xian Zeng¹, Jingyun Luan¹, Yichen Wang¹, Yilan Shen⁴, Ziyu Wang⁵, Shixuan Dai¹, Si Fang^{1,6}, Zhen Zhao^{1*}, Dianwen Ju^{1*}

¹Minhang Hospital & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China

²Department of Ophthalmology, Stanford University School of Medicine, Palo Alto CA 94304, USA

³Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University

⁴Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai, China

⁵Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai, China

⁶Tongcheng Hospital of Traditional Chinese Medicine, Anhui 231400, P. R. China

[#]These authors contributed equally to this work.

*Correspondence to:

Prof. Zhen Zhao, Email: fdmh_zz@fudan.edu.cn

Prof. Dianwen Ju, E-mail: dianwenju@fudan.edu.cn

Minhang Hospital & Shanghai Engineering Research Center of Immunotherapeutics,

School of Pharmacy, Fudan University, Shanghai, China

Figure S1. (**A**) Dose-response experiments of IL-22 on hepatocytes. Hepatocytes were stimulated difference doses of IL-22. STAT3 signaling activation in hepatocytes was assessed by western blot analysis. (**B**) *In vitro* cytotoxicity of IL-22 on hepatocytes (n = 4; mean \pm SD; n.s., not significant). (**C** and **D**) OCR and ECAR in hepatocytes treated with IL-22 for 24 h (n = 3). (**E** and **F**) Basal OCR and ECAR in hepatocytes at the absence or presence of IL-22, or si-STAT3 for 24 h (n = 3). All data are means \pm SD of at least three independent experiments.

Figure S2. OCR and ECAR in hepatocytes treated with 200 mM ethanol, or 5 μ g/mL cisplatin, or 0.25 mM palmitic acid, or 10 mM CCl₄ in the absence or presence of IL-22 and anti-IL-22R1 antibody for 24 h (n = 3; mean \pm SD). All data are means \pm SD of at least three independent experiments.

Figure S3. KEGG of central carbon metabolism in cancer in IL-22-protected and -nonprotected hepatocytes.

Figure S4. Hepatocytes lead to greater intracellular complexity (reflected by SSC) under

injury stress.

Figure S5. Densitometric values were quantified and normalized to control group (n = 3; mean \pm SD; **P < 0.01, ***P < 0.001). The values of control group were set to 1.

Figure S6. (**A**) Gel electrophoresis analysis of standard RT-PCR of lncRNA H19 and from IL-22-treated hepatocytes. (**B**) Real time PCR analysis suggesting that IL-22 induced lncRNA H19 overexpression in hepatocytes, which could be prevented by

siRNA-lncRNA H19 (si-H19) (n = 3, mean \pm SD; **P < 0.01). All data are means \pm

SD of at least three independent experiments.

Figure S7. Densitometric values were quantified and normalized to control group (n = 3; mean \pm SD; *P < 0.05). The values of control group were set to 1.

Figure S8. (A) Statistical analysis of necrotic area in H-E stained liver section. (n = 3; mean \pm SD; **P < 0.01,). (B and C) High-fat-diet (HFD)-induced steatohepatitis

Figure S9. Densitometric values were quantified and normalized to control group (n = 4; mean \pm SD; **P < 0.01, ***P < 0.001). The values of control group were set to 1.

Figure S10. (A) Representative Ki-67 staining images of the liver sections were presented. (B) Statistical analysis for the percentage of Ki-67 positive cells (n = 3; mean \pm SD; *P < 0.05, **P < 0.01). The values of control group were set to 1.

Primer Name	Sequence (5'-3')
GAPDH F1	AACTTTGGCATTGTGGAAGG
GAPDH R1	ACACATTGGGGGTAGGAACA
<i>H19</i> F1	GACTAGGCCAGGTCTCCAGC

<i>H19</i> R1	TGACCACACCTGTCATCCTC
IL-6 F1	TTCCATCCAGTTGCCTTCTTGG
IL-6 R1	TTCTCATTTCCACGATTTCCCAG
HK2 F1	GGCGGTTCCGGAAGGAGATG
HK2 R1	GCCAGGCATTCGGCAATGTG
TNF-a F1	AGAACTCCAGGCGGTGCCTA
TNF-a R1	AGTGTGAGGGTCTGGGCCAT
H19 shRNA	GCATGACAGACAGAACATT