Supplementary Figure legends

Figure S1. Bioinformatics analysis of IncRNA regulated by TGF- β /SMAD3 in

lung adenocarcinoma

(A) Flow chart for the selection of lncRNAs overexpressed in LUAD and regulated by TGF- β /SMAD3. (B) Venn diagrams showing that 48 IncRNAs were induced by TGF- β and attenuated by SIS3 treatment. (C) Hierarchical clustering analysis of the expression of ten lncRNAs in the NC, TGF- β-treated and TGF- β - and SIS3-treated groups. (D, E) HCP5 expression in patients with current smoking and not former smokers via analyzing GSE31210 and GSE10072 dataset. $* P<0.05$, NS: no statistical significance.

Figure S2. The relationship between SMAD3 and HCP5 expression and partial sequence of the HCP5 promoter region
(A) SMAD3 expression in human LUAD tissues and normal lung tissues in the GSE31210 dataset. (B) SMAD3 expression positively correlated with HCP5 expression in LUAD. Linear regression analysis from the GSE37745 dataset using the Pearson correlation coefficient test $(\mathrm{R}=0.2631, P<0.05)$. (C) Partial sequence of the HCP5 promoter. The three putative $S M A D 3$ binding sites are in red. $* * * P<0.001$.

Figure S3. HCP5 regulates LUAD cells proliferation and invasion
(A, C) Efficiency of HCP5 knockdown in A549 and Calu3 cells using two small interfering RNAs (siHCP5\#001 and siHCP5\#002) was detected by qRT-PCR. (B, D)
qRT-PCR for HCP5 expression in A549 and Calu3 cells transduced with empty vector (pCDH) or pCDH-HCP5. (E) The invasion ability of HCP5-silenced and control Calu3 cells analyzed by Transwell assays. Scale bar: $100 \mu \mathrm{~m}$. (F) Silencing of HCP5 inhibits the colony formation of Calu3 cells. (G) Cell Counting Kit-8 (CCK-8) assays were performed in Calu3 cells silenced for HCP5. (H) Transwell assay to investigate the invasion ability of HCP5-overexpressing and control Calu3 cells. Scale bar: 100 $\mu \mathrm{m}$. (I) Overexpression of HCP5 inhibits the clonogenic ability of cells. (J) Cell Counting Kit-8 (CCK-8) assays were performed in Calu3 cells overexpressing HCP5. All data are shown as the mean \pm S.E.M. of three independent experiments (two-tailed Student's t -test). ${ }^{*} P<0.05,{ }^{* *} P<0.01, * * * P<0.001$.

Figure S4. HCP5 knockdown inhibits cell proliferation and metastasis in nude mice
(A) Knockdown efficiency of HCP5 in A549 cells using two designed shRNAs. Data are shown as the mean \pm S.E.M. of three independent experiments (two-tailed Student's t-test). (B) Mice were subcutaneously injected with cells stably silenced for HCP5 (shHCP5) or control cells (shCtrl). Silencing of HCP5 inhibited A549 xenograft growth in nude mice. Arrows denote tumors in situ. $\mathrm{n}=6$ mice per group. (C) ShHCP5 or shCtrl A549 cells labeled with EGFP-luciferase were intravenously injected into nude mice and IVIS imaging heat maps were obtained in live mice at 8 weeks. (D) The luciferase signal of each group show the mean and SEM. Statistical comparison of the means was done by a two-tailed t-test. $* P<0.05, * * * P<0.001$.

Figure S5. Clinical prognostic value of HCP5 and SNAI expression in patients with LUAD
(A, B) Kaplan-Meier curves for overall survival rates of LUAD patients according to the expression level of SNAII and SNAI2. (C, D) The prognostic value by KaplanMeier analysis of the combination of the HCP5 and SNAII or SNAI2 in the GSE19188 dataset.

Figure S6. HCP5 positively regulates EMT via the miR-203/SNAI axis
(A) Schematic illustration of the genomic location of HCP5 at 6p21.33; the binding sites of miR-203 on HCP5 transcript were predicted using the miRDB database. (B) Levels of HCP5 in nuclear and cytoplasm of A549 cells. U6 (nuclear) and β-Actin (cytoplasm) were used as controls. Data are shown as the mean \pm S.E.M. of three independent experiments (two-tailed Student's t-test). (C, D) Western-blot analysis of the EMT markers (E-cadherin, N-cadherin), Snail and Slug expression in A549 cells transfected with miR-203 mimics or inhibitors. (E, F) qRT-PCR for miR-203 in A549 cells transfected with miR-203 mimics or inhibitors for 24 h . Data are shown as the mean \pm S.E.M. of three independent experiments (two-tailed Student's t-test). (G, H) The expression of miR-203 in A549 cells after silencing or overexpression of HCP5 was detected by qRT-PCR. Data are shown as the mean \pm S.E.M. of three independent experiments (two-tailed Student's t-test). (I) The expression of P15, P21 and P57 in A549 cells after silencing or increasing HCP5 was detected by qRT-PCR. Data are
shown as the mean \pm S.E.M. of three independent experiments (two-tailed Student's
t-test). $* P<0.05, * * P<0.01, * * * P<0.001$.

