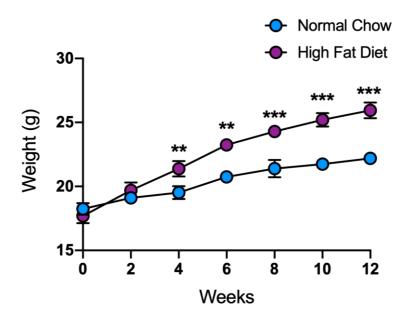
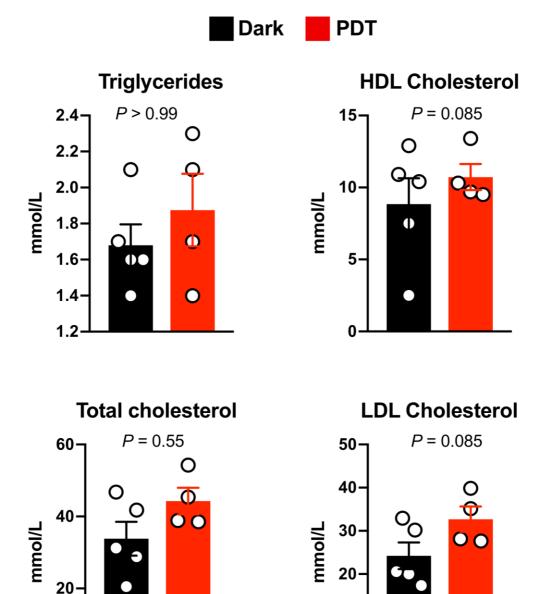
Supplemental information:

Theranostic Cathepsin Activity-Based Probe for Noninvasive Intervention in Cardiovascular Diseases


Tommy Weiss-Sadan^{1,#}, Yael Ben-Nun^{1,#}, David Maimoun², Emmanuelle Merquiol¹, Ihab Abd-Elrahman¹, Israel Gotsman²*, Galia Blum¹*

¹Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel, 9112001. ²Heart institute, Hadassah, University Hospital, Jerusalem, Israel 91120.


[#]These authors contributed equally to this work.

*Corresponding authors: Galia Blum¹, galiabl@ekmd.huji.ac.il and Israel Gotsman², igotsman@bezeqint.net

Running title: Theranostic application for qPD-ABP in cardiovascular diseases

Supplementary Figure 1. Mice weight gain after twelve weeks on a high-fat diet compared to normal chow. Mice were fed high-fat diet (n=7) or normal chow (n=5) for twelve weeks, and their weight was recorded on every other week. Data present the mean \pm SEM. Student's t-test used to evaluate the statistical difference between groups and adjusted for multiple hypothesis correction with the False Discovery Rate (FDR). *P* values below 0.05 were considered statistically different. ** P < 0.01, ***P < 0.001.

Supplementary Figure 2. Lipid profiles of mice on a high-fat diet. Serum lipid profile of mice fed high-fat diet for twelve weeks. Metabolic measurements were performed in a double-blind manner by external clinical laboratory service. Data summarized in bar graphs present the mean \pm SEM of four to five mice per group. The statistical difference for each parameter was determined by a student's t-test and corrected for multiple hypotheses using the false discovery rate (FDR). Therefore, the P values represent the adjusted values after FDR correction. There was no significant difference in the metabolic parameters between the PDT and Dark treatment. P values are indicated in the figure.

Supplementary method. Synthesis of photosensetizer quenched activity-based theranostic agent Schematic description of YBN14 synthesis and essential elements as previously described ¹¹. YBN14 is designed according to the principles of GB137, a quenched activity-based probe presented by Blum G and colleagues ¹². The photosensitizer (b-Chlo, Pink) and quencher (QC-1, blue) pair are highlighted. Fmoc, 9-fluorenylmethylcarbonyl; DMF, dimethylformamide; HOBT, 1-hydroxybenzotriazole; DIEA, diisopropylethylamine; PyBOP, (benzotriazole-1-yloxy)tris(pyrrolidino)phosphonium hexafluorophosphate; DCM, dichloromethane; Boc, t-butyloxycarbonyl; b-Chlo, Bacteriochlorin (Pink); TFA, trifluoroacetic acid; DMSO, dimethyl sulfoxide.