TIMP3 expression associates with prognosis in colorectal cancer and its novel arylsulfonamide inducer, MPT0B390, inhibits tumor growth, metastasis and angiogenesis

Han-Li Huang ${ }^{1,2}$, Yi-Min Liu ${ }^{1}$, Ting-Yi Sung ${ }^{2,}$ Tsui-Chin Huang ${ }^{3}$, Ya-Wen Cheng ${ }^{3}$, Jing-Ping Liou ${ }^{1,4^{*}}$, Shiow-Lin Pan ${ }^{1,2,3, *}$
${ }^{1}$ TMU Biomedical Commercialization Center, Taipei Medical University, Taipei 11031, Taiwan
${ }^{2}$ Ph.D Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
${ }^{3}$ Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
${ }^{4}$ School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.

*Correspondence:

Shiow-Lin Pan, Ph.D.
The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, No. 250 Wuxing Street, Taipei 11031, Taiwan
E-mail: slpan@tmu.edu.tw
Phone: 886-2-27361661 ext 7671

Jing-Ping Liou, Ph.D.

School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
No. 250, Wuxing St., Taipei 11031, Taiwan.
E-mail address: jpl@tmu.edu.tw
Phone: 886-2-27361661 ext 6130

TIMP3 (+)

TIMP3 (-)

Supplementary Figure S1. Representative TIMP3 expression in colon cancer patients (Patients' information and Kaplan-Meier analysis please see Table 2, and Figure 2A and B, respectively).

Supplementary Figure S2. Effect of MPT0B390 on TIMP3 induction in EZH2 knockdown HCT116 cell. (A) Knockdown efficiency of siEZH2 in HCT116 cells. HCT116 cells were transfected with siEZH2 for 24 h and then collected for mRNA detection using real-time PCR. (B) MPT0B390 further induced TIMP3 expression in EZH2 knockdown HCT116 cells. HCT116 cells were transfected with siEZH2 for 24 h and treated with MPT0B390 for an additional 24h. Cells were then collected for mRNA detection using real-time PCR.

Supplementary Table S1. Inhibition of HeLa nuclear extract HDAC activity by compounds 7-18

Compd	Alternative name	HeLa nuclear HDACs
IC $_{50}(\mu \mathrm{M})$		
$\mathbf{1 4}$	MPT0B369	0.078
$\mathbf{7}$	MPT0B390	0.004
$\mathbf{9}$	MPT0B515	0.050
$\mathbf{8}$	MPT0B517	0.060
$\mathbf{1 0}$	MPT0B519	0.030
$\mathbf{1 1}$	MPT0B522	0.008
$\mathbf{1 2}$	MPT0B524	0.003
$\mathbf{1 3}$	MPT0B534	0.170
$\mathbf{1 5}$	MPT0B553	0.032
$\mathbf{1 6}$	MPT0B554	0.007
$\mathbf{1 7}$	MPT0B555	0.008
$\mathbf{1 8}$	MPT0B556	0.1

Supplementary Table S2. Activities of MPT0B390 and reference Trichostatin A against HDAC isoforms $1,2,3,4,5,6,7,8,9$ and 11

	$\mathrm{IC}_{50}(\mathrm{nM})$	
Isoenzyme	MPT0B390	Trichostatin A
HDAC1	17.2	14.5
HDAC2	10.1	11.8
HDAC3	4.16	17.9
HDAC4	-	5870.0
HDAC5	-	1440.0
HDAC6	20.9	3.96
HDAC7	-	1490.0
HDAC8	72.2	148.0
HDAC9	-	8860.0
HDAC11	19.9	30.7

Supplementary Table S3. Primer sequences for qRT-PCR and chromatin immunoprecipitation assays.

