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Abstract 

Most deaths (80%) from cervical cancer occur in regions lacking adequate screening infrastructures 
or ready access to them. In contrast, most developed countries now embrace human papillomavirus 
(HPV) analyses as standalone screening; this transition threatens to further widen the resource gap.  
Methods: We describe the development of a DNA-focused digital microholography platform for 
point-of-care HPV screening, with automated readouts driven by customized deep-learning 
algorithms. In the presence of high-risk HPV 16 or 18 DNA, microbeads were designed to bind the 
DNA targets and form microbead dimers. The resulting holographic signature of the microbeads 
was recorded and analyzed. 
Results: The HPV DNA assay showed excellent sensitivity (down to a single cell) and specificity 
(100% concordance) in detecting HPV 16 and 18 DNA from cell lines. Our deep learning approach 
was 120-folder faster than the traditional reconstruction method and completed the analysis in < 2 
min using a single CPU. In a blinded clinical study using patient cervical brushings, we successfully 
benchmarked our platform’s performance to an FDA-approved HPV assay.  
Conclusions: Reliable and decentralized HPV testing will facilitate cataloguing the high-risk HPV 
landscape in underserved populations, revealing HPV coverage gaps in existing vaccination strategies 
and informing future iterations. 
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Introduction 
Prompt and reliable triaging of high-risk HPV 

cases could help offset severe pathology bottlenecks 
in resource-limited regions [1,2], and circumvent 
geographical and/or socioeconomic barriers [3] to 
effective cervical cancer screening. Visual inspection 

with acetic acid (VIA) is adopted as a rapid, 
inexpensive alternative to standard cytology (Pap 
smears); however, it suffers from high rates of 
false-negative and false-positive results [4,5]. In 
contrast, DNA testing for high-risk HPV confers 
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superior sensitivity (96-100%) and specificity 
(90-100%) [6] along with greater clinical benefit when 
compared to cytology or VIA [7]. The HPV-focused 
work presented in this manuscript is very timely and 
poised to address clinical diagnostic disparities. The 
time required for a pre-cancerous cervical lesion to 
transform into frank cervical cancer reflects a lengthy 
process. This underscores why every three-year 
recommended interval for Pap smear testing remains 
effective despite its lower performance. An important 
assumption is that women would diligently be 
screened at such regular intervals; the inherent 
resource and geopolitical challenges in less developed 
regions of the world often demand prompt 
intervention at any given opportunity. Even the 
guidelines from most developed countries now favor 
HPV screening instead of Pap smears [8]. In 2018, the 
US Preventive Services Task Force reported that 
women ages 30 to 65 could be screened for cervical 
cancer with HPV testing every five years, without 
undergoing a simultaneous Pap test [9]. The Lancet 
Oncology recently published modeling work that 
concluded that women with negative HPV testing 
after age 55 had low cervical cancer risk for the 
remainder of their lives [10]. In contrast, women 
undergoing Pap smear-only screening would still 
benefit from screening until age 75. As such, accurate 
and reliable access to HPV testing for the right 
patients could relieve resource constraints (through 
many fewer years of screening) domestically and 
abroad. Yet, HPV testing demands significant 
equipment and maintenance costs compared to 
cytology or VIA and is often limited to central 
laboratories. As such, current “state-of-the-art” 
cervical cancer screening recommendations are 
poised to further the divide between resource rich and 
poor regions.  

Recently, digital microholography has been 
leveraged for high-throughput imaging and sensing 
applications [11–16]. The technology is promising for 
point-of-care (POC) devices due to its simple optical 
configuration (e.g., lens and filter free), low cost, wide 
field-of-view over cm2, and high resolution on a 
sub-micron scale [17]. We previously developed a 
portable molecular diagnostic approach to detect 
cancer-related surface protein markers within clinical 
biopsies using antibodies linked to microbeads [13,18]. 
Target cells were immunolabeled by microbeads, and 
their hologram (or diffraction) patterns were 
wirelessly transmitted and digitally reconstructed 
with “cloud computing” to identify target cells and 
quantify protein marker expressions. 

