SUPPLEMENTARY DATA

Dissecting the heterogeneity of the alternative polyadenylation profiles in triple-

negative breast cancers

SUPPLEMENTARY METHODS

Transcriptome array data analysis

We processed the CEL files with aroma.affymetrix [1] using robust microarray analysis (RMA)
background correction and quantile normalization. The probe intensities were extracted from the
intermediate CEL files for probe-level analysis and log?2 transformed. We then normalized the probe
intensities to the gene expression level. Gene expression was profiled using the custom CDF from

Brainarray (http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/).

Pathway and co-expression network analyses

Each TNBC subtype was computed for gene enrichment compared with all other tumor samples
using gene set enrichment analysis (GSEA) software [2]. Genes were examined for enrichment in
the C2 curated gene sets of canonical pathways. With the GSEA algorithm (1,000 permutations),
the top significantly enriched canonical pathways were selected based on a normalized enrichment
score (NES) greater than 0.4 and a false discovery rate (FDR) ¢ value of less than 0.60 [3].
Metascape was used to identify pathway enrichment in genes with APA events [4]. Pathway or
process terms with minimum count of 3, p-value<0.01, and enrichment factor>1.5 were considered

significant.



To investigate interactions between tandem 3'UTRs and mRNAs, we constructed co-
expression networks[5]. We screened for differentially expressed tandem 3'UTRs and mRNAs
among subtypes. We computed the Pearson correlation and chose pairs (only 3'UTR-mRNA) with
significant correlation to build the network (adjusted p < 0.05). Only those with Pearson correlation
coefficient y>0.75 or y<—0.75 are represented. The co-expression networks were visualized using
Cytoscape 2.8.2 [6]. The Bioconductor package ‘limma’ [7] was used to examine differential

expression of co-expressed mRNAs.

Pooled shRNA screening

pLKO.1 lentiviral plasmids encoding short hairpin RNAs (shRNAs) targeting 3' processing factors
and nontargeting controls were each used as a pool. ShRNA lentiviruses were designed according to
the information in the RNAi1 Consortium (Broad Institute of MIT and Harvard) and generated from
HEK293T cells. MDA-MB-231 and MDA-MB-468 cells were infected with lentiviral supernatant
containing shRNAs with a multiplicity of infection (MOI) of 0.3 to ensure that each cell contained
only one viral integrant. After 48 hours, the cell medium was replaced with medium containing 1
pg/ml puromycin. After cells were selected for 72 hours with puromycin, a minimum of 2 x 107
cells were harvested (Day 0) and the remaining cells were split into triplicate flasks (at least 2 x 107
cells per flask) and cultured for an additional 7, 14 and 21 days before genomic DNA extraction and
analysis, respectively. Cells were collected to obtain genomic DNA. The shRNAs encoded in the
genomic DNA were amplified, and adaptors with indexes for deep sequencing were incorporated
into PCR primers. Sample quantification was performed on a Qubit fluorometer (Life Technologies)

to ensure that samples were pooled at the same quantity. Deep sequencing was performed using the



MiSeq Personal Sequencer (Illumina). sShRNA barcodes were retrieved and deconvoluted from each

sequencing read. Then, the number of reads for each unique shRNA for a given sample was

normalized as follows:

reads per shRNA
total reads for all sShRNA in sample

normalized reads per shRNA = x 10% +1
For each gene G with & barcodes (shRNA), each with average shRNA count ¢ in the Day 0 group
and d in the Day 7, 14 or 21 group, an enrichment score (ES) was computed as the second lowest
ranked value of

d;(G)

t;(G) = log, <m>l in (1,k)

Subsequently, the p-value for each gene G was computed on the basis of ES as

1 N
P(6) =3 a
i=1

where

~ 1ifs;(k) <ES

4qi
and s(k) was the second lowest ranked value of k& randomly chosen values from all barcodes in all

genes and N was the number of permutation trials performed. N was set at 10,000.

