Supplementary Information

Polymerase chain reaction – surface-enhanced Raman spectroscopy (PCR-SERS) method for gene methylation level detection in plasma

Xiaozhou Li^{1,2*†}, Tianyue Yang^{1,2+}, Caesar Siqi Li³⁺, Youtao Song²*, Deli Wang¹, Lili Jin⁴, Hong Lou⁴, Wei Li⁵* ¹School of Science, Shenyang Ligong University, Shenyang 110159, China ²College of Environmental Sciences, Liaoning University, Shenyang 110036, China ³College of Medicine, Northeast Ohio Medical University, Rootstown 44272, USA ⁴School of Life Science, Liaoning University, Shenyang 110036, China ⁵School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China *E-mail: lixiaozhou@Inu.edu.cn (X Li), ysong@Inu.edu.cn (Y Song), Weili@Uestc.edu.cn (W Li)

[†]Contributed equally.

Figure S1. (A) TEM image of silver nanoparticles. (B) Particle size distribution plot.

DNA mixtures		MLR coefficients		Actual methylation	Calculated	Act Col
		dsCG	dsAT	level	methylation level	Act-Cal
p16	Mix1	0.555	0.457	0%	0%	0%
	Mix2	0.559	0.457	1%	2%	-1%
	Mix3	0.564	0.455	5%	7%	-2%
	Mix4	0.574	0.438	25%	25%	0%
	Mix5	0.594	0.418	50%	52%	-2%
	Mix6	0.619	0.407	75%	73%	2%
	Mix7	0.637	0.381	100%	103%	-3%
MGMT	Mix1	0.35	0.668	0%	-3%	3%
	Mix2	0.354	0.666	1%	0%	1%
	Mix3	0.356	0.656	5%	4%	1%
	Mix4	0.381	0.637	25%	22%	3%
	Mix5	0.416	0.602	50%	51%	-1%
	Mix6	0.447	0.576	75%	73%	2%
	Mix7	0.479	0.548	100%	98%	2%
RASSF1	Mix1	0.375	0.623	0%	1%	-1%
	Mix2	0.377	0.629	1%	0%	1%
	Mix3	0.383	0.625	5%	6%	0%
	Mix4	0.398	0.603	25%	26%	-1%
	Mix5	0.424	0.586	50%	51%	-1%
	Mix6	0.445	0.564	75%	74%	1%
	Mix7	0.469	0.54	100%	102%	-2%

Table S1. Calculated methylation levels by MLR.

Figure S2. Comparison between raw spectra and processed spectra. (A) Peak heights and changing trends of 1336, 1354, 1550, and 1574 cm⁻¹ of raw and processed spectra. (B) Averaged peak heights of CG/AT of the genes p16, MGMT, and RASSF1 of raw (black) and processed (red) spectra. p values of the paired T-test of the three genes were all larger than 0.05 (p=0.07, 0.82, and 0.86) which shows no significant difference existed between the raw and processed spectra.

Table S2. Comparison between methylation detection methods.

Table 52. comparison between methylat				
Methods	Information provided	Pretreatment	Amplification	Separation
Polymerase chain reaction –	Quantitative	Bisulfite	PCR	SERS
surface-enhanced Raman spectroscopy	Methylation levels (percentages)	• Function: convert unmethylated	Run time: 2-3 hours	Run time: About
(PCR-SERS in this paper)	between primers	cytosines (C) to uracil (U)	Primers: Non-methylation specific primers (do not	Principle: By con
Pro: Rapid, low-cost			contain CpG sites)	methylation per
Cons: Reproducibility of SERS substrate				
Methylation-sensitive high resolution melting		Bisulfite	PCR	HRM
(MS-HRM)			• Run time: 2-3 hours	Run time: About
Pros: In-tube detection, rapid, low cost			Primers: Non-methylation specific primers	Principle: Detect
Cons: Design of primers				degree of methy
Methylation-specific polymerase chain	Qualitative	Bisulfite	MSP/nested MSP	Gel electrophoresi
reaction (MSP)	Methylation existence states of		• Run time: 1-2/5-7 hours	• Run time: 1-2 ho
Pro: Can be incorporated into other	predetermined CpG sites		• Primers: Methylation-specific primers (containing CpG	Principle: Separa
biological techniques			sites)	
Cons: Design of primers				
Methylation-sensitive denaturing		Bisulfite	PCR	DHPLC
high-performance liquid chromatography			Run time: 2-3 hours	• Run time: 5-10 n
(MS-DHPLC)			Primers: Non-methylation specific primers	Principle: First us
 Pro: High sensitivity, low cost 				containing meth
Cons: Temperature selection				fragments with o
Methylation-sensitive single nucleotide	Quantitative	Bisulfite	PCR	SnuPE
primer extension (MS-SnuPF)	Methylation quantity of single		Run time: 2-3 hours	• Run time: 2-3 ho
	predetermined CpG site		Primers: Non-methylation specific primers	Principle: The pr
Pros: Sensitive, quantitative				(C or T) in the pr
Cons: PCR bias and analyses in CpG-rich				terminators, and
regions can be a problem				evaluation of me
Combined bisulfite Restriction analysis	Qualitative or quantitative	Bisulfite	PCR	Restriction digest
(COBRA)	Methylation of predetermined CpG		• Run time: 2-3 hours.	• Run time: 30–40
• Pros: Fast, high-throughput, and economic	sites		 Primers: Non-methylation specific primers 	Principle: To clear
Cons: Limited to existing restriction sites				methylated CpG
MethyLight	Quantitative	Bisulfite	Real-time PCR (RT-PCR)	
Pro: Sensitive, high-throughput Methylation quantity of			• Run time: 2-3 hours	
Cons: High cost	predetermined CpG sites		• Primers: One of or both primers and probes are methyla	tion-specific
			Principle: Methylation quantification is achieved by the r	atio between methy
Bisulfite-Sequencing	Quantitatve	Bisulfite	PCR/nested PCR	Direct sequencing
Pros: Massively parallel detection.	Methylation of all CpG sites		• Run time: 1-2/5-7 hours	• Run time: 4-60 h
Cons: Challenging, high cost			• Primers: Non-methylation specific sequencing primers	Principle: By con