Figure S1

Figure S2

The partial sequence of the HCP5 promoter region
GCCAGAAACACCAGCTGTGATTAGAGGATTGGAACTTTCACTGCCATCCCCATCCTCT GGGGAAGAAAAGGGGGCTGGAAGTTGAGCTCAGTCATCAATGGCCAATGATTTCACC AATCTTGCCTACACAATGAAACTTCCATAGACACCTCTAGACAGTGAGTTTTGGAGAA CTTCCCAGTTGGTGAGCACATCCGCATGTCCACGTGCTGGGAGGACGGCACACCTC ATCTCCATAGAGACAGAGGCTTCTGCGCTTATATCTTTCTGTAAGGCAGACACCCTTG TTTCTAGGAGGGACCTAGGGTGGACTGTGGATTCTTTCTCTGGGGCAAATAAAAATG TAGAATCAGAAAATTCAGGCACTTTGCACTCCTCATGGGACACTCCAGCAGCACTCAC GTGACCATCCTGAGAATGGACAGGACACCTGAGGTGGGGAAGGGAGCACAGAACCC AGACACCAGCCTGGACACAGGCACCTGGGATAATCTCCTATTCC

Red-Predicted SMAD3 binding sites(site 1, site 2 and site 3)

Figure S3

Figure S4

Figure S5

A SNAI1

Figure S6

Table S1. Data of 30 clinicopathologic LUAD patients for analyzing the expression of HCP5.

No.	Age	Sex	Grade	TX	NX	MX
1	49	female	moderately-poorly differentiated	2	0	0
2	58	female	well-moderately differentiated	1	0	0
3	55	female	moderately differentiated	3	2	0
4	60	female	well-moderately differentiated	1	0	0
5	40	male	moderately-poorly differentiated	4	2	0
6	43	male	moderately-poorly differentiated	2	1	0
7	58	male	moderately-poorly differentiated	4	0	0
8	73	male	moderately differentiated	2	0	0
9	61	male	moderately-poorly differentiated	4	0	0
10	60	male	moderately-poorly differentiated	4	0	0
11	58	male	moderately-poorly differentiated	4	0	0
12	47	female	moderately differentiated	3	0	0
13	53	female	moderately differentiated	3	1	0
14	47	male	moderately differentiated	2	0	0
15	60	male	moderately differentiated	3	0	0
16	59	female	moderately differentiated	2	0	0
17	75	female	moderately-poorly differentiated	2	0	0
18	64	male	moderately differentiated	3	2	0
19	57	female	moderately-poorly differentiated	2	1	0
20	34	male	poorly differentiated	3	2	0
21	40	male	Mucinous adenocarcinoma	3	2	0
22	50	female	moderately-poorly differentiated	3	2	0
23	65	male	moderately differentiated	2	0	0
24	46	male	moderately-poorly differentiated	3	1	0
25	67	female	moderately-poorly differentiated	2	0	0
26	84	male	poorly differentiated	2	1	0
27	50	female	moderately-poorly differentiated	3	2	0
28	57	female	moderately-poorly differentiated	2	1	0
29	55	male	moderately-poorly differentiated	4	1	0
30	51	male	poorly differentiated	2	2	0

Table S2. Information on antibodies used in this study.

Antibody	Company	Catalog\#	Species	Dilution	Note
				WB	
GAPDH	Proteintech	$10494-1-A P$	Rabbit	$1: 5000$	
IgG	Santa Cruz Blotechnology	SC-2025	Mouse	$1: 2000$	CHIP(1:500)
Snail	Cell Signaling Technology	3879	Rabbit	$1: 1000$	
Slug	Cell Signaling Technology	9585	Rabbit	$1: 1000$	
Vimentin	Cell Signaling Technology	5741	Rabbit	$1: 1000$	IF(1:100)
N-Cadherin	Cell Signaling Technology	13116	Rabbit	$1: 1000$	
E-Cadherin	Cell Signaling Technology	3195	Rabbit	$1: 1000$	IF(1:100)
SMAD3	Thermo Fisher	MA5-14939	Rabbit	$1: 1000$	CHIP(1:50)
Phospho-Smad3	Thermo Fisher	MA5-14936	Rabbit	$1: 1000$	
Snail	OriGene	TA506430	Mouse	$1: 800$	
Slug	Proteintech	$12129.1 . A P$	Rabbit	$1: 1000$	

Table S3. Primers used in this study.