Here, we describe an approach coined Artificial 
Intelligence Monitoring for HPV (AIM-HPV), that 
integrates low and high-tech solutions for DNA-based 

and POC cancer screening. First, cervical biopsies 
were replaced by cervical brushings to (i) improve 
clinical workflow, (ii) maximize patient 
acceptability/safety, (iii) obviate the need for skilled 
operators, and (iv) transition from triage to screening. 
We devised a disposable DNA extraction kit based on 
manual syringe operations. We developed a new POC 
microholography platform and assay scheme to detect 
target nucleic acids. In the presence of HPV 16 and/or 
18, microbeads were designed to bind the DNA target 
and form microbead dimers. The resulting 
holographic signature was recorded and analyzed. To 
achieve scalable and low-cost DNA-based cancer 
screening of populations in areas of greatest need, we 
leveraged machine learning strategies to enable 
complete on-site analytics. This eliminated the need 
for cloud computing and attendant high fixed-costs, 
thus rendering a genuine POC screening strategy 
unencumbered by wireless data services or expensive 
computational resources (e.g., GPU servers). Through 
a proof-of-concept clinical study using cervical 
brushings from high-risk patients, we successfully 
benchmarked our platform’s performance to an 
FDA-approved HPV screening test.  

Results 
AIM-HPV device and method for HPV DNA 
detection 

The overall workflow of our AIM-HPV method 
with its advanced features is depicted in Figure 1A. 
First, during a pap-smear procedure, cervix cells were 
collected by a cervical brush, and their DNAs were 
extracted using a disposable syringe-filter. After 
asymmetric DNA amplification, DNA samples were 
mixed with 6 µm polystyrene (PS) and 5 µm silica 
beads, each coated with DNA probes complementary 
to the 3’ and 5’ ends of the target HPV DNA, 
respectively. In the presence of target DNA, the two 
types of beads are linked through the target DNA and 
form detectable PS-silica beads dimers. Diffraction 
patterns of PS, silica, and PS-silica bead dimers were 
captured by our a miniaturized microholography 
device and quickly analyzed by trained deep-learning 
algorithms. 

The DNA extraction device is built on a 
bead-loaded disposable filter to directly isolate DNA 
from cell lysates (Figure S1) [19]. We used 
poly(methyl methacrylate) microbeads (PMMA, 14.7 
µm in diameter) coated with a silica layer via 
polydopamine to capture negatively charged DNA on 
the silica surface. The absorbed DNA was then eluted 
by changing the salt concentration in water. The total 
amount of DNA extracted from cells (200 µl, 5 × 106 
cells) using the bead filter was 137.7 ng/µl, 
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comparable with the amount extracted using a 
commercial Qiagen kit (179.1 ng/µl). In terms of the 
final assay signals, we saw no significant difference 
(unpaired t-test, p = 0.4582) between HPV DNA 
isolated by either method.  

We custom-designed our AIM-HPV device with 
a focus on potential applications in resource-limited 
settings (Figure 1B). Compared to a previous 
protein-focused holographic device[13], the new 
platform offers better optics (e.g., high-power LED, 
CMOS image sensor with more pixels) controlled by a 
one-touch switch and can readily link to tablets or 
laptop computers (Figure 1C). The overall dimensions 
of the device were 65 mm (L) × 65 mm (W) × 140 mm 
(H) and 0.6 kg in weight, thus allowing for portable 
use. With the AIM-HPV device, hologram patterns of 
PS beads, silica, and their dimers were recorded for 
subsequent deep learning analysis (Figure 1D). HPV 
16 and 18 levels (S) were estimated by dividing the 
number of dimers (di) with the product of PS (ps) and 
silica (si) bead counts: S = k·di·(ps·si)-1, where k is a 
constant value of 105 to scale it to 0-100. We used a 
housekeeping gene (i.e., β-globin) as a positive control 
for the assay. Without any DNA, the level of HPV 
signal was about 0.8 ± 0.5 (mean ± s.d.; Figure S2). 