A. qRT-PCR	
TIMP3	5'-TGCTCTCTGTCTCTTTTTTCAGCTT-3' (Foward) 5’-CTACAGTGTGTTGTCTGCTGCTTTTT-3' (Reverse)
uPA	5'-CCACAACGACATTGCCTTGCTGAA-3' (Foward) 5'-ATCGTTATACATCGAGGGCAGGCA-3' (Reverse)
uPAR	5'-AAGATCACCAGCCTTACCGAGGTT-3' (Foward) 5'-ATTCGAGGTAACGGCTTCGGGAAT-3' (Reverse)
c-Met	5'-ATCAACATGGCTCTAGTTGTC-3' (Foward) 5'-GGGAGAATATGCAGTGAACC-3' (Reverse)
E-cadherin	5'-ATTCTGATTCTGCTGCTCTTG-3' (Foward) 5’-AGTCCTGGTCCTCTTCTCC-3' (Reverse)
GAPDH	5'-TGGGATTTCCATTGATGACAAG-3' (Foward) 5'-ATTCCACCCATGGCAAATTC-3' (Reverse)
18S rRNA	5'-AACCCGTTGAACCCCATT-3' (Foward) 5'-CCATCCAATCGGTAGTAGC-3' (Reverse)
B. qRT-PCR primers for ChIP assay	
TIMP3 Set a	5'-GTTAGAGTGAAGGCAGGGAAG-3' (Foward) 5’-TTTGAGCACTTTAGCCATAGGA-3' (Reverse)
TIMP3 Set b	5'-TGGAAGATCCCAGCTGCAAAT-3' (Foward) 5'-GAGACATGCATTTCCCTGAACG-3' (Reverse)
TIMP3 Set c	5'-GTGAGAGCTATAATACGGTGAGATAC-3' (Foward) 5’-CAGGATCCTAGACGACTAGCTATAA-3' (Reverse)
TIMP3 Set d	5'-CAGCAGATGGCTTCCCATATC-3' (Foward) 5'-CACAGAGGAGAAAGACCCAAAC-3' (Reverse)

Supporting information

N -(5-Bromopyridin-2-yl)-4-methoxybenzenesulfonamide (20). A mixture of 2-amino-5-bromopyridine ($\mathbf{1 9}, 1.05 \mathrm{~g}, 6.07 \mathrm{mmol}$), DMAP ($0.07 \mathrm{~g}, 0.55 \mathrm{mmol}$), ACN $(14 \mathrm{~mL})$ and pyridine (3.6 mL) was added 4-methoxybenzensulfonyl chloride (1.27 g , 6.13 mmol) under nitrogen and stirred at rt . Overnight. The reaction was quenched with water and extracted with ethyl acetate (30 mL x 3). The organic layer was collected and dried over anhydrous MgSO_{4} and concentrated in vacuo to yield a dark brown product. The residue was purified by flash column over silica gel (ethyl acetate: n -hexane $=1: 1)$ to afford $20(1.08 \mathrm{~g}, 51.84 \%)$ as a yellow solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300MHz, CDCl_{3}): $\delta 3.86(\mathrm{~s}, 3 \mathrm{H}), 6.93(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.73-7.81 (m, 3H), $8.40(\mathrm{~s}, 1 \mathrm{H})$.
(E)-3-(6-(4-Methoxyphenylsulfonamido)7xpressi-3-yl)acrylic acid (21). A mixture of $\mathbf{2 0}(0.14 \mathrm{~g}, 0.41 \mathrm{mmol})$, palladium acetate $(0.01 \mathrm{~g}, 0.04 \mathrm{mmol})$, triphenylphosphine $(0.02 \mathrm{~g}, 0.08 \mathrm{mmol})$, triethylamine $(0.06 \mathrm{~mL}, 0.41 \mathrm{mmol})$, sodium bicarbonate $(0.07$ $\mathrm{g}, 0.82 \mathrm{mmol})$ and $\mathrm{DMF}(1.5 \mathrm{~mL})$ was stirred for a while then added the t-butyl acrylate ($0.07 \mathrm{~mL}, 0.49 \mathrm{mmol}$) at $120{ }^{\circ} \mathrm{C}$ and stirred overnight. The residue was purified by flash column over silica gel (ethyl acetate: n-hexane $=1: 2$) to give the t-butyl acrylate compound as a yellow solid. To the ester compound was added trifluoroacetic acid $(1.5 \mathrm{~mL})$ and stirred at room temperature for 1 hour. The reaction
was quenched with water and filtered by gravity filtration to yield a as a white solid 21 without further purification ($0.21 \mathrm{~g}, 61.55 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}+\right.$ DMSO- d_{6}): $\delta 3.90(\mathrm{~s}, 3 \mathrm{H}), 6.51(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.06(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H})$.

(E)-N-Hydroxy-3-(6-(4-methoxyphenylsulfonamido)pyridin-3-yl)acrylamide (6).

