Supplemental Information

CD137 promotes bone metastasis of breast cancer by enhancing the migration and osteoclast differentiation of

monocytes/macrophages

Pengling Jiang^{1,3,4}, Wenjuan Gao², Tiansi Ma², Rongrong Wang², Yongjun Piao², Xiaoli Dong², Peng Wang², Xuehui Zhang^{3,5}, Yanhua Liu^{2,6}, Weijun Su^{2,6}, Rong Xiang^{2,6}, Jin Zhang^{1,3,4,*} and Na Li ^{2,6,*}

 From ¹Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China;
²School of Medicine, Nankai University, 94 Weijin Road, Tianjin, China;
³Tianjin's Clinical Research Center for Cancer, Tianjin, China;
⁴Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China;
⁵ Department of Blood Transfusion, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China;
⁶Tianjin Key Laboratory of Tumour Microenvironment and Neurovascular Regulation, Tianjin, China.

> * Correspondence to: Dr. Jin Zhang, <u>zhangjin@tjmuch.com</u>; Dr. Na Li, <u>lina08@nankai.edu.cn</u>.

Figure S1. CD137 and CD137L correlate with macrophages markers in human breast cancers. A-B. Pearson's correlation analysis of CD137 and CD137L with macrophage markers (CD14, CD33, CD68) at mRNA level, respectively (**A**) and the correlation between CD137 mRNA and CD137L mRNA (**B**) in the primary human breast cancers of TCGA database.

Figure S2. CD137 promotes the migration of monocytes/macrophages through Fra1. A-B. Representative wound healing assay of RawRL cells (Left panel, the edge of the wound was indicated by the yellow line) and the statistical results (right panel, n = 3). C-D. Upper panel: Western blot results of Fra1 in RAW264.7 and RawRL cells. The mean value of relative fold change (RFC) for each blot is indicated at the bottom, n = 2. Lower panel: statistical results of the transwell assay in RAW264.7 and RawRL cells (n = 3-6). E-F. Western blot results of Fra1 and p-Fra1 in 4T1FL cells treated with DMSO and SKLB816 (E) and in RawRL-CD137 cells treated with DMSO, SKLB816, IgG, α CD137 Ab, and SKLB816 combined with α CD137 Ab (combination). The mean RFC value for each blot is indicated at the bottom, n = 3. G. Time

dependent CCK8 assay of cell viability change of RawRL after their adhesion to the plate (n = 8). Cell viability of RawRL-Con at 24 hours after the adhesion was used as the control. **H-J.** Western blot results of Ki67 (upper panel, the mean RFC value for each blot is indicated at the bottom, n = 3) and statistical results for CCK8 assay of the cell viability change in 4T1FL, RawRL-CD137 cells and primarily cultured macrophages (M Φ) treated with IgG and α CD137 Ab for 24 hours (lower panel, n = 6-8). Abbreviation: h: hour(s).

Figure S3. CD137L-CD137 signaling promotes the migration and osteoclast differentiation of monocytes/macrophages. A-B. Representative FACS analysis of membrane-bound CD137^{hi} and CD137L^{hi} cells in RawRL-Con, MΦ and 4T1FL cells (A) and the statistical results (n = 3, B). C. Western blot results of sCD137L in the supernatant of RawRL-Con, MΦ and 4T1FL cells. The mean RFC value for each blot is indicated at the bottom (n = 4). D-E. Statistical results of transwell assay of the recruitment of MΦ (D) and RawRL-Con (E) by 4T1FL cells or their supernatant after application of IgG and αCD137L Ab to the lower chamber (n = 3-4). F-G. Representative FACS analysis of membrane bound CD137L^{hi} cells in RawRL-Con cells after incubation with M-CSF (10 ng/mL) and RANKL (100 ng/mL) for 9 days (F) and the statistical results (G, n = 3). The untreated RawRL-Con cells were used as the control (Con). H. Representative Western blot results of sCD137L in the supernatant of RawRL-Con cells after incubation with or without M-CSF (10 ng/mL) and RANKL (100 ng/mL) ng/mL) for 9 days, the mean RFC value for each blot is indicated at the bottom, n = 2. I.

Statistical results of the number of TRAP⁺ osteoclasts in RawRL cells which were treated with M-CSF (10 ng/mL) and RANKL (100 ng/mL) in the presence of 10 μ g/mL α CD137L Ab or IgG for 9 days (n = 3). J. Real-time PCR assay of relative mRNA level changes of different genes in RawRL-CD137, which were treated with M-CSF (10 ng/mL) and RANKL (100 ng/mL) in the presence of 10 μ g/mL α CD137L Ab or IgG for 9 days (n = 3).