Rapid analysis by customized deep-learning 
algorithms 

Conventional digital microholography employs 
numerical reconstruction of holograms to retrieve 
microscopic object images (e.g., cells, beads), as seen in 
bright-field microscopy (Figure S3). These require 
intensive computations for each sample, which often 
lead to delayed results and need for high-power 
desktop computing resources (i.e., graphic processing 
units, GPUs). We previously sought to circumvent 
such demands on end-users by leveraging cloud 
computing tactics. While a step forward, the approach 
did not fully allay cost concerns from cellular data 
transmission, cloud hardware, and maintenance 
expenses, notably in resource-limited settings. To 
realize on-spot detection with cancer screening 
intentions, we trained deep learning algorithms to 
differentiate and count the numbers of PS and silica 
beads (Figure 2A) and their dimers (Figure 2B) 
directly from diffraction images. These counts were 
used to determine the assay signal (S) and HPV 16 
and 18 positivity. Trained algorithms did not require 
high-power computing resources and were readily 
installed on-device to achieve independence from 
internet connections and cloud computing hardware 
needs. 

 

 
Figure 1. Artificial intelligence monitoring for human papillomavirus (AIM-HPV) assay. (A) Assay procedure. From cells obtained by cervical brushing, DNAs were 
extracted using a disposable bead-filter device. In the presence of target DNA (HPV16 and 18), PS and silica beads coated with DNA probes complementary to the 3’ and 5’ ends 
of the HPV target DNA formed dimers. Diffraction patterns of PS, silica, and PS-silica dimers were recorded and analyzed by deep-learning algorithms. (B, C) The AIM-HPV 
device in photograph (B) and schematic (C) is equipped with a light source (LED, diffuser, pinhole) and image sensor for recording diffraction patterns of beads. (D) Diffraction 
patterns of PS beads (blue arrow), silica beads (orange), and PS-silica bead dimer (red) and their corresponding microscopic image. 
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Figure 2. Convolutional Neural Network for Clinical Sample Analysis. (A, B) Schematics outline models for PS/Si counting individually (A) and PS-Si dimer localization 
and counting (B). The latter produces a heat map of dimer locations in which the sum of all pixels is taken as the total dimer count. (C) The clinical sample image on the left is 
reconstructed and shown on the right. The ground truth heat map (generated from reconstruction coordinates) and model-predicted heat map are shown. (D) Accuracy of PS, 
silica, and dimer bead detection over training epochs. (E) The final AIM-HPV signal values, calculated from convolutional network counts, are plotted against the HPV signal 
calculated from the reconstruction method. (F) Computation time to generate final AIM-HPV signal by standard reconstruction and by convolutional modules 1 and 2. 

 
The architectures for the deep learning analysis 

were designed to evaluate holograms by two 
convolutional neural networks (CNNs). For each 
image, we predicted PS and silica bead counts (Figure 
2A) and generated a probability heatmap of dimer 
positions along with a final dimer count (Figure 
2B-C). Positional information was explicitly generated 
to provide a user-interpretable context for the final 
assay signal (S). To minimize the computational 
complexity of this added functionality, our neural 
network architectures were designed to share as many 
parameters as possible for the three similar tasks of PS 
bead, silica bead, and dimer counting. In Module 1, 
we employ a bifurcated CNN structure to produce PS 
and silica bead counts. In Module 2, our fully 
convolutional neural network includes pre-trained 
parameters used to generate individual PS and silica 
bead counts to inform dimer count predictions. 

During the development and validation, we 
used the heatmaps to access the accuracy and 
locations of bead dimers. Using 13,000 images (128 × 
128 pixels) for training, our algorithms showed 
accuracies of 99% for PS beads, 98% for silica beads 
and 82% for dimers, calculated by a linear correlation 
between expected and predicted counts on an unseen 
validation set of sub-images (Figure 2D). On full-sized 
(2592 × 1944 pixels) holograms, our method also 
showed a good correlation with the traditional image 
reconstruction method (R2 = 0.96, Figure 2E) when 

generating the final assay signals. Importantly, our 
deep learning approach was 120-folder faster than the 
traditional reconstruction method and completed 
quadruplicate analyses of a full-sized image less than 
2 min using a single CPU and 16GB of RAM (Figure 
2F).  