Cell culture

The human breast cancer cell lines MDA-MB-231 and MDA-MB-468 and the human embryonic
kidney cell line HEK293T were obtained from the Shanghai Cell Bank Type Culture Collection
Committee (CBTCCC, Shanghai, China) and cultured in DMEM with 10% fetal bovine serum
(FBS). The identities of the cell lines were confirmed by the CBTCCC using DNA profiling (short
tandem repeat, STR). All cell lines were maintained in our laboratory and subjected to routine

quality control (e.g., mycoplasma, morphology) by HD Biosciences every 3 months. Cells were
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passaged for less than 6 months.

Stable cell line construction

pLKO.1 Ientiviral plasmids encoding shRNAs targeting CPSFI and PABPNI and nontargeting

control were used. We used the following shRNA sequences: CPSF1 shRNA1: 5'-

GCTACTTCGAGGATATTTA-3"; shRNA2: 5'-CGGGTTTGTGCAGAATGTA-3'; PABPNI

shRNAT: 5'-GTAGAGAAGCAGATGAATA-3"; PABPN1 shRNA2: 5'-

GGTAGAGAAGCAGATGAAT-3"; control shRNA: 5-TTCTCCGAACGTGTCACGT-3". All

shRNA constructs were purchased from Genechem (Genechem Co., Shanghai, China). HEK293T

cells were co-transfected with vector plasmid and packaging plasmids using polyethylenimine. Viral

supernatants were harvested 48 hours later and stored at -80°C. MDA-MB-231 and MDA-MB-468

cells were infected with lentiviral supernatant for 48 hours. Then, the cells were selected for 5 days

with puromycin (1 pg/ml) for subsequent use. Untreated cells were used as “mock” to provide a

reference for the treated cell.

Western blotting

Whole-cell extracts were obtained using SDS lysis buffer (Beyotime) with protease and phosphatase

inhibitors (Bimake). The cell lysates were boiled in 5% SDS-PAGE loading buffer for 5 minutes.

Then, the proteins were separated by SDS-PAGE and transferred to polyvinylidene difluoride

membranes (Roche). The membranes were blocked for 60 minutes with 5% skim milk in TBST and

blotted with the following primary antibodies for 12-16 hours at 4 °C: rabbit polyclonal anti-CPSF1

antibody (Bethyl; 1:2,000, catalog no. A301-508A), rabbit monoclonal anti-PABPN1 antibody



(Abcam; 1:2,500, catalog no. EP3000Y), and mouse monoclonal anti-GAPDH (ProteinTech;
1:5,000, catalog no. 60004-1-1g). After extensive washing with TBST, the membranes were
incubated for 60 minutes at room temperature with HRP-conjugated goat anti-rabbit antibody
(Jackson ImmunoResearch; 1:5,000) or goat anti-mouse antibody (Jackson ImmunoResearch;
1:5,000), and signals were detected with and enhanced chemiluminescence substrate (Pierce
Biotechnology). We used Molecular Imager ChemiDoc XRS+ with Image Lab Software (Bio-Rad)

to acquire the images.

Cell proliferation
The cells of interest (2 x 10° cells per well) were seeded in 96-well, clear-bottomed plates with 100
ul of complete culture medium for 7 days. The IncuCyte® ZOOM Live-Cell Analysis System (Essen)

was used to monitor proliferation and determine cell confluence.

Apoptosis assay and cell cycle analyses

Cell apoptosis was assessed using the FITC Annexin V Apoptosis Detection Kit I (BD Pharmingen)
followed by flow cytometry (FACStation, BD Biosciences) according to the manual. For the cell
cycle assay, cells were stained with propidium iodide (Beyotime) and analyzed by flow cytometry

as described [8].