Figure S4. Depletion of monocytes/macrophages by clodrolip inhibits bone metastases of breast cancer. A. Schematic diagram of experiment procedure. Clodrolip or its PBS control was administrated at the time points indicated by arrows. B. IHC staining of F4/80 in the spleen from a representative mouse treated with clodrolip or PBS (scale bar: 100 μ m). C. Left panel: BLI image of tumor-invasion lesions in each mouse at the end point of experiment. Right panel: Statistical results of normalized BLI signals (n = 5 mice). D. Left panel: H&E staining image of bone lesion invaded by tumor from a representative mouse in each group (scale bar: 200 μ m). Right panel: Statistical results of bone metastatic foci number (#), data are presented as mean \pm SEM (n = 5 mice). E. Left panel: TRAP staining of the osteolytic bone lesion from a representative mouse in each group (scale bar: 100 μ m). Right panel: Statistical results of bone lesions (n = 2-12 bone lesions). F. Upper panel: H&E staining image of lung metastasis from a representative mouse in each group (scale bar: 200 μ m). Lower panel: Statistical results of lung metastatic foci number (data are presented as mean \pm SEM, n=5 mice) and lung metastatic area ratio (n = 5 mice). Abbreviation: i.p.: intraperitoneal injection.

Figure S5. NPs- α CD137 Ab-F4/80 have no obvious effect on the body weight of tumorbearing BALB/c mice. Statistical results of the body weight of tumor-bearing BALB/c mice receiving NPs- α CD137 Ab-F4/80 treatment and the controls shown in Figure 5, n = 5 mice.

Figure S6. NPs-CD137 Ab-F4/80 have no obvious effect on T cell activation *in vivo*. A. Schematic diagram of experiment procedure. **B.** Statistical results for the hematological assays of tumor-bearing BALB/c mice that were treated with PBS or NPs- α CD137 Ab-F4/80 for 24 hours (n = 5 mice). C-F. Representative FACS results of spleen leukocytes (C, E) and the statistical results for the percentage of CD45^{hi}F4/80^{hi} cells (D), CD3^{hi} cells (F) in spleen leukocytes and the percentage of CD69^{hi}CD4^{hi}, CD69^{hi}CD8^{hi}, CD44^{hi}CD4^{hi} and CD44^{hi}CD8^{hi}

cells in the spleen CD3^{hi} cells (**F**) of tumor-bearing BALB/c mice that were treated with PBS or NPs- α CD137 Ab-F4/80 for 24 hours (n = 5 mice). **G-J.** Representative FACS results (**G**, **I**) and the statistical results for the percentage of CD45^{hi}F4/80^{hi}, CD45^{hi}CD3^{hi} cells (**H**) and CD3^{hi}CD69^{hi} cells (**J**) in 4T1FL-allografts of BALB/c mice that were treated with PBS or NPs- α CD137 Ab-F4/80 for 24 hours (n = 5 mice). **K-L.** Representative confocal images of CD69 (red) and CD3 (green), Ki67 (green) and CD68 (green), scale bar: 20 µm (**K**), and the statistical results for the ratio of CD3⁺/DAPI⁺, CD3⁺CD69⁺/CD3⁺, Ki67⁺/DAPI⁺ and CD68⁺/DAPI⁺ cells in 4T1FL-allografts of BALB/c mice that were treated with PBS or NPs- α CD137 Ab-F4/80 for 24 hours, n = 3-5 mice (**L**). Abbreviation: d: day(s); h: hours; i.v.: intravenous injection; WBC: white blood cell; LY: lymphocyte; MO: monocyte; RBC, red blood cell; PLT, platelet.

Gene name	Primer
Dcstamp (Mus)	Forward: 5'- TACGTGGAGAGAAGCAAGGAA -3'
	Reverse: 5'- ACACTGAGACGTGGTTTAGGAAT -3'
Atp6v0d2 (Mus)	Forward: 5'- CAGAGCTGTACTTCAATGTGGAC -3'
	Reverse: 5'- AGGTCTCACACTGCACTAGGT -3'
ltgb3 (Mus)	Forward: 5'- CCACACGAGGCGTGAACTC -3'
	Reverse: 5'- CTTCAGGTTACATCGGGGTGA -3'
Ctsk (Mus)	Forward: 5'- GAAGAAGACTCACCAGAAGCAG -3'
	Reverse: 5'- TCCAGGTTATGGGCAGAGATT -3'
Opg (Mus)	Forward: 5'- ACCCAGAAACTGGTCATCAGC -3'
	Reverse: 5'- CTGCAATACACACACTCATCACT -3'
RANKL (Mus)	Forward: 5'- CAGCATCGCTCTGTTCCTGTA -3'
	Reverse: 5'- CTGCGTTTTCATGGAGTCTCA -3'
TRAP (Mus)	Forward: 5'- CACTCCCACCCTGAGATTTGT -3'
	Reverse: 5'- CATCGTCTGCACGGTTCTG -3'

Table S1. The primers used in real-time PCR assay.

