Supplementary Information

Virus-induced p38 MAPK activation facilitates viral infection

Yuting Cheng^{1, 2,§}, Fang Sun^{1,§}, Luyao Wang¹, Minjun Gao¹, Youli Xie³, Yu Sun⁴, Huan Liu³, Yufeng Yuan³, Wei Yi⁵, Zan Huang¹, Huan Yan¹, Ke Peng⁶, Yingliang Wu¹, Zhijian Cao^{1, 7,¶}

¹ State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China
² Jiangsu Agri-animal Husbandry Vocational College, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, 225300, China

³ Zhongnan Hospital of Wuhan University, Wuhan 430071, Wuhan 430072, Hubei, China

⁴ School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China

⁵ Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China

⁶ Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071,

Hubei, China

⁷ Hubei Province Engineering and Technology Research, Center for Fluorinated Pharmaceuticals, Wuhan University, Wuhan 430071, Hubei, China

Running title: Pharmacological blockage of p38 activation is a promising antiviral strategy

§ These authors contributed equally.

Correspondence: State Key Laboratory of Virology and Modern Virology
 Research Center, College of Life Sciences, Wuhan University, Wuhan 430072,
 Hubei, China. Tel: +86-27-68752831, Fax: +86-27-68756746. E-mail:
 zjcao@whu.edu.cn (Zhijian Cao).

Supplementary Figure Legends

Figure S1. HCV activates p38 in a time-dependent manner. Huh7.5.1 cells were infected with JFH1 (MOI=1) for 0, 24 h, 48 h and 72 h. Cell lysates were prepared, followed by detecting intracellular total p38, P-p38 and HCV core protein levels by western blotting.

Figure S2. HCV infection has no effect on the mRNA expression of p38α, MKK3 and MKK6. (A) Huh7.5.1 cells were infected with the HCV strain JFH-1 at MOIs of 0, 0.1, 1 and 10 for 72 h, and then intracellular p38α mRNA levels were analyzed via qRT-PCR. **(B, C)** Huh7.5.1 cells were infected (+) or uninfected (-) with the HCV JFH-1 strain at the MOI of 1 for 72 h. The intracellular MKK3 (B) and MKK6 (C) mRNA levels were detected via qRT-PCR.

Figure S3. Impairment of TAB1 knockdown on p38 activation in HCV-uninfected Huh7.5.1 cells. (A) TAB1 was knocked down by CRISPR/Cas9 (KD-TAB1) in Huh7.5.1 cells. The P-p38, p38, TAB1 and GAPDH were analyzed by western blotting. **(B)** The fold change of the TAB1 level relative to the GAPDH level was quantified by ImageJ software. **(C)** The fold change in the phosphorylated p38 level relative to the total p38 level was quantified by ImageJ software. **Figure S4. p38α knockdown attenuates the dimerization of HCV core protein in Huh7.5.1 cells.** Wild type and p38α knockdown Huh7.5.1 cells were co-transfected Flag-core and HA-core plasmids, respectively. After 48 h, cell lysates were prepared for co-IP followed by western blot.

Figure S5. Amino acid sequence, purification and identification of CN-peptide. (A) Amino acid sequence of CN-peptide. **(B)** The MS analysis of CN-peptide. **(C)** The HPLC analysis of CN-peptide.

Figure S1

Figure S2

Figure S3

Figure S4

Figure S5