A mixture of $21(0.30 \mathrm{~g}, 0.90 \mathrm{mmol}), \mathrm{EDC} \cdot \mathrm{HCl}(0.26 \mathrm{~g}, 1.35 \mathrm{mmol}), \mathrm{HOBt}(0.15 \mathrm{~g}$, $1.08 \mathrm{mmol})$, NMM ($0.24 \mathrm{~mL}, 2.16 \mathrm{mmol}$) and DMF (2 mL) was stirred for a while then added the $\mathrm{NH}_{2} \mathrm{OTHP}(0.13 \mathrm{~g}, 1.08 \mathrm{mmol})$ at room temperature and was stirred overnight. The residue was purified by flash column over silica gel (ethyl acetate: n-hexane $=4: 1$) to afford the oily product. The resulting oily product was dissolved in $\mathrm{MeOH}(5 \mathrm{~mL})$ and added the $10 \% \mathrm{TFA}_{\text {(aq.) }}(5 \mathrm{~mL})$ at room temperature and stirred for overnight. The reaction was added $\mathrm{H}_{2} \mathrm{O}$ to produce the precipitant. The residue was without more purification to afford $6(0.17 \mathrm{~g}, 54.16 \%)$ as a white solid with m.p. 180.0-181.0 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}_{6}\right): \delta 3.79(\mathrm{~s}, 3 \mathrm{H}), 6.33$ (d, $J=15.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.06$ (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.82$ (t, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H}), 9.01(\mathrm{~s}, 1 \mathrm{H}), 10.72(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}\right.$, DMSO-d $\left.\mathrm{d}_{6}\right): \delta 55.61,112.78,114.17,118.76,128.98,132.69$,
134.22, 136.69, 152.70, 162.30, 162.52. HRMS (ESI) for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: calcd, 349.0730; found, 350.0803.

5-bromo-2,3-dihydro-1H-pyrrolo[2,3-b]pyridine (23). To a mixture of 7-azaindoline (22, $4.0 \mathrm{~g}, 33.29 \mathrm{mmol}$), pyridine (4 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was slowly added $\mathrm{Br}_{2}(1.72 \mathrm{~mL}, 33.29 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(24 \mathrm{~mL})$ under ice bath and was allowed to stir for 2 h under nitrogen. The reaction was quenched with water and extracted with ethyl acetate ($30 \mathrm{~mL} \times 3$). The organic layer was collected and dried over anhydrous MgSO_{4} and concentrated in vacuo to yield a dark brown product. The residue was purified by flash column over silica gel (ethyl acetate: n-hexane $=2: 1$) to afford $23(4.88 \mathrm{~g}, 73.65 \%)$ as a yellow solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.06(\mathrm{t}, J$ $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H})$.

5-Bromo-1-(4-methoxyphenylsulfonyl)-2,3-dihydro-1H-pyrrolo[2,3-b]pyridine

(24a). A mixture of $\mathbf{2 3}$ ($0.35 \mathrm{~g}, 1.76 \mathrm{mmol}$), 4-methoxybenzenesulfonyl chloride (0.55 $\mathrm{g}, 2.64 \mathrm{mmol})$ and pyridine (3 mL) was refluxed overnight. The reaction was quenched with water and extracted with ethyl acetate ($30 \mathrm{~mL} \times 3$). The organic layer was collected and dried over anhydrous MgSO_{4} and concentrated in vacuo to yield a brown product. The residue was purified by flash column over silica gel (ethyl acetate: n -hexane $=1: 1)$ to afford $\mathbf{2 4 a}(0.34 \mathrm{~g}, 52.31 \%)$ as a yellow solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}$
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.02(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 4.05(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.94(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H})$.

5-Bromo-1-(phenylsulfonyl)-2,3-dihydro-1H-pyrrolo[2,3-b]pyridine (24b). The title compound was obtained in 78.73% overall yield from compound 23 and benzenesulfonyl chloride in a similar manner as described for the preparation of $\mathbf{2 4 b}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.04(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46$ (s, 1H), $7.49(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.18$ ($\mathrm{s}, 1 \mathrm{H}$).

5-Bromo-1-(3-methoxyphenylsulfonyl)-2,3-dihydro-1H-pyrrolo[2,3-b]pyridine

 (24c). The title compound was obtained in 86.17% overall yield from compound 23 and 3-methoxybenzenesulfonyl chloride in a similar manner as described for the preparation of 24c. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.04(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}$, $3 \mathrm{H}), 4.07(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{dd}, J=2.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.46(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{dd}, J=1.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H})$.
5-Bromo-1-(3-nitrophenylsulfonyl)-2,3-dihydro-1H-pyrrolo[2,3-b]pyridine (24d).

