Kidney-targeted rhein-loaded liponanoparticles for diabetic nephropathy therapy via size control and enhancement of renal cellular uptake

Guowei Wang¹, Qunying Li¹, Danfei Chen², Bihan Wu¹, Yulian Wu¹, Weijun Tong³, and Pintong Huang^{1, *}

¹ Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China.

² Department of Pediatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, 310006 China.

³ MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.

*Corresponding author, huangpintong@zju.edu.cn (P. Huang)

Supplementary Material

Figure S1. Synthetic route (A) and ¹H NMR spectra of the polymers (B).

Figure S2. Fluorescent scanning spectra of Cy5 labeled PCL-PEI (A). Fluorescence intensity of pyrene against various concentrations of polymers (B).

Figure S3. ¹H NMR spectra of DSPE-PEG-KTP, KTP protein and DSPE-PEG-NHS.

Figure S4. The MALDI-TOF-MS spectrum of DSPE-PEG-KTP and DSPE-PEG-NHS.

Figure S5. HPLC chromatograms of RH standard solution (A) and plasma added with RH standard solution (B). The retention time of RH was 8.44 min. * indicated the chromatograph peak of RH.

Model	Regression equation	R^2	
Zero-order	Q = 0.0117t + 0.1867	0.6105	
First-order	$\ln(1-Q) = -0.0191t - 0.2168$	0.7218	
Higuchi	$Q = 0.979t^{1/2} + 0.0648$	0.8655	

Table S1. Release kinetics of KLPPR in PBS (pH 7.4).

Figure S6. Subcellular distribution of (A) $PP^{Cy5}R$ and (B) KLPP^{Cy5}R. HK-2 cells were imaged with a CLSM and the nuclei were stained with Hoechst 33342 (blue), the lysosomes were labeled with LysoTracker[®] Green DND26 (green) and the nanoparticles were labeled with Cy5 (red). The scale bar is 50 µm.

Figure S7. FBG (A) and body weight (B) changes of healthy control mice and diabetic nephropathy mice in five weeks after STZ-injected.

Table S2. Pharmacokinetic parameters of RH-sol and KLPPR (intravenously, dose equivalent to RH 5 mg/kg, 4 mice in each group). Data were presented as mean \pm SD.

Parameters	Unit	RH-sol	KLPPR
T _{1/2}	h	0.42 ± 0.17	1.44 ± 0.28
CL	(µg)/(µg/mL)/h	5.09 ± 1.48	1.60 ± 0.33
AUC _{0-t}	$\mu g / mL \cdot h$	19.64 ± 3.55	62.26 ± 7.29
MRT	h	0.65 ± 0.13	2.18 ± 0.45

 $T_{1/2}$, CL, AUC_{0-t} and MRT refer to elimination half-time, clearance, area under curve and mean retention time respectively.

Figure S8. The concentration of Rhein in kidney at 12 h post-injection in diabetic

nephropathy mice. The DN mice were intravenously injected with RH-sol and KLPPR (dose equivalent to RH 5 mg/kg, 4 mice in each group).