Primers used in qRT-PCR analysis	
Primer name	Primer sequence(5'to3')
β-Actin	GTCACCGGAGTCCATCACGAT
	TCACCAACTGGGACGACATG
GAPDH	CAAGGTCATCCATGACAACTTTG
	GTCCACCACCCTGTTGCTGTAG
U6	CTCGCTTCGGCAGCACA
	AACGCTTCACGAATTTGCGT
HCP5	GACTCTCCTACTGGTGCTTGGT
	CACTGCCTGGTGAGCCTGTT
SMAD3	CACGCAGAACGTGAACACC
	GGCAGTAGATAACGTGAGGGA
Snai1	TGCGTCTGCGGAACCTG
	GGACTCTTGGTGCTTGTGGA
Slug	TGTGACAAGGAATATGTGAGCC
	TGAGCCCTCAGATTTGACCTG
Vimentin	CCTGAACCTGAGGGAAACTAA
	GCAGAAAGGCACTTGAAAGC
E-Cadherin	GCCCCATCAGGCCTCCGTTT
	ACCTTGCCTTCTTTGTCTTTGTTGGA
TWIST	AAGCTGCAGCTATGTGGCTCACG
	AATCACTGTCCACGGGCCTGTCT
ZEB1	ACTCTGATTCTACACCGC
	TGTCACATTGATAGGGCTT
P15	CGGGGTCGGGTAGAGGA
	GCGCTGCCC ATCATCAT
P57	ACATCCACGATGGAGCGTC
	GGAAGTCGTAATCCC AGCGG
P21	CCTCATCCCGTGTTCTCCTTT
	GTACCACCCAGCG GACAAGT
miR-203a-3p F	CGCGGTGAAATGTTTAGGACCACTAG

Table S4. HCP5 siRNA, shRNA and primers used in plasmid construction used in this study.

siRNAs and shRNAs designed for silencing HCP5(5'to3')	
siRNA\#001	sense-CCAACAUAUUUCUCUGCUU
	Antisense-AAGCAGAGAAAUAUGUUGG
siRNA\#002	sense-GCUGAUGAGUAGGACAUUU
	Antisense-AAAUGUCCUACUCAUCAGC
sh-HCP5-1	CGCGGCTGATGAGTAGGACATTTCTCGAGAAATGTCCTACTC ATCAGCTTTTTTG
	CGCGGATCTATTACCTGTGCCTGGACTCGAGTCCAGGCACAG GTAATAGATCTTTTTTG

Primers used in plasmid construction(5'to3')	
pCDH-HCP5	CCG GAATTCGACTCA GATTCTCCCCAG AC
	TTTTCCTTTTGCGGCCGCTTCATGTGGGATCCACAAC
H1	CTAGCTAGCGGTTGAAGCCGTATGTTGCTGAGACC
	CCGGCGCGCCAAGCttTAATTGTAATCTGTAATTAAA TATATGTGC
H2	CTAGCTAGCGGTTGAAGCCGTATGTTGCTGAGACC
	CCCAAGCTTTATCTAGGAGCCCCTCACCCCATAGT
H3	CTAGCTAGCGTTTCAGGATGGAGGCTGCT
	CCCAAGCTTTGCGGATGTGCTCACCAACT
H4	CGGCTAGCTAGCGGGCAAATAAAAATGTAG
	CCCAAGCTTCAAGGAATAGGAGATTATCCC
H5	CTAGCTAGCGAAAGTTCCAGTATCTGAGGGA
	CGCGCCCCCAAGCTTTAATTGTAATCTGTAATTA
H6	CTAGCTAGCGTTTCAGGATGGAGGCTGCT
	CCCAAGCTTTGCGGATGTGCTCACCAACT
psiCHECK2-HCP5 Wild-Type	TAATTCTAGGCGATCGCTCGAGGACTCAGATTCTCC CCAGACGC
	TTTTATTGCGGCCAGCGGCCGCTTCATGTGGGATCC ACAACACT
psiCHECK2-HCP5 Mutant	CTTGGTTGTTCAGGGCGTAAAGTGGTTTGGGTGTTTT CTGGGGATG
	CATCCCCAGAAAACACCCAAACCACTTTACGCCCTG AACAACCAAG
pcDNA3.1-HCP5	CTAGCTAGCGACTCAGATTCTCCCCAGACG
	CCCAAGCTTTTCATGTGGGATCCACAACAC
pcDNA3.1-HCP5-ant isense	CTAGCTAGCAAGTACACCCTAGGTGTTGTG
	CCCAAGCTTCTGAGTCTAAGAGGGGTCTGC

Table S5. HCP5 RNA-FISH probes used in this study.

Name	Probe sequence(5'to3')	Labeled fluorescein
HCP5-1	AGAACAGCAGGAGGAGGGTT	$5{ }^{\prime}$ 'CY3
HCP5-2	TAAT+TGTAATC+TGCCCAGGT	
HCP5-3	GAGA+TCATTT+CTGCC+TTGAT	5'FAM
has-miR-203a-3p	CTAGTGG+TCCTAAACATT+TC AC	