RNA-seq data analysis
Total RNA was purified using TRIzol reagent (Invitrogen). RNA integrity was evaluated using

Agilent 2100 Bioanalyzer. Samples with an RNA Integrity Number (RIN) greater than 9 were used



for cDNA library construction. RNA-seq libraries were constructed using the TruSeq Stranded

mRNA LTSample Prep Kit (Illumina) according to the manufacturer’s instructions. The paired-end

reads with 150 nt at each end, sequenced using the Illumina HiSeq X-Ten platform, were aligned to

the human genome (hg19) using HISAT2 [9]. The fragments per kilobase of transcript sequence per

million mapped paired-end reads (FPKM) value of each gene was calculated using cufflinks [10].

Differentially expressed genes (DEGs) were computed using the Bioconductor package ‘DESeq’

(version 3.8). P-value < 0.05 and fold change > 2 or < 0.5 were set as the threshold for significantly

different expression. KEGG pathway analysis [11-13] of DEGs was performed using R based on

hypergeometric distribution.

Profiling APA events from RNA-seq data

We used the well-established algorithm ‘dynamic analysis of alternative polyadenylation from

RNA-seq’ (DaPars) (https//github.com/ZhengXia/DaPars) [ 14, 15] to identify and quantify dynamic

APA events between control and core 3' processing factors depleted cell lines. The percentage of

Distal polyA site Usage Index (PDUI) for each transcript was computed. Genomic coordinates of

RNA transcripts from UCSC genome browser (hg19) were used to compute APA events from RNA-

seq data. To avoid false-positive estimation of low abundance genes, we included transcripts whose

coverage of last exon is more than 30-fold in at least one sample in each group in the subsequent

analysis as suggested by DaPars. For characterization of the APA events in two groups, mean PDUIs

were computed and Fisher’s exact test was used to compare the difference of PDUIs between two

groups. P-values were adjusted by Benjamini-Hochberg (BH) procedures, and the false-discovery

rate (FDR) was reported. The following criteria were used to detect significant APA events: (1) The



FDR was controlled at 0.05 level. (2) The absolute mean difference of PDUIs between the two
groups should be no less than 0.2. (3) The mean log2-fold-change of PDUISs in the knockdown (KD)

group must be more than 0.59 (fold-change > 1.5).

FDR < 0.05
|APDUI| = [PDUIgp — PDUI | = 0.2

PDUIgp
o (ppuree)

> 0.59
PDUIq /1 ™

The PDUI data of breast cancer samples from the Cancer Genome Atlas (TCGA) were
downloaded from TC3A.org (http://www.tc3a.org/) [16]. Feng and colleagues [16] downloaded
RNA-seq BAM files 0of 10,537 cancer samples across 32 TCGA cancer types from the UCSC Cancer
Genomic Hub (CGHub). DaPars were used to compute the PDUI. The other TCGA data were
downloaded from the TCGA Data Coordination Center (DCC) or from the the results of the TCGA

Firehose pieline at the Broad Institute (http://gdac.broadinstitute.org/).

Statistical analysis

The Pearson * test was used to compare qualitative variables, and Fisher’s exact test was performed
when necessary. We used linear models for microarray and RNA-seq data (LIMMA) [17, 18] to
perform the differential expression analysis for microarray data. The Kolmogorov-Smirnov test was
used to compare the cumulative distribution between two samples. Disease-free survival (DFS) was
calculated from the date of surgery to the date of disease relapse at a local, regional or distant site,
or patient death. Overall survival (OS) was defined as the time from the date of surgery to the date
of patient death. Patients with a study end date or who were lost to follow-up were considered as
censored. The follow-up period was defined as the time from surgery to relapse or death (for

complete observations) or to the last observation (for censored cases). The Kaplan—Meier method



was used to construct DFS curves, and the log-rank test was used to test the differences in survival
by covariates. Prognostic models for DFS events were constructed using univariate and multivariate
Cox analyses. Median follow-up was estimated using the reverse Kalplan—Meier method [19].