In vitro characterization 
Next, we determined the sensitivity of the 

AIM-HPV assay using serially diluted synthetic DNA 
and HPV-positive cancer cells (CaSki cell line). 
Without DNA amplification, the assay showed 
sub-femtomole detection sensitivity (Figure 3A). In 
terms of cell counts, we were able to detect HPV DNA 
from a single cell (Figure 3B). To validate the 
specificity of our assay, we tested three different cell 
lines (CaSki: HPV16+/18-, HeLa: HPV16-/18+, C33a: 
HPV16-/18-) for HPV 16 and 18 DNA. Furthermore, 
we designed DNA probes for β-globin as a control 
(Figure S4). In the cell line test, we confirmed good 
specificity for both HPV 16 and 18; DNA from CaSki 
cell line was only positive for HPV16, and DNA from 
HeLa cell line was only positive for HPV 18. These are 
confirmed by both AIM-HPV (Figure 3C-D) and gel 
electrophoresis (Figure 3E-F, Figure S5). DNA from 
C33a cell line was negative for both HPV 16 and 18, 
but positive for β-globin (Figure S4). In the 
no-template control, no signal was detected for any 
target sequences.  
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Pilot clinical study 
Following our preclinical validation, we applied 

the AIM-HPV assay towards human clinical samples. 
For 28 patients referred to Massachusetts General 
Hospital with abnormal pap smear results, we 
obtained a total of 35 cervical specimens — 28 cervical 
brushings and seven biopsies. We first compared 
cervical brushing and biopsy pairs (n = 7) of different 
HPV status (HPV 16+/18-, HPV 16-/18+, and HPV 
16-/18-) to test both effectiveness and specimen 
requirements for the AIM-HPV assay. In all cases, we 
observed a good correlation of AIM-HPV signals for 
samples collected by brushings and biopsies (Pearson 
correlation coefficient r = 0.93, p < 0.0001; Figure 4A, 

Figure S6). As a result, we proceeded with cervical 
brushings (n = 28 patients) and screened them for 
HPV 16 and 18 status. We used a commercially 
available Cobas HPV test (Roche Diagnostics) 
clinically used at Massachusetts General Hospital as 
the gold standard, which reports the positivities for 
HPV 16 and 18. Our AIM-HPV assay showed 
significantly different signals (unpaired t-test, p < 
0.0001) between groups positive and negative for both 
HPV 16 (25.7 ± 11.4 vs. 1.7 ± 0.7; mean ± s.d., Figure 
4B) and HPV 18 (23.8 ± 5.0 vs. 2.0 ± 0.9, Figure 4C). 
When compared to the Cobas test, the AIM-HPV 
assay showed full concordance, demonstrating the 
high accuracy of the assay (Figure 4D-E). 

 

 
Figure 3. Titration assay and validation with in vitro cell lines. (A) The detection sensitivity of the AIM-HPV assay without PCR amplification was determined. Samples 
containing HPV 16 DNA were serially diluted and detected. The detection limit was ~ 0.09 femtomole. The error bars represent the s.d. of three replicates (n = 3). The dashed 
line presents a cut-off value. (B) DNAs extracted from different cell counts were detected. CaSki cell line for HPV 16 DNA was used. The assay demonstrated the detection 
sensitivity down to a single cell. The error bars represent the s.d. of three replicates (n = 3). The dashed line presents a cut-off value. (C, D) Three different cancer cell lines 
(CaSki: HPV16+/18-, HeLa: HPV16-/18+, C33a: HPV16-/18-) were tested with a non-template control (NTC) for HPV 16 (C) and HPV 18 (D). The error bars represent the s.d. 
of three replicates (n = 3). (E, F) Gel electrophoresis was used to cross-validate the results for HPV 16 (E) and HPV 18 (F) in comparison with AIM-HPV results. The background 
color is converted for better visualization. The raw gel images are shown in Figure S5.  
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Figure 4. Detection of HPV 16 and 18 from clinical cervical specimens. (A) DNAs in cervical specimens collected by brushing and biopsy for HPV 16 (red), HPV 18 
(green), and β-globin (blue) were compared. (B, C) AIM-HPV assay showed significantly different signals between positive and negative groups for both HPV 16 (B) and HPV 18 
(C). (D, E) Bar graphs of AIM-HPV assay for 28 clinical specimens showed perfect concordance with a gold standard Roche Cobas tests for HPV 16 (D) and HPV 18 (E). 