Case number	Gender	Age	Diagnosis	Histological grade	TNM stage	CD137 stain	CD137L stain
1	F	38	Invasive ductal carcinoma	2	IIB	Negative	Positive
2	F	65	Invasive ductal carcinoma	1	IIA	Negative	Negative
3	F	57	Invasive ductal carcinoma	1	IIA	Negative	Positive
4	F	40	Invasive ductal carcinoma	1	IIA	Negative	Negative
5	F	47	Invasive ductal carcinoma	1	IIA	Negative	Positive
6	F	52	Invasive ductal carcinoma	1	IIB	Negative	Negative
7	F	48	Invasive ductal carcinoma	1	IIA	Negative	Negative
8	F	54	Invasive ductal carcinoma	1	IIA	Positive	Negative
9	F	45	Invasive ductal carcinoma	1	IIA	Positive	Negative
10	F	47	Invasive ductal carcinoma	1	IIA	Positive	Positive
11	F	64	Invasive ductal carcinoma	1	IIA	Positive	Positive
12	F	30	Invasive ductal carcinoma	1	IIA	Negative	Positive
13	F	71	Invasive ductal carcinoma	2	IIA	Positive	Positive
14	F	54	Invasive ductal carcinoma	2	IIB	Positive	Positive
15	F	79	Invasive ductal carcinoma	2	IIB	Positive	Positive
16	F	48	Invasive ductal carcinoma	2	IIIB	Positive	Negative
17	F	45	Invasive ductal carcinoma	2	IIA	Negative	Positive
18	F	47	Invasive ductal carcinoma (sparse)	Unknown	IIA	Positive	Positive
19	F	59	Invasive ductal carcinoma	2	IIA	Positive	Negative
20	F	38	Invasive ductal carcinoma	2	IIB	Positive	Negative
21	F	37	Invasive ductal carcinoma	2	IIB	Positive	Positive
22	F	47	Invasive ductal carcinoma	2	IIA	Positive	Positive
23	F	45	Invasive ductal carcinoma	1	IIIB	Positive	Positive
24	F	60	Invasive ductal carcinoma	2	IIIB	Positive	Positive
25	F	49	Invasive ductal carcinoma with necrosis (sparse)	Unknown	IIA	Positive	Positive
26	F	40	Invasive ductal carcinoma	3	IIA	Positive	Positive
27	F	62	Invasive ductal carcinoma	3	IIA	Positive	Positive
28	F	60	Invasive ductal carcinoma	2	IIA	Positive	Positive
29	F	46	Invasive ductal carcinoma	2	IIA	Positive	Negative
30	F	68	Invasive ductal carcinoma	2	IIIB	Positive	Negative
31	F	53	Invasive ductal carcinoma	3	IIA	Positive	Positive
32	F	57	Invasive ductal carcinoma	3	IIA	Positive	Positive
33	F	81	Invasive ductal carcinoma	Unknown	IIB	Negative	Negative
34	F	63	Invasive ductal carcinoma	3	IIA	Positive	Positive
35	F	35	Invasive ductal carcinoma	3	IIB	Negative	Positive
36	F	65	Invasive ductal carcinoma	3	IIB	Positive	Positive

Table S2. Clinical characteristics and IHC staining results of CD137 and CD137L in patients with breast carcinoma.

	Normal	Non-metastatic BC	Metastatic BC
	(n = 19)	(n = 30)	(n = 30)
Age			
26-35	0 (0%)	1 (3.3%)	0 (0%)
36-45	6 (31.6%)	11 (36.7%)	7 (23.3%)
46-55	12 (63.2%)	17 (56.7%)	23 (76.7%)
56-70	0 (0%)	1 (3.3%)	0 (0%)
unknown	1 (5.3%)	0 (0%)	0 (0%)
Metastatic site			
Bone w/wo other sites	NA	NA	16 (53.3%)
other sites (LN(s), chest wall, liver, lung, etc.)	NA	NA	14 (46.7%)

Table S3. Clinical characteristics of healthy female and female patients with breast cancer (BC) in the ELISA assay of serum sCD68.

Abbreviation: w/wo: with/without; LN(s): lymph node(s); NA: not applicable.

	Normal	Non-metastatic BC	Metastatic BC
	(n = 20)	(n = 22)	(n = 22)
Age			
26-35	0 (0%)	2 (9.1%)	0 (0%)
36-45	6 (30%)	9 (40.9%)	11 (50.0%)
46-55	13 (65%)	10 (45.5%)	11 (50.0%)
56-70	0 (0%)	1 (4.5%)	0 (0%)
unknown	1 (5%)	0 (0%)	0 (0%)
Metastatic site			
Bone w/wo other sites	NA	NA	14 (63.6%)
other sites (LN(s), chest wall, liver, lung, etc.)	NA	NA	8 (36.4%)

Table S4. Clinical characteristics of health female and female patients with breast cancer(BC) in the Western blot analysis of serum sCD137L.

Abbreviation: w/wo: with/without; LN(s): lymph node(s); NA: not applicable.