We constructed a linear regression to examine the correlation between the expression of core
cleavage and polyadenylation (C/P) factors and SUI for each transcript. In this model, the SUI was
employed as a response variable, whereas the expression levels of core C/P factors were considered
as predictors. We conducted model selection based on the Akaike Information Criterion (AIC), for
which the maximal model is

Y, =B, +B, X1, +B, X2, +---+B,Xn, + &,
Where i is the index for a given transcript; Y is the SUI of given transcript; and Xn represents the
expression of individual C/P factor. We applied a Benjamini & Hochberg adjustment (false
discovery rate, FDR) cutoff of 0.05 to linear model p-values to identify statistically significant
models.

Repeated measures analysis of variance (RMANOVA) with Dunnett’s ¢ test was used to
compare the cell proliferation between groups. Other Continuous variables were analyzed using the

Mann-Whitney test or analysis of variance (ANOVA).



SUPPLEMENTARY FIGURE

Figure S1

Number of selected tandem 3'UTRs (based on coefficient of variation, CV) on clustering results.

3'UTR: 3' untranslated regions.
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Figure S2

Bayesian change point analysis of (A) FOXA1, (B) EIF4A42, (C) ERBB2 and (D) TEKTA4.
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Figure S3

Flow chart of tandem 3'UTR generation.
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Figure S4

Alternative polyadenylation (APA) events in triple-negative breast cancer (TNBC). (A) APA events
in 165 TNBCs compared with 33 normal adjacent breast tissues. Out of 1631 significant APA events,
68.5% (1118 of 1631) were 3'UTR shortening, whereas 31.5% (513 of 1631) were 3'UTR
lengthening events. (B) Gene Ontology (GO) enrichment analysis for biological process of genes
with APA events. Heatmap of enriched terms colored by p-value. (C) GO enrichment analysis for
biological process of genes with APA events. Heatmap of enriched terms colored by p-value.

APA: alternative polyadenylation; GO: Gene Ontology.
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Figure S5
Spearman’s correlation scatterplot of the short 3’UTR index (SUI) and the percentage distal poly(A)
site usage index (PDUI) in MDA-MB-231.

PDUI: percentage distal poly(A) site usage index; SUI: short 3'UTR index.
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Figure S6
Distribution of the Spearman’s rank correlation coefficient between percentage distal poly(A) site
usage index (PDUI) and protein level across the TCGA breast cancer subjects.

PDUI: percentage distal poly(A) site usage index; TCGA: the Cancer Genome Atlas.
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Figure S7

Differential gene expression across alternative polyadenylation (APA) subtypes of triple-negative
breast cancer (TNBC). Heatmaps show relative gene expression (log2, -6 to 6) associated with
proliferation, DNA damage response, myoepithelial genes, immune signal transduction, TGFf3
signaling, growth factor receptors, epithelial-mesenchymal transition (EMT), Wnt signaling, stem-
like, claudin-low (CL), angiogenesis, AR-driven genes, homeotic complex (HOX) genes, and
cytokeratin genes across TNBC APA subtypes.

APA: alternative polyadenylation; AR: androgen receptor; BL: basal-like; EMT: epithelial-
mesenchymal transition; LAR: Iuminal androgen receptor; MLIA: mesenchymal-like immuno-

activated; S, suppressed; TNBC: triple-negative breast cancer.
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Figure S8

Differences in median short 3'UTR index (SUI) between groups were calculated using least
significant difference (LSD) multiple comparisons test. ** p < 0.01; *** p <0.001

BL: basal-like; LAR: luminal androgen receptor; LSD: least significant difference; MLIA:

mesenchymal-like immune-activated; S: suppressed; SUI: short 3'UTR index.
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Figure S9

The enrichment analysis of genes with shortening tandem 3'UTRs in the Suppressed (S) subtype.
(A) Heatmap of enriched terms colored by p-value. (B) Network of enriched terms colored by p-
value, where terms containing more genes tend to have a more significant p-value. (C) Protein-

protein interaction (PPI) network and molecular complex detection (MCODE) components

identified in the gene list.