 

Discussion 
Various studies, including a recently completed 

large randomized trial of >19,000 women [8], have 
concluded that HPV testing outperforms the 
ninety-year old Pap smear test. Notably, HPV testing 
increased the detection of highest risk pre-cancerous 
changes (CIN3) and reduced cervical cancer incidence 
in head-to-head comparisons [8]. Moreover, the 
incidence of cervical adenocarcinoma has increased 
over the past 20 to 30 years compared to its squamous 
cell counterpart, which accounts for 90% of all 
subtypes. Adenocarcinomas, often linked to HPV 18, 
tend to shed fewer cells and hence challenge cytologic 
evaluations. These arguments lend further currency to 

HPV testing. Existing disparities in cervical cancer 
outcomes domestically and abroad require work that 
improves screening accessibility through 
decentralized diagnostics. Success here would 
increase insight into the racial breadth of high-risk 
HPV subtypes and inform accurate vaccination 
strategies. 

We advanced AIM-HPV to specifically address 
the need for decentralized, POC testing performed by 
lay personnel on easily attained specimens. Here, 
gentle cervical brushings were employed, and DNA 
molecules were extracted via disposable syringe 
filters, key ingredients for feasibility. In the presence 
of target DNA (HPV16 and 18), PS and silica beads 
coated with DNA probes complementary to the 3’ and 
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5’ ends of HPV target DNA formed dimers. By using 
two bead types, we discriminated target-specific 
dimers from self-aggregated beads. Our deep learning 
algorithms afforded rapid analyses and accurate 
diagnoses, circumventing costly cloud computing 
options and reliance on wireless data transmission.  

Rapid and accurate algorithmic analyses are key 
components for translating digital microholography 
to POC settings. Our use of digital holography 
provides several advantages over conventional 
microscopic systems: i) the simple and lens-free 
optical configuration minimizes our device footprint 
and cost; ii) we reach field-of-views >100-times larger 
than conventional microscopes; and iii) both 
field-of-view and resolution can be quickly improved 
by upgrading image sensor technology. However, 
computationally expensive image reconstruction 
required ether a powerful local server (equipped with 
graphical processing units) or high-speed internet 
connection for cloud-based computing, both 
impractical in low-resource settings. We aimed to 
address the limitation by adopting deep learning 
algorithms that can detect target features without 
computational imaging reconstruction. We previously 
demonstrated accurate detection of basic cellular 
holograms and assessed biomarker expression 
through deep learning algorithms without the need 
for numeric reconstruction [21,22]. To meet the needs 
of more complex holographic readouts for our DNA 
analyses, we significantly improve upon binary 
classification neural networks by providing 
localization information for multiple or even fractions 
of microbead dimers, positioned anywhere in an 
image. The positional information, presented as heat 
maps, has the following advantages: i) during 
training, positional information increases the overall 
object count accuracy; ii) it enables simultaneous, 
multiplexed detection of different types of objects at 
different positions (PS, silica and their dimers in this 
study); and iii) it provides additional information to 
assess the accuracy of analyses (i.e., secondary 
analysis to ensure that final dimer counts are 
accurate). We achieved these multiplexed tasks by 
sharing parameters and common upstream steps 
between two modules. In all, this new approach 
reduces the number of required trainable parameters, 
the likelihood of overfitting, and computational cost 
while improving overall detection accuracies.  

