

Figure S1. Chemical synthesis of MQs. (A) Reverse-phase liquid chromatography of the crude synthesis of MQ1 on Waters X-bridge C18, $19 \times 250 \mathrm{~mm}, 10 \mu \mathrm{~m}$, flow of $15 \mathrm{~mL} / \mathrm{min}$. The gradient was 10 to 40% of solvent B in 30 min . (B) Reverse-phase liquid chromatography of crude oxidized MQ1 on a Waters Sunfire $10 \mu \mathrm{~m}, 10 \times 250 \mathrm{~mm}, 5 \mathrm{~mL} / \mathrm{min}$, same gradient. (C) Analytical chromatography of the pure oxidized MQ1 performed on Waters X-bridge C18, $4.6 \times 150 \mathrm{~mm}, 3.5 \mu \mathrm{~m}$. The gradients were 10 to 50% of solvent B in 40 min . Insert peak zoom. (D) Reverse-phase liquid chromatography of the crude synthesis of 6 -azidohexanoic-MQ1 on Waters X-bridge C18, $19 \times 250 \mathrm{~mm}, 10 \mu \mathrm{~m}$, flow of $15 \mathrm{~mL} / \mathrm{min}$. The gradient was 10 to 40% of solvent B in 30 min . (E) Reverse-phase liquid chromatography of crude oxidized 6-azidohexanoic-MQ1 on a Waters Sunfire $10 \mu \mathrm{~m}, 10 \times$ $250 \mathrm{~mm}, 5 \mathrm{~mL} / \mathrm{min}$, same gradient. (F) Analytical chromatography of the pure oxidized MQ1 performed on Waters X-bridge C18, $4.6 \times 150 \mathrm{~mm}, 3.5 \mu \mathrm{~m}$. The gradient was 10 to 50% of
solvent B in 40 min. Insert peak zoom. (G) Reverse-phase liquid chromatography of deferoxamine-DBCO-MQ1 on Waters X-bridge C18, $4.6 \times 150 \mathrm{~mm}, 3.5 \mu \mathrm{~m}$. The gradient was 20 to 60% of solvent B in 40 min . (H) Zoom of the analytical chromatography of the pure deferoxamine-DBCO-MQ1 performed on Waters X-bridge C18, $4.6 \times 150 \mathrm{~mm}, 3.5 \mu \mathrm{~m}$. Reverse-phase liquid chromatography of AFDye-488-DBCO-MQ1 (I) or Cy5.5-DBCO-MQ1 (J) on Waters X-bridge C18, $4.6 \times 150 \mathrm{~mm}, 3.5 \mu \mathrm{~m}$. The gradient was 30 to 60% of solvent B in 30 min . solvents are $\mathrm{A}\left(\mathrm{H}_{2} \mathrm{O}\right.$, TFA 0.1%) and B (acetonitrile, TFA 0.1%). Color bar indicates collected fractions. (K) Reverse-phase liquid chromatography of the crude synthesis of MQ1 variant on Waters X-bridge C18, $19 \times 250 \mathrm{~mm}, 10 \mu \mathrm{~m}$, flow of $15 \mathrm{~mL} / \mathrm{min}$. The gradient was 10 to 40% of solvent B in 30 min . (L) Reverse-phase liquid chromatography of crude oxidized MQ1 variant on a Waters Sunfire $10 \mu \mathrm{~m}, 10 \times 250 \mathrm{~mm}, 5$ $\mathrm{mL} / \mathrm{min}$, same gradient.

Figure S2. (A) Representative iTLC chromatograms of fresh ${ }^{89} \mathrm{Zr}$-DFO-MQ1 and free ${ }^{89} \mathrm{Zr}$. iTLC chromatograms of blood sampling 1.5 h after injection (B) and 7 days after injection (C). (D) In vitro stability of ${ }^{89} \mathrm{Zr}$-DFO-MQ1 in bovine serum and PBS determined by iTLC. (E) RadioHPLC characterization of fresh ${ }^{89} \mathrm{Zr}$-DFO-MQ1. (F) RadioHPLC characterization of blood sampling at 7 days post injection.

A

Figure S3. (A) Binding curve on hV2R of MQ1, Cy5.5-MQ1 and AFDye-488-MQ1. B) Labeling of hV2R expressed in stable CHO cell line with increasing doses of AFDye-488-MQ1. Control without AFDye-488-MQ1 looks like the 10 nM cell labeling. Specificity is determined by the last panel in presence of $3.4 \mu \mathrm{M}$ MQ1. (C) Selectivity of 30 nM AFDye-488-MQ1 to hV2R labeling compared to hV1aR, hV1bR, hOTR and rOTR expressed stably in CHO cell lines. (D) and (E) are the same than (B) and (C) but using the Cy5.5-MQ1 probe.

Table S1: Blood sample preparation for PK determination

Table S2: parent ion > product ion transition monitored

	Transitions monitored	Role
MQ1	673.03 > 731.62	quantification
	$\begin{aligned} & \hline 673.03>775.09 \\ & 747.58>836.10 \\ & 841.02>975.05 \end{aligned}$	specificity
MQ1 variant	666.97 > 735.39	Used for internal standard (IS) normalization
	740.87 > 840.60	IS specificity

Table S3. PK values and PK PD concentrations under modeling.

Times (h)	MQ1 plasma concentrations $\mu \mathrm{g} / \mathrm{ml}$	Plasma concentration with modelling ($\mu \mathrm{g} / \mathrm{mL}$)	Diuresis values with modelling ($\mathrm{mL} / \mathrm{h} / \mathrm{kg}$)
1	1.709	1.305	27.69
2	0.486	0.783	80.74
3	0.259	0.606	55.34
4	1.239	0.469	37.93
5	0.257	0.363	26.00
6	0.378	0.281	17.82
8	0.150	0.169	14.79
10	0.299	0.178	14.12
12	0.219	0.173	13.48
16	0.154	0.164	12.28
24	0.096	0.148	10.20
48	0.056	0.108	5.83
72	0.092	0.079	3.34
96	0.074	0.058	1.91