3'UTR: 3' untranslated region; MCODE: molecular complex detection; PPI: protein-protein

interaction; S: suppressed.
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Figure S10

The enrichment analysis of genes with lengthening tandem 3'UTRs in the S subtype. (A) Heatmap
of enriched terms colored by p-value. (B) Network of enriched terms colored by p-value, where
terms containing more genes tend to have a more significant p-value. (C) Protein-protein interaction
(PPI) network and MCODE components identified in the gene list.

3'UTR: 3' untranslated region; MCODE: molecular complex detection; PPI: protein-protein

interaction.
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Figure S11

Subtype-specific alternative polyadenylation (APA) and analysis of their co-expressed mRNAs. The

subtype with the highest short 3'UTR index (SUI) was computed using the R package ‘limma’. (A)

Luminal androgen receptor (LAR); (B) mesenchymal-like immune-activated (MLIA); (C) basal-

like (BL); (D) suppressed (S). Yellow circle, tandem 3'UTR; red circle, up-regulated mRNA; blue

circle, down-regulated mRNA. *** p <0.001, ** p <0.01.

APA: alternative polyadenylation; BL: basal-like; LAR: luminal androgen receptor; MLIA:

mesenchymal-like immune-activated; S: suppressed; SUI: short 3'UTR index; TNBC: triple-

negative breast cancer.
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Figure S12

Sankey diagram reveals the relationship between Lehmann subtypes and APA subtypes.
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Figure S13
Triple-negative breast cancer subtypes differentially stain for Ki-67 by immunohistochemistry
(Tukey’s multiple comparisons test). ** p <0.01; *** p <0.001

BL: basal-like; LAR: luminal androgen receptor; MLIA: mesenchymal-like immune-activated; S:

suppressed.
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Figure S14

Increased gene expression of core 3’ cleavage and polyadenylation (C/P) factors in triple-negative
breast cancer (TNBC). (A) Waterfall plot of the gene expression of core 3’ C/P factors in TNBC.
Data are presented as the mean + SEM (standard error of mean). (B) Comparison of the distribution
of fold-change in core 3’ C/P factors and background gene set expression levels between TNBC and
normal tissues (Kolmogorov-Smirnov test). ** p < 0.05; ** p <0.01; *** p <0.001

C/P: cleavage and polyadenylation; SEM: standard error of the mean; TNBC: triple-negative breast

cancer.
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Figure S15

The heatmap of gene expression fold change of core 3’ processing factors across alternative
polyadenylation (APA) subtype. Each rectangle represents the mean log, fold change between
cancer and paired normal tissue of one factor in one APA subtype. A factor is considered
differentially expressed if the false-discovery rate from ‘limma’ [17, 18] is < 0.05 and the mean
absolute fold change is > 1.2. The rainbow color map indicates the fold change of significantly
upregulated and downregulated genes. White boxes represent non-significant genes.

APA: alternative polyadenylation.
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Figure S16
Number and percent of alternative polyadenylation (APA) events correlated with expression levels
of core 3’ cleavage and polyadenylation factors.

APA: alternative polyadenylation.
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Figure S17

Correlations between alternative polyadenylation (APA) events of clinically actionable genes and

selected 3'cleavage and polyadenylation factors. (A) Selected correlations (Pearson correlation test)

between APA events of clinically actionable genes and CPSFI expression level (left: PIK3C2G;

middle: /L214; right: RAD51D). (B) Selected correlations (Pearson correlation test) between APA

events of clinically actionable genes and PABPNI expression level (left: NUDTS5; middle: HDAC?7,

right: HDACI).

APA, alternative polyadenylation.
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Figure S18

Short time-series analysis of shRNA library data from next-generation sequencing using the Short

Time-series Expression Miner (STEM). (A) MDA-MB-231. (B) MDA-MB-468.

