Statin suppresses sirtuin 6 through miR-495, increasing FoxO1-dependent hepatic gluconeogenesis

Min Yan Shi^{1,*}, In Hyuk Bang^{1,*}, Chang Yeob Han^{2,*}, Dae Ho Lee³, Byung-Hyun Park^{1,\$} and Eun Ju Bae^{2,\$}

¹Department of Biochemistry and Molecular Biology, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea

²College of Pharmacy, Chonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea

³Department of Internal Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Republic of Korea

* Equal contribution

^{\$} Corresponding authors

Correspondence to: Byung-Hyun Park; email: bhpark@jbnu.ac.kr; phone: +82-63-270-3139

Correspondence to: Eun Ju Bae; email: ejbae7@jbnu.ac.kr; phone: +82-63-219-5650

Contents

1. Supplementary tables

2. Supplementary figures

1. Supplementary tables

Case	Age	Sex	BMI (kg/m ²)	Statin (mg/day)	Glucose (mg/dL)	HbA1c (%)	Insulin (µU/mL)	Total cholesterol (mg/dL)	TG (mg/dL)	HDL-C (mg/dL)	HOMA -IR
1	36	F	40.6	No	122	6.4	32.9	224	153	61	9.9
2	42	F	40.8	No	100	5.6	11.2	238	291	44	2.8
3	32	F	40.7	No	105	6.1	20.3	294	260	44	5.3
4	36	F	41.3	No	110	6	31.7	261	158	40	8.6
5	48	М	36.4	Pitavastatin (2 mg)	110	5.5	12.17	193	376	44	3.3
6	51	М	34.8	Atorvastatin (10 mg)	151	8.1	17.5	164	114	44	6.5
7	19	F	36.6	Atorvastatin (10 mg)	91	5.5	15.8	190	124	59	3.5
8	43	F	40.8	Rosuvastatin	157	7	12.72	223	236	43	4.9

Table S1. The characteristics of study subjects

BMI, body mass index; HbA1c, hemoglobin A1c; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol; HOMA-IR, homeostasis model assessment-insulin resistance

Table S2. Sequences and accession numbers for primers (forward, FOR; reverse, REV) used in qPCR

Gene	Sequences for primers	Accession No.		
Aath	FOR: ATGGAGGGGAATACAGCC	NM_007393		
ACID	REV: TTCTTTGCAGCTCCTTCGTT			
Foral	FOR: GAGTGGATGGTGAAGAGCGT	NM_019739		
10201	REV: TGCTGTGAAGGGACAGATTG			
Sinth	FOR: GGCTACGTGGATGAGGTGAT	NM_181586		
500	REV: GGCTTGGGCTTATAGGAACC			
Dalal	FOR: TGTCTTCACTGAGGTGCCAG	NM_011044		
Γυκι	REV: CTGGATGAAGTTTGATGCCC			
Chra	FOR: ACACCGACTACTACAGCAACA	NIM 009061		
Gope	REV: CCTCGAAAGATAGCAAGAGTA	INIVI_008061		
D	FOR: GGATTGAAGTGGTGTAGCGAC	NM_008904		
Pparge1a	REV: GCTCATTGTTGTACTGGTTGGA			
	FOR: CATGTACGTTGCTATCCAGGC	NM_001101		
ACID	REV: CTCCTTAATGTCACGCACGAT			
ΕΟΥΟΙ	FOR: TCGTCATAATCTGTCCCTACACA	NM_002015		
ΓΟΛΟΙ	REV: CGGCTTCGGCTCTTAGCAAA			
CIDTA	FOR: CCCACGGAGTCTGGACCAT	NM_001193285		
SIKIO	REV: CTCTGCCAGTTTGTCCCTG			
DCV1	FOR: GCAAGACGGTTATCGTCACCC	NM_002591		
PCKI	REV: GGCATTGAACGCTTTCTCAAAAT			
CEDC	FOR: GTGTCCGTGATCGCAGACC	NM_000151		
GOPC	REV: GACGAGGTTGAGCCAGTCTC			
DDADCCIA	FOR: TCTGAGTCTGTATGGAGTGACAT	NM_013261		
FFAKGUIA	REV: CCAAGTCGTTCACATCTAGTTCA			

miRNAs	Sequences for primers
RNU6B	AATTCGTGAAGCGTTCCATATT
miR-1192	AAACAAACAAACAGACCAAATT
miR-186	CAAAGAATTCTCCTTTTGGGCT
miR-495	AAACAAACATGGTGCACTTCTT
miR-33	GTGCATTGTAGTTGCATTGCA
miR-122	TGGAGTGTGACAATGGTGTTTG
miR-125a-5p	TCCCTGAGACCCTTTAACCTGTGA
miR-125-b-5p	TCCCTGAGACCCTAACTTGTGA
miR-351	TCCCTGAGGAGCCCTTTGAGCCTG
miR-708	AAGGAGCTTACAATCTAGCTGGG
miR-28	AAGGAGCTCACAGTCTATTGAG
miR-128	TCACAGTGAACCGGTCTCTTT
Primary miR-495 (mouse)	FOR: CCTTCACACTCAGGCACACT REV: GTCCTCCCTCTGGTCCATG

Table S3. Sequences for primers used in qPCR for miRNAs

2. Supplementary figures

Figure S1. Effects of various statins on glycemia and Sirt6 expression. C57BL/6 mice were administered various statins 30 mg/kg i.p. once a day for three consecutive days. (A) Body and liver weights were measured after sacrifice (n = 5). (B) Fed or fasted blood glucose were measured (n = 5). (C) mRNA levels for gluconeogenesis genes were analyzed by qPCR (n = 4-5). (D) Mouse primary hepatocytes were treated with rosuvastatin (Ros) or atorvastatin (Ato) for indicated time points. Sirt6 expression was measured by Western blotting. Values are means \pm SEM. *, p<0.05 and **, p<0.01 versus vehicle. V, vehicle; S, simvastatin; R, rosuvastatin; A, atorvastatin; F, fluvastatin; L, lovastatin; P, pravastatin.