 The title compound was obtained in 53.24% overall yield from compound 23 and 3-nitrobenzenesulfonyl chloride in a similar manner as described for the preparation of 24d. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.11(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{t}, J=8.5 \mathrm{~Hz}$,$2 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 8.42-8.44(\mathrm{~m}, 1 \mathrm{H}), 8.46-8.49$ $(\mathrm{m}, 1 \mathrm{H}), 8.96(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$.

5-Bromo-1-(4-bromophenylsulfonyl)-2,3-dihydro-1H-pyrrolo[2,3-b]pyridine

 (24e). The title compound was obtained in 77.46% overall yield from compound 23 and 4-bromobenzenesulfonyl chloride in a similar manner as described for the preparation of 24e. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.05(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{t}, J$ $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.16(\mathrm{~s}$, $1 \mathrm{H})$.5-Bromo-1-(3-bromophenylsulfonyl)-2,3-dihydro-1H-pyrrolo[2,3-b]pyridine
(24f). The title compound was obtained in 76.10% overall yield from compound 23 and 3-bromobenzenesulfonyl chloride in a similar manner as described for the preparation of $\mathbf{2 4 f} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.07(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{t}, J$ $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.71(\mathrm{~m}, 1 \mathrm{H})$, 8.03-8.05 (m, 1H), $8.19(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$.

5-Bromo-1-(2-bromophenylsulfonyl)-2,3-dihydro-1H-pyrrolo[2,3-b]pyridine

($\mathbf{2 4 g}$). The title compound was obtained in 40.77% overall yield from compound $\mathbf{2 3}$ and 2-bromobenzenesulfonyl chloride in a similar manner as described for the preparation of $\mathbf{2 4 g} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.18(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{t}, J$
$=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~s}$, $1 \mathrm{H}), 8.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$.
(E)-3-(1-(4-Methoxyphenylsulfonyl)-2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-5-yl) acrylic acid (24a). The title compound was obtained in 43.43% overall yield from compound 25a in a similar manner as described for the preparation of 21. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 3.09(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.07(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.42(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~s}$, $1 \mathrm{H}), 7.97$ (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H})$.
(E)-3-(1-(Phenylsulfonyl)-2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-5-yl)acrylic acid (25b). A mixture of $\mathbf{2 4 b}(0.47 \mathrm{~g}, 1.39 \mathrm{mmol})$, palladium acetate $(0.03 \mathrm{~g}, 0.14 \mathrm{mmol})$, triphenylphosphine ($0.07 \mathrm{~g}, 0.28 \mathrm{mmol}$), triethylamine ($0.19 \mathrm{~mL}, 1.39 \mathrm{mmol}$), sodium bicarbonate ($0.23 \mathrm{~g}, 2.78 \mathrm{mmol}$) and DMF (3 mL) was stirred for a while then added the methyl acrylate $(0.15 \mathrm{~mL}, 1.67 \mathrm{mmol})$ at $120{ }^{\circ} \mathrm{C}$ and stirred for overnight. The residue was purified by flash column over silica gel (ethyl acetate: n -hexane $=1: 1$) to give the methyl acrylate compound as a yellow solid. A mixture of ester compound and dioxane $(5 \mathrm{~mL})$ was added $1 \mathrm{M} \mathrm{LiOH}_{(\mathrm{aq.})}(2.22 \mathrm{~mL}, 2.22 \mathrm{mmol})$ and stirred overnight at $40{ }^{\circ} \mathrm{C}$. The reaction was removed out solvent and dissolved in water. The water layer was added the $3 \mathrm{~N} \mathrm{HCl}_{(\mathrm{aq.})}$ and filtered by gravity filtration to yield a white product $\mathbf{2 5 b}(0.36 \mathrm{~g}, 98.17 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}\right): \delta 3.08(\mathrm{t}, J=8.5 \mathrm{~Hz}$,

2H), $4.08(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.44(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 8.26 (s, 1H).