STEM: Short Time-series Expression Miner.
MDA-MB-231

Profile #9

B

12 P_/
= ik

&

NA

7

ils

AL

e

AT

SAL

A&

< LI

N
-
a

N\
»
[~
L~/

DI AR

a

Profile #9

NI@ISIe

LA

J NI

{AKAE

LA

JUOALIE

JK

NSEADIAS

26




Figure S19

CPSF1 knockdown increased the (A) apoptosis rate and resulted in (B) G1/S arrest in MDA-MB-

468 cells (n = 3).
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Figure S20
The clustering of differentially expressed genes in CPSF1 knockdown and control MDA-MB-231
cell lines (fold change > 2, false discovery rate [FDR] < 0.05).

FDR: false discovery rate.
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Figure S21

Venn diagram of alternative polyadenylation (APA) events. (A) Venn diagram of transcripts with
shortened 3'UTR in TNBC samples and transcripts with lengthened 3'UTR in CPSF1-depleted
TNBC cells. (B) Venn diagram of transcripts with lengthened 3'UTR in TNBC samples and
transcripts with shortened 3'UTR in CPSF1-depleted TNBC cells. (C) Venn diagram of transcripts
with shortened 3'UTR in TNBC samples and transcripts with lengthened 3'UTR in PABPNI-
depleted TNBC cells. (D) Venn diagram of transcripts with lengthened 3'UTR in TNBC samples
and transcripts with shortened 3'UTR in PABPN1-depleted TNBC cells. The boxes represent the
intersection sets of genes with APA events.

3'UTR: 3' untranslated region; TNBC: triple-negative breast cancer.
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Figure S22

Kaplan—Meier survival analysis using the Cancer Genome Atlas (TCGA) cohort. (A) SPIDR; (B)

MTA3; (C) MIA3.

TCGA: the Cancer Genome Atlas.
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Figure S23

PABPNI1 depletion results in decreased proliferation. (A) Western blot analysis of MDA-MB-231
and MDA-MB-468 lysates infected with control and shRNA lentivirus targeting PABPN1. (B)
Growth of MDA-MB-231 cells and MDA-MB-468 cells was measured after infection with PABPN1
shRNA lentivirus compared with control shRNA lentivirus. The results shown are the mean +

standard deviation (s.d.) (n = 3). *** p < 0.001.
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Figure S24
PABPNI1 depletion results in enhanced apoptosis in triple-negative breast cancer cell lines. (A)

MDA-MB-231. (B) MDA-MB-468.
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Figure S25
Cell cycle analysis of PABPN1-depleted triple-negative breast cancer cell lines. (A) MDA-MB-231.

(B) MDA-MB-468.
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Figure S26
The clustering of differential expressed genes in PABPN1 knockdown and control MDA-MB-231
cell lines (fold change > 2, false discovery rate [FDR] < 0.05).

FDR: false discovery rate.
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Figure S27
Enriched pathways in PABPN1 knockdown MDA-MB-231.
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Figure S28

Alternative polyadenylation (APA) events in PABPN1 knockdown MDA-MB-231. (A) Scatterplot
of the percentage of distal poly(A) sites usage index (PDUI) in the control and PABPN1 knockdown
groups where mRNAs were significantly shortened (n = 858) and lengthened (n = 321) after
PABPNI1 knockdown. (B) Correlation between distal poly(A) site usage and gene expression levels
of control and PABPNI1-knockdown MDA-MB-231. (C) Representative RNA-seq density plots
along with APDUI values for genes whose 3'UTRs were lengthened (MMS22L, DHX36 and MUM1)
and shortened (PHF21A) in response to PABPN1 knockdown.

APA: alternative polyadenylation.
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Figure S29
Kaplan—Meier survival analysis using the Cancer Genome Atlas (TCGA) cohort. (A) DHX36; (B)
PHF214; (C) MUMI.

TCGA: the Cancer Genome Atlas.
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