Expanding on this inaugural DNA 
microholography platform, we intend to enhance the 
assay for expanded testing in resource-poor 
geographies. These will include i) integrating an 
isothermal amplification method such as recombinase 
polymerase amplification (Figure S7) or 
loop-mediated isothermal amplification [23,24]; ii) 

extending the assay for other high-risk HPV strains 
(e.g., HPV 31, 58) [25,26]; and iii) employing reagent 
lyophilization steps for long-term storage. These new 
features should further improve detection accuracies 
and promote rapid adoption for clinical translation 
testing. Furthermore, rigorous clinical validation in a 
different environmental setting will be required. 
Finally, AIM-HPV can be tailored to various other 
DNA-based biomedical interests through the 
versatility of its assay. Through continued 
innovations (e.g., novel microfluidic cartridges[27]), 
integrated protein and DNA testing could also be 
achieved with our platform for expanded POC 
analyses.  

Materials and Methods 
AIM-HPV device 

The AIM-HPV device was equipped with a 
five-megapixel monochromatic complementary 
metal-oxide-semiconductor (CMOS) image sensor 
mounted on a USB 2.0 interface board (The Imaging 
Source). The light source consisted of a 1.4 A 
high-power 405-nm LED (Thorlabs) heat-sinked by a 
metal printed circuit board (PCB) and a custom 
machined aluminum holder, a 220-grit optical diffuser 
(Thorlabs) and a 50 µm pinhole (Thorlabs). Optical 
components were aligned by machined acrylonitrile 
butadiene styrene (ABS) mounts. An integrated 128 × 
32 monochrome OLED Display (Wise Semiconductor) 
provided a real-time view of system status, and a 
simple momentary switch controlled the LED. Images 
were directly transferred via USB to a laptop 
computer. The unit was powered by a regulated 5V, 
15W adapter (Meanwell). The device housing was 
3D-printed in white photopolymer resin (Formlabs) 
and was light-proofed using flocking papers 
(Edmund Optics). The machined-aluminum door was 
fastened with 1/8 inch neodymium disc magnets 
(Grainger). 

Cell lines and growth conditions  
C33A, CaSki, and HeLa cervical cancer cell lines 

were purchased from American Type Culture 
Collection (ATCC). Cell lines were maintained in 
ATCC recommended growth medium (RPMI-1640 for 
CaSki; EMEM for C33A and HeLa cells, Cellgro) 
supplemented with 10% heat-inactivated fetal bovine 
serum, 100 IU penicillin and 100 µg/mL streptomycin 
at 37 °C in a humidified atmosphere of 5% CO2. All 
cell lines used for experiments were tested regularly 
for mycoplasma contamination using a mycoplasma 
detection kit (MycoAlert™, Lonza). We extracted 
DNA from approximately 500,000 cells. The total 
DNA concentration was around 200 ng/µl quantified 
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by Nanodrop. Following that, we used 250 ng DNA 
for each test.  

Clinical samples processing 
The clinical study was approved by the Partners 

Healthcare Institutional Review Board (Massachusetts 
General Hospital/Brigham and Women's Hospital). 
Informed consent was obtained from adult women 
who were referred to the Colposcopy Clinic for 
previously abnormal Pap smears. Samples were 
obtained by brushing and/or cervical biopsy. One 
clinical provider (M.A.-W.) performed all cervical 
procedures and provided excess or otherwise 
discarded ectocervical or endocervical specimens. 
Biopsies entailed visualizing the exocervix and 
bathing with 5% acetic acid using clinically standard 
procedures. Before the use of acetic acid, brushing 
samples were collected with surgical brushes 
(Surgipath C-E Brush, Leica Microsystems; Cytobrush 
Plus GT Gentle Touch, BD Surepath). Cells were 
carefully removed from the cervical brushes by 
swirling the brushes in PBS. The entire brushing 
sample was used up for DNA isolation. DNA was 
collected fresh within 30 min from the collection of 
samples; otherwise, the cells were stored at -80 °C. In 
order to store the samples, we first fixed the samples 
using BDPhosflow 1x lyse/fix solution and stored 
them at -80°C until ready to be analyzed. For each 
patient sample, we have three aliquots for HPV16, 18, 
and β-globin (internal positive control).  