	Detection	Refs
t 1 minute nparing peak heights of C and T to deduce centages (levels)		
		[1]
t 3 minutes ting methylation by measuring intercalatir rlation can be evaluated by the shape of t		
is , , , , , , , , , , , , , , , , , , ,	[2, 3]	
ours ate DNA fragments with or without methy		
		[4]
ninutes		
se denaturation-renaturation to create he	etero- and homoduplexes from PCR products	
ylated CpGs. Then use differential retenti or without methylated CpGs		
	Fluorescence/Pyrosequencing/matrix-assisted laser	[5, 6]
ours	desorption ionization/time-of-flight (MALDI-TOF)	
imer is allowed to extend one base pair	mass spectrometry/lon pair reverse-phase	
esence of DNA polymerase	high-performance liquid chromatography	
the ratio of C/T is determined for the	(IP-RP-HPLC)	
ethylation	 Principle: Use fluorescence, pyrosequencing, mass spectroscopy or HPLC to measure the C:T 	
	ratio	
	Gel electrophoresis/Pyrosequencing	[7, 8]
hours	 Principle: Separate digested DNA fragments using 	
ave part of PCR products that having	different length, or do pyrosequencing on the	
sites using restriction enzymes	digested products	
		[9, 10]
lated reactions and control reactions.		
		[11, 12]
nours		
nnaring the sequencing read from methyl		

References

1. Wojdacz T, Dobrovic A. Methylation-sensitive high resolution melting (MS-HRM). Nucleic Acids Res. 2007; 35: e41.

2. Licchesi J, Herman J. Methylation-specific PCR. Methods Mol Biol. 2009; 507: 305–323.

3. Herman J, Graff J, Myohanen S, Nelkin B, Baylin S. Methylation-specific PCR. Proc Natl Acad Sci U S A. 1996; 93: 9821–9826.

4. Xiao W, Oefner P. Denaturing high-performance liquid chromatography. Hum Mutat. 2001; 17: 439–474.

5. Nikolausz M, Chatzinotas A, Táncsics A, Imfeld G, Kästner M. The single-nucleotide primer extension (SNuPE) method for the multiplex detection of various DNA sequences. Biochem Soc Trans. 2009; 37: 454–459.

6. Hou P, Ji M, Chen Z, Lu Z. A profile of current methods for DNA methylation analysis. Curr Anal Chem. 2006; 2: 309–322.

7. Xiong Z, Laird P. COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res. 1997; 25: 2532–2534.

8. Fraga M, Esteller M. DNA methylation: a profile of methods and applications. Biotechniques. 2002; 33: 632, 634, 636-49.

9. Eads C, Danenberg K, Kawakami K, Saltz L, Blake C, Shibata D, et al. MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res. 2000; 28: E32.

10. Trinh B, Long T, Laird P. DNA methylation analysis by MethyLight technology. Methods. 2001; 25: 456–462.

11. Frommer M, McDonald L, Millar D, Collis C, Watt F, Grigg G, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A. 1992; 89: 1827–1831.

12. Li P, Demirci F, Mahalingam G, Demirci C, Nakano M, Meyers B. An integrated workflow for DNA methylation analysis. J Genet Genomics. 2013; 40: 249–260.