(E)-3-(1-(3-Methoxyphenylsulfonyl)-2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-5-yl)

 acrylic acid (25c). The title compound was obtained in 93.32% overall yield from compound $\mathbf{2 4} \mathbf{c}$ in a similar manner as described for the preparation of $21 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 3.09(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 4.08(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.42(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=2.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.57-7.61 (m, 3H), $7.83(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H})$.
(E)-3-(1-(3-Nitrophenylsulfonyl)-2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-5-yl)-acr

 ylic acid (25d). The title compound was obtained in 45.05% overall yield from compound $\mathbf{2 4 d}$ in a similar manner as described for the preparation of $21 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 MHz, DMSO- d_{6}): $\delta 3.10(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.46(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~s}$, $1 \mathrm{H}), 8.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.74(\mathrm{~s}, 1 \mathrm{H})$.(E)-4-(4-(5-((E)-2-Carboxyvinyl)-2,3-dihydro-1H-pyrrolo[2,3-b]13xpressi-1-ylsulf onyl)-phenyl)but-2-enoic acid (25e). The title compound was obtained in 42.33% overall yield from compound $\mathbf{2 4} \mathbf{e}$ in a similar manner as described for the preparation of 21. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): \delta 3.09(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{t}, J=8.5 \mathrm{~Hz}$,
$2 \mathrm{H}), 6.45(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.59(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 8.27$ (s, 1H).
(E)-3-(3-(5-((E)-2-Carboxyvinyl)-2,3-dihydro-1H-pyrrolo[2,3-b]14xpressi-1-ylsulf onyl)-phenyl)but-2-enoic acid (25f). The title compound was obtained in 35.35\% overall yield from compound $\mathbf{2 4 f}$ in a similar manner as described for the preparation of 21. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): \delta 3.09(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{t}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.44(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.61-7.66 (m, 2H), $7.95(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H})$.

(E)-3-(2-(5-((E)-2-Carboxyvinyl)-2,3-dihydro-1H-pyrrolo[2,3-b]14xpressi-1-ylsulf

 onyl)phenyl)acrylic acid (25g). The title compound was obtained in 33.42% overall yield from compound $\mathbf{2 4} \mathbf{g}$ in a similar manner as described for the preparation of $\mathbf{2 5 b}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): \delta 3.11(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 6.39-6.43 (m, 2H), $7.45(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.33(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$.ridin-5-yl)acrylamide (7). The title compound was obtained in 88.79% overall yield from compound 25a in a similar manner as described for the preparation of $\mathbf{6}$ with
m.p. $201.6-202.6{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): \delta 3.06(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.80$ $(\mathrm{s}, 3 \mathrm{H}), 4.01(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.34(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.38(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 8.99(\mathrm{br}$, $1 \mathrm{H}), 10.70(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}\right.$, DMSO-d $\left._{6}\right): \delta 24.44,48.72,55.68,114.28$, $118.48,125.49,125.54,128.89,129.97,130.59,134.88,147.10,156.32,162.58$, 163.21. MS (ESI) m/z: $376.0\left([\mathrm{M}+\mathrm{H}]^{+}\right)$. HRMS (ESI) for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}\left([\mathrm{M}-\mathrm{H}]^{-}\right)$: calcd, 374.0816; found, 374.0823.

(E)-N-hydroxy-3-(1-(phenylsulfonyl)-2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-5-yl)