Figure S2. Gluconeogenesis gene expression in primary hepatocytes after simvastatin treatment. Primary mouse hepatocytes were infected with adenoviruses of Sirt6 and incubated with 10 μ M simvastatin for 24 h, and RNA was extracted for qPCR analysis (n = 4-6). Values are means \pm SEM. ^{**}, p<0.01 versus vehicle; ^{##}, p<0.01 versus Ad-LacZ. V, vehicle; S, simvastatin.

Figure S3. Blood glucose and liver mRNA of gluconeogenesis genes after administration of atorvastatin or rosuvastatin in mice. C57BL/6 mice were administered atorvastatin or rosuvastatin (30 mg/kg) once a day for three consecutive days. (A) Fed glucose was measured 9 h after the second dosing of statins, while fast glucose was measured 2 h after the last statin dosing (n = 4-5). (B) RNA was extracted from mice liver tissues and used for qPCR analysis (n = 4-5). Values are means \pm SEM. *, p<0.05 and **, p<0.01 versus vehicle. V, vehicle; A, atorvastatin; R, rosuvastatin.

Figure S4. Effect of simvastatin, miR-495 mimic, or miR495 ASO on the expression of Sirt6. (A) Mice were administered simvastatin (30 mg/kg i.p.) once a day for three consecutive days, after which hepatic Sirt6 mRNA levels were examined (n = 5). (B) Mouse primary hepatocytes were treated with simvastatin for 24 h, and Sirt6 mRNA was measured (n = 6). (C, D) Sirt6 mRNA levels were examined in AML12 cells transfected with control or miR-495 mimic (C) or in cells treated with simvastatin after transfection with control or miR-495 ASO (D). Values are means \pm SEM (n = 6). *, p<0.05 and **, p<0.01 versus vehicle; NS, not significant

Figure S5. miR-495/Sirt6/FoxO1 regulation by simvastatin in HepG2 cells. HepG2 cells were treated with simvastatin for 24 h, and the level of miR-495 (A), the protein levels of Sirt6 and FoxO1 (B), and the mRNA levels of gluconeogenesis genes (C) were analyzed. Values are means \pm SEM (n = 5-6). *, p<0.05 and **, p<0.01 versus vehicle.

Figure S6. GGPP supplementation restores miR-495/Sirt6/FoxO1/gluconeogenesis pathway affected by simvastatin. Primary hepatocytes were pretreated with 10 μ M cholesterol (Chol), 10 μ M 25-hydroxycholsterol (25-HC), 10 μ M geranylgeranyl pyrophosphate (GGPP), or 5 μ M farnesyl pyrophosphate (FPP) prior to 10 μ M simvastatin incubation for 24 h, and the level of miR-495 (A), the protein levels of Sirt6 and FoxO1 (B), the mRNA levels of gluconeogenesis genes (C), and the level of primary form of miR-495 were analyzed (D). Values are means \pm SEM (n = 4-6). *, p<0.05 and **, p<0.01 versus vehicle.

Figure S7. Repression of Sirt6 by various statins. (A) C57BL/6 mice were administered atorvastatin (Ato) or rosuvastatin (Ros) for 3 consecutive days and their liver was analyzed for the expression of Sirt6 and FoxO1 (n = 4-5). (B) Mouse primary hepatocytes were treated with10 μ M atorvastatin or rosuvastatin and FoxO1 immunoprecipitates were analyzed for Sirt6 and acetylated FoxO1. (C) Mouse primary hepatocytes were treated with10 μ M atorvastatin, while cytosolic (CE) and nuclear (NE) FoxO1 were analyzed by Western blotting. (D) AML12 cells were transfected with FHRE-Luc promoter and then treated with atorvastatin or rosuvastatin for 6 h. FHRE luciferase activity was analyzed (n = 5-6). (E) Mouse primary hepatocytes were infected with Ad-LacZ or Ad-Sirt6 and treated with10 μ M atorvastatin or rosuvastatin for 6 h for Western blotting analysis. Values are means \pm SEM. *, p<0.05 and **, p<0.01 versus vehicle. V, vehicle; A, atorvastatin; R, rosuvastatin.

Figure S8. Effect of fucoidan on simvastatin induced hyperglycemia. (A) C57BL/6 mice were administered fucoidan (15 mg/kg) via oral gavage in combination with vehicle or rosuvastatin intraperitoneally for three days. Fast blood glucose was measured (n = 5). (B) mRNA levels of gluconeogenic genes were measured in mice. Values are means \pm SEM. *, p<0.05 versus vehicle; ##, p<0.01 versus rosuvastatin alone. V, vehicle; R, rosuvastatin.