Fabrication of DNA isolation devices 
We used poly(methyl-methacrylate) microbeads 

(PMMA, 14.7 µm in diameter, Bangs Laboratories) 
with silica coating[19] for DNA isolation. The beads 
(20 mg/mL) were incubated in PBS at pH 8.3, 
containing 2 mg/mL of dopamine (Sigma Aldrich) for 
1 h, after washing with distilled water. The beads 
were then coated with silica by 1-h incubation in the 
monosilicic acid solution and washed with distilled 
water. 50 mg of the silica-coated PMMA beads were 
dissolved in 500 µL of ethanol, added to a centrifugal 
filter (Milipore, 0.45 µm pore size), and dried by 
centrifuge at 9000 g for 30 sec. The packed beads in the 
filter were further washed with distilled water and 
ethanol serially by using a centrifuge at 9000 g for 30 
sec, then completely dried via centrifugation at 12000 
g for one minute. To isolate DNA, cell lysates were 
prepared and passed through the bead-filled device, 
followed by washing and elution steps in 
nuclease-free water.  

HPV DNA detection  
Target sequences (~50 nucleotides) unique to 

HPV 16, HPV 18, and β-globin (control gene) DNA 
were selected for hybridization-based sandwich assay 

(Table S1). Pairs of specific oligonucleotide probes 
(~22 nucleotides) were designed to be complementary 
to sequences within the target regions of HPV 16, 
HPV 18, and β-globin DNA with one probe 
hybridizing to the 5′ end of the target and the other to 
the 3′ end. One of the probes had a thiol modification 
at 5’ end for attaching it onto the amine-modified 
polystyrene beads (diameter, 6 µm; Polysciences, 
19118-2), and the other had 3’ biotin modification to 
react with streptavidin activated silica beads 
(diameter, 5 µm; Polysciences, 24755-1). All 
oligonucleotides used for the probes and target DNA 
were custom-synthesized by Integrated DNA 
Technologies. DNA extracted from cell lines and 
patient samples were amplified by asymmetric PCR. 
In low resource settings, a portable mini-PCR device 
(Minipcr, Inc.) could be used for carrying out 
asymmetric DNA amplification (Figure S8). For 
asymmetric PCR, forward primers (Table S2) were 
used in excess of the reverse primer in the ratio of 
10:1, 2 µM and 0.2 µM, respectively. We used Maxima 
Hot Start Taq DNA Polymerase (#EP0601, 
Thermoscientific), 2 mM magnesium chloride and 0.2 
mM dNTPs in the PCR master mix. For hybridization, 
target DNA sequences were reacted with 
bead-capture probe conjugates (equivalent to 0.3 pmol 
capture probe) and incubated in hybridization buffer 
(DIG Hyb, Roche Diagnostics) with 1% BSA and 100 
µg/mL of salmon sperm DNA at 37 °C for 30 min. The 
unbound target DNA was washed with hybridization 
buffer using 0.45 µm centrifugal filters (Millipore). 
The hybridized samples were read using the 
AIM-HPV device within 1 h (if kept at room 
temperature) or stored at 4 °C for overnight storage 
before measurements.  

Convolutional neural network for image 
analysis 

Full-sized sample images were analyzed on a 
local machine by two convolutional neural networks 
described below to produce PS bead, silica bead, and 
PS-silica dimer counts. The second module 
additionally generated heat maps indicating the 
expected centroid location of each dimer. These 
values were then used to determine the AIM-HPV 
signal and classify positive/negative samples. 