acrylamide (8). The title compound was obtained in 89.09% overall yield from compound 25b in a similar manner as described for the preparation of $\mathbf{6}$ with m.p. 198.1-199.0 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): \delta 3.08(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{t}, J$ $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.35(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.67(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right): \delta 24.47,48.79,118.60,125.57,125.64,127.59$, 129.16, 130.70, 133.76, 134.85, 137.49, 147.10, 156.13, 162.56. MS (ESI) $m / z: 368.0$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$. HRMS (ESI) for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}\left([\mathrm{M}-\mathrm{H}]^{-}\right)$: calcd, 344.0705; found, 344.0686.
(E)-N-Hydroxy-3-(1-(3-methoxyphenylsulfonyl)-2,3-dihydro-1H-pyrrolo[2,3-b]py ridin-5-yl)acrylamide (9). The title compound was obtained in 40.80% overall yield
from compound $\mathbf{2 5} \mathbf{c}$ in a similar manner as described for the preparation of $\mathbf{6}$ with m.p. 219.1-220.4 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta 3.07(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.79$ (s, 3H), 4.03 (t, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.35(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.37$ (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, DMSO-d d_{6} : $\delta 24.47,48.82,55.61,112.51,118.67,119.57,119.75,125.66,125.78$, $130.38,130.76,134.84,138.45,147.11,156.12,159.22,162.55$. MS (ESI) $m / z: 398.0$ ([M+Na] ${ }^{+}$). HRMS (ESI) for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$ ([M-H] $)^{-}$: calcd, 374.0816; found, 374.0825.
(E)-N-Hydroxy-3-(1-(3-nitrophenylsulfonyl)-2,3-dihydro-1H-pyrrolo[2,3-b]pyridi n-5-yl)acrylamide (10). The title compound was obtained in 71.16% overall yield from compound 25d in a similar manner as described for the preparation of $\mathbf{6}$ with m.p. $158.8-160.3{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}+\mathrm{DMSO}-d_{6}\right): \delta 3.14(\mathrm{t}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 4.17(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.39(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.75(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.48-8.50$ $(\mathrm{m}, 1 \mathrm{H}), 8.90(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 24.56,48.94$, 118.92, 122.69, 125.74, 126.07, 128.35, 131.06, 131.21, 133.56, 134.72, 138.79, 146.92, 147.71, 155.64, 162.48. MS (ESI) $m / z: 413.0\left([M+N a]^{+}\right)$. HRMS (ESI) for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}$ ([M-H] $]^{-}$): calcd, 389.0561; found, 389.0543.
(E)-N-Hydroxy-4-(4-(5-((E)-3-(hydroxyamino)-3-oxoprop-1-enyl)-2,3-dihydro-1H -pyrrolo[2,3-b]pyridin-1-ylsulfonyl)phenyl)but-2-enamide (11). The title compound was obtained in 15.49% overall yield from compound $\mathbf{2 5 e}$ in a similar manner as described for the preparation of 6 with m.p. 194.9-196.0 ${ }^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ -NMR (500 MHz, DMSO-d ${ }_{6}$): $\delta 3.07(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.34$ $(\mathrm{d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.84(\mathrm{~m}, 3 \mathrm{H}), 8.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.18$ (s, 1H), $10.70(\mathrm{~s}, 1 \mathrm{H})$, $10.83(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}\right.$): $\delta 24.50,48.82,118.65,122.64$, $125.63,125.72,127.94,128.26,130.74,134.84,136.38,137.52,139.92,147.11$, 156.05, 161.95, 162.55. MS (ESI) $m / z: 453.0$ ([M+Na] ${ }^{+}$). HRMS (ESI) for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}$ ([M-H] $]^{-}$: calcd, 429.0874; found, 429.0882.

(E)-N-Hydroxy-3-(3-(5-((E)-3-(hydroxyamino)-3-oxoprop-1-enyl)-2,3-dihydro-1H

 -pyrrolo[2,3-b]pyridin-1-ylsulfonyl)phenyl)acrylamide (12). The title compound was obtained in 37.17% overall yield from compound $\mathbf{2 5 f}$ in a similar manner as described for the preparation of 6 with m.p. $219.6-220.7{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, DMSO-d d_{6}) $\delta 3.09(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.35(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.56(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.61(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.22(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 10.71(\mathrm{~s}, 1 \mathrm{H}), 10.84(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$,DMSO-d d_{6} : $\delta 24.51,48.86,118.69,121.42,125.67,125.76,125.81,128.01,129.89$, $130.74,132.86,134.82,135.83,136.52,138.13,147.10,156.04,162.03,162.55 . \mathrm{MS}$ (ESI) $m / z: 453.0\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$. HRMS (ESI) for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}$ ([M-H] $]^{-}$): calcd, 429.0874; found, 429.0891.
(E)-N-Hydroxy-3-(2-(5-((E)-3-(hydroxyamino)-3-oxoprop-1-enyl)-2,3-dihydro-1 H-pyrrolo[2,3-b]pyridin-1-ylsulfonyl)phenyl)acrylamide (13). The title compound was obtained in $\mathbf{3 3 . 1 9 \%}$ overall yield from compound $\mathbf{2 5 g}$ in a similar manner as described for the preparation of 6 with m.p. 220.2-221.4 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, DMSO- d_{6}): $\delta 3.10(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.26-6.33(\mathrm{~m}, 2 \mathrm{H})$, $7.31(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.71(\mathrm{~m}, 3 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}), 8.14-8.17(\mathrm{~m}$, $2 \mathrm{H}), 8.99(\mathrm{br}, 1 \mathrm{H}), 9.17(\mathrm{br}, 1 \mathrm{H}), 10.69(\mathrm{~s}, 1 \mathrm{H}), 10.83(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, DMSO-d ${ }_{6}$): $\delta 24.37,47.89,118.40,123.64,125.12,125.39,128.04,129.10,130.45$, $130.72,133.86,134.08,134.30,134.79,137.08,146.94,155.65,161.69,162.49$. MS (ESI) $m / z: 453.0\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$. HRMS (ESI) for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}$ ([M-H] $]^{-}$): calcd, 429.0874; found, 429.0882 .

5-Bromo-1-(4-methoxyphenylsulfonyl)-1H-pyrrolo[2,3-b]pyridine (27a). A mixture of 5-bromo-7-azaindole ($\mathbf{2 6}, 0.35 \mathrm{~g}, 1.78 \mathrm{mmol}$) was dissolved in DMF (2 mL) and added the $60 \% \mathrm{NaH}(0.06 \mathrm{~g}, 2.67 \mathrm{mmol})$ and stirred for a while. Then added the 4-methoxybenzenesulfonyl chloride $(0.55 \mathrm{~g}, 2.67 \mathrm{mmol})$ and stirred for overnight at
room temperature. The reaction was added $\mathrm{H}_{2} \mathrm{O}$ to produce the precipitant. The residue was without more purification to afford $27 \mathbf{a}(0.57 \mathrm{~g}, 87.20 \%)$ as a white solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.83(\mathrm{~s}, 3 \mathrm{H}), 6.52(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=9.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.73(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, $8.44(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$.

5-Bromo-1-(4-fluorophenylsulfonyl)-1H-pyrrolo[2,3-b]pyridine (27b). The title compound was obtained in 93.32% overall yield from compound 26 in a similar manner as described for the preparation of $\mathbf{2 7 a}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.55$ (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 8.21-8.23(\mathrm{~m}, 2 \mathrm{H}), 8.44(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$.

5-bromo-1-(4-bromophenylsulfonyl)-1H-pyrrolo[2,3-b]pyridine (27c). The title compound was obtained in 81.20% overall yield from compound 26 in a similar manner as described for the preparation of $\mathbf{2 7 a}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.56$ (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H})$, $8.04(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.44(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$.

5-Bromo-1-(3-bromophenylsulfonyl)-1H-pyrrolo[2,3-b]pyridine (27d). The title compound was obtained in 85.26% overall yield from compound 26 in a similar manner as described for the preparation of $\mathbf{2 7 a}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.57$
$(\mathrm{d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.99(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$.

5-Bromo-1-(2-bromophenylsulfonyl)-1H-pyrrolo[2,3-b]pyridine (27e). The title compound was obtained in 89.32% overall yield from compound 26 in a similar manner as described for the preparation of $\mathbf{2 7 a}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.57$ (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.0$, $1 \mathrm{H}), 7.96(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.61$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$).
(E)-3-(1-(4-Methoxyphenylsulfonyl)-1H-pyrrolo[2,3-b]20xpressi-5-yl)acrylic acid (28a). The title compound was obtained in 88.17% overall yield from compound $\mathbf{2 7 a}$ in a similar manner as described for the preparation of $21 .{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 3.82(\mathrm{~s}, 3 \mathrm{H}), 6.57(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{t}, J$ $=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $2 \mathrm{H}), 8.24(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H})$.
(E)-3-(1-(4-Fluorophenylsulfonyl)-1H-pyrrolo[2,3-b] 20 xpressi-5-yl)acrylic acid (28b). The title compound was obtained in 63.12% overall yield from compound 27b in a similar manner as described for the preparation of $21 .{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 6.58(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=8.5 \mathrm{~Hz}$,
$2 \mathrm{H}), 7.76(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.22-8.25(\mathrm{~m}, 2 \mathrm{H}), 8.26(\mathrm{~s}$, $1 \mathrm{H}), 8.53(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$.
(E)-3-(4-(5-((E)-2-Carboxyvinyl)-1H-pyrrolo[2,3-b] 21 xpressi-1-ylsulfonyl)phenyl) acrylic acid (28c). The title compound was obtained in 88.31% overall yield from compound $\mathbf{2 7} \mathbf{c}$ in a similar manner as described for the preparation of $21 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (500MHz, DMSO-d d_{6} : $\delta 6.63(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}$, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.96(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.41(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.67(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$.