Dataset. From 12 full-sized sample images, 
13,196 sub-images were generated by passing a 
128×128 box through each image with a 50% overlap 
in the x- and y-direction (Figure S9). The dataset was 
augmented by rotating each sub-image by 90, 180, and 
270 degrees. During training, sub-images were also 
flipped in either the x or y direction with a 50% 
probability, and diffuse Gaussian noise was added. 
Finally, sub-images were preprocessed by subtracting 
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the mean pixel value and dividing by the pixel value 
standard deviation. For final testing, we used 28 
samples testing for HPV 16 and 28 samples for HPV 
18. Ground truth PS bead, silica bead, and dimer 
counts were obtained by traditional reconstruction. 
Corresponding ground truth heat maps were 
generated by convolving a Gaussian density map 
with a centroid annotation map. 

Module 1: PS-Si Counting. This neural network 
consists of three convolutional layers of increasing 
depth (Figure 2A), each with a kernel size of 3 and 
stride 1. Each convolutional layer was followed by a 
max-pooling layer with kernel size 2 and stride 2. At 
this point, the model branches into two tasks for PS 
and Si counting separately. Features extracted from 
the input image in the final max-pooling layer were 
duplicated, and a separate set of convolutional 
kernels were applied to each copy so that PS and Si 
counting may proceed individually. A global average 
pooling (GAP) layer was applied to each of the two 
final convolutional layers to reduce feature 
dimensionality. Finally, a fully connected (FC) layer 
was applied to each GAP layer to arrive at final PS 
and Si counts. All activation functions were leaky 
rectified linear unit functions with a parameter 𝛼𝛼 = 
0.1. 

This model made use of a regularization method 
described by Aich et al. in which a class activation 
map (CAM) is used to improve the final count [28,29]. 
We define Y and y as our expected and predicted 
count, respectively, and H and h as our gaussian 
annotation and generated CAM layer, respectively. 
The following optimized loss function was used: 

ℒ = 0.5 ⋅ (𝑌𝑌 − 𝑦𝑦)2 + 𝜇𝜇 ⋅ 𝐿𝐿𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝐻𝐻,ℎ, 𝛿𝛿 = 1.0) + 𝜆𝜆∑𝑖𝑖𝑊𝑊𝑖𝑖
2 

where the first sum term denotes the square count 
error, the second denotes CAM layer regularization 
using Huber loss, and the final term is L2 
regularization. 

Module 2: Dimer Counting and Localization 
Module. The dimer detection network begins with 
three units of two convolutional and one max-pooling 
layers (Figure 2B). To transfer the learned capacity of 
Module 1 to detect PS and Si beads individually, 
features generated in the final max-pooling layer of 
Module 1 were concatenated with features generated 
by the final max-pooling layer of Module 2. Two final 
convolutional layers were applied after 
deconvolution, followed by a global sum to arrive at a 
final count. Thus, the output of the module, h is 
related to the predicted dimer count by 𝑦𝑦 = ∑𝑥𝑥,𝑦𝑦ℎ𝑥𝑥,𝑦𝑦. 
This is also the case for the ground truth count, Y, and 
ground truth heatmap, H. The loss function used was: 

ℒ = 0.5 ⋅ (𝑌𝑌 − 𝑦𝑦)2 + 𝜇𝜇 ⋅ 𝐿𝐿𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝐻𝐻,ℎ, 𝛿𝛿 = 1.0) + 𝜆𝜆∑𝑖𝑖𝑊𝑊𝑖𝑖
2 

where each sum term is the same as for Module 1. 
Analysis Workflow. AIM-HPV acquired images 

were split into sets of smaller images of size 128 pixels 
by 128 pixels. These images were fed into each of the 
above modules (Figure S10). Heat maps indicating 
dimer locations were stitched together into a 
full-sized image, and total PS, Si, and PS-Si dimer 
counts were output to generate the final AIM-HPV 
signal. 

Supplementary Material  
Supplementary figures and tables.  
http://www.thno.org/v09p8438s1.pdf  
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