(E)-3-(3-(5-((E)-2-Carboxyvinyl)-1H-pyrrolo[2,3-b] 21 xpressi-1-ylsulfonyl)phenyl

) acrylic acid (28d). The title compound was obtained in 87.57% overall yield from compound 27d in a similar manner as described for the preparation of $21 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}+\mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 6.62(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}$, $J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 8.60$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$).
(E)-3-(2-(5-((E)-2-Carboxyvinyl)-1H-pyrrolo[2,3-b] 21 xpressi-1-ylsulfonyl)phenyl

) acrylic acid (28e). The title compound was obtained in 81.24% overall yield from compound $\mathbf{2 7 e}$ in a similar manner as described for the preparation of $\mathbf{2 1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$
($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}+\mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 6.15(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.76(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.91(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~s}$, $1 \mathrm{H}), 8.39-8.42(\mathrm{~m}, 2 \mathrm{H}), 8.45(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$.

(E)-N-Hydroxy-3-(1-(4-methoxyphenylsulfonyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)

acrylamide (14). The title compound was obtained in 90.91% overall yield from compound 28a in a similar manner as described for the preparation of 6 with m.p. 192.5-193.3. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}\right): \delta 3.78$ (s, 3 H), $6.52(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.81(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.89$ $(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.23(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=1.5$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 55.85,105.88,114.77,119.78,122.57$, 126.54, 127.82, 127.91, 128.64, 130.01, 135.45, 144.75, 146.67, 162.44, 163.93. HRMS (ESI) for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: calcd, 374.0811; found, 374.0822.

(E)-3-(1-(4-Fluorophenylsulfonyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)-N-hydroxy-

 acrylamide (15). The title compound was obtained in 86.69% overall yield from compound 28b in a similar manner as described for the preparation of $\mathbf{6}$ with m.p. 213.6-214.5. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}_{-} \mathrm{d}_{6}\right): ~ \delta 6.52(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=$ $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.18-8.21(\mathrm{~m}, 2 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H}), 8.56(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right): \delta$ 106.42, 116.92, 117.11, 119.98, 122.68, 126.82, 127.88, 128.03, 130.91, 130.99,133.63, 135.37, 144.88, 146.70, 162.41, 164.44, 166.46. HRMS (ESI) for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{FN}_{3} \mathrm{O}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: calcd, 362.0611; found, 362.0618.
(E)-N-Hydroxy-3-(4-(5-((E)-3-(hydroxyamino)-3-oxoprop-1-enyl)-1H-pyrrolo[2,3 -b]pyridin-1-ylsulfonyl)phenyl)acrylamide (16). The title compound was obtained in 38.90% overall yield from compound 28 c in a similar manner as described for the preparation of 6 with m.p. 188.7-190.5 (decomp.). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta$ $6.54(\mathrm{t}, J=16.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}$, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H}), 8.56(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 106.43,119.96$, 122.67, 123.36, 126.80, 127.94, 128.15, 128.35, 135.34, 136.06, 137.17, 140.95, 144.91, 146.76, 162.38. HRMS (ESI) for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: calcd, 429.0869; found, 429.0876.
(E)-N-Hydroxy-3-(3-(5-((E)-3-(hydroxyamino)-3-oxoprop-1-enyl)-1H-pyrrolo[2,3 -b]pyridin-1-ylsulfonyl)phenyl)acrylamide (17). The title compound was obtained in 67.43% overall yield from compound $\mathbf{2 8 d}$ in a similar manner as described for the preparation of 6 with m.p. $219.4-221.3$ (decomp.). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta$ $6.52(\mathrm{t}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~s}, 1 \mathrm{H})$,
8.59(s, 1H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}_{6}\right): \delta 106.44,119.99,121.98,122.68$, $125.67,126.84,127.76,127.92,128.03,130.39,133.74,135.34,136.10,136.30$, 138.08, 144.89, 146.72, 161.93, 162.39. HRMS (ESI) for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: calcd, 429.0869; found, 429.0884 .
(E)-N-Hydroxy-3-(2-(5-((E)-3-(hydroxyamino)-3-oxoprop-1-enyl)-1H-pyrrolo[2,3 -b]pyridin-1-ylsulfonyl)phenyl)acrylamide (18). The title compound was obtained in 67.20% overall yield from compound $\mathbf{2 8 e}$ in a similar manner as described for the preparation of 6 with m.p. 159.6-161.9 (decomp.). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 MHz, DMSO- d_{6}): δ $6.19(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J$ $=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.76(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.10(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 105.63,119.94,122.46,124.86,126.80,127.68$, 127.94, 128.68, 129.48, 130.91, 133.08, 134.56, 135.25, 135.33, 144.84, 146.55, 161.34, 162.40. HRMS (ESI) for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NaN}_{4} \mathrm{O}_{6} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: calcd, 451.0688; found, 451.0683.

