Supplementary Figure legends

Figure S1. Bioinformatics analysis of lncRNA regulated by TGF-β /SMAD3 in lung adenocarcinoma

(A) Flow chart for the selection of lncRNAs overexpressed in LUAD and regulated by TGF- β /SMAD3. (B) Venn diagrams showing that 48 lncRNAs were induced by TGF- β and attenuated by SIS3 treatment. (C) Hierarchical clustering analysis of the expression of ten lncRNAs in the NC, TGF- β -treated and TGF- β - and SIS3-treated groups. (D, E) HCP5 expression in patients with current smoking and not former smokers via analyzing GSE31210 and GSE10072 dataset. **P*< 0.05, NS: no statistical significance.

Figure S2. The relationship between *SMAD3* and HCP5 expression and partial sequence of the HCP5 promoter region

(A) *SMAD3* expression in human LUAD tissues and normal lung tissues in the GSE31210 dataset. (B) *SMAD3* expression positively correlated with HCP5 expression in LUAD. Linear regression analysis from the GSE37745 dataset using the Pearson correlation coefficient test (R = 0.2631, P < 0.05). (C) Partial sequence of the HCP5 promoter. The three putative *SMAD3* binding sites are in red. ***P< 0.001.

Figure S3. HCP5 regulates LUAD cells proliferation and invasion

(A, C) Efficiency of HCP5 knockdown in A549 and Calu3 cells using two small interfering RNAs (siHCP5#001 and siHCP5#002) was detected by qRT-PCR. (B, D)

qRT-PCR for HCP5 expression in A549 and Calu3 cells transduced with empty vector (pCDH) or pCDH-HCP5. (**E**) The invasion ability of HCP5-silenced and control Calu3 cells analyzed by Transwell assays. Scale bar: 100 µm. (**F**) Silencing of HCP5 inhibits the colony formation of Calu3 cells. (**G**) Cell Counting Kit-8 (CCK-8) assays were performed in Calu3 cells silenced for HCP5. (**H**) Transwell assay to investigate the invasion ability of HCP5-overexpressing and control Calu3 cells. Scale bar: 100 µm. (**I**) Overexpression of HCP5 inhibits the clonogenic ability of cells. (**J**) Cell Counting Kit-8 (CCK-8) assays were performed in Calu3 cells silenced in Calu3 cells overexpressing HCP5. All data are shown as the mean \pm S.E.M. of three independent experiments (two-tailed Student's t-test). **P*< 0.05, ***P*< 0.01, ****P*< 0.001.

Figure S4. HCP5 knockdown inhibits cell proliferation and metastasis in nude mice

(A) Knockdown efficiency of HCP5 in A549 cells using two designed shRNAs. Data are shown as the mean \pm S.E.M. of three independent experiments (two-tailed Student's t-test). (B) Mice were subcutaneously injected with cells stably silenced for HCP5 (shHCP5) or control cells (shCtrl). Silencing of HCP5 inhibited A549 xenograft growth in nude mice. Arrows denote tumors in situ. n = 6 mice per group. (C) ShHCP5 or shCtrl A549 cells labeled with EGFP-luciferase were intravenously injected into nude mice and IVIS imaging heat maps were obtained in live mice at 8 weeks. (D) The luciferase signal of each group show the mean and SEM. Statistical comparison of the means was done by a two-tailed t-test. **P* < 0.05, ****P*< 0.001.

Figure S5. Clinical prognostic value of HCP5 and *SNAI* expression in patients with LUAD

(**A**, **B**) Kaplan–Meier curves for overall survival rates of LUAD patients according to the expression level of *SNA11* and *SNA12*. (**C**, **D**) The prognostic value by Kaplan–Meier analysis of the combination of the HCP5 and *SNA11* or *SNA12* in the GSE19188 dataset.

Figure S6. HCP5 positively regulates EMT via the miR-203/SNAI axis

(A) Schematic illustration of the genomic location of HCP5 at 6p21.33; the binding sites of *miR-203* on HCP5 transcript were predicted using the miRDB database. (B) Levels of HCP5 in nuclear and cytoplasm of A549 cells. U6 (nuclear) and β -Actin (cytoplasm) were used as controls. Data are shown as the mean \pm S.E.M. of three independent experiments (two-tailed Student's t-test). (C, D) Western-blot analysis of the EMT markers (E-cadherin, N-cadherin), Snail and Slug expression in A549 cells transfected with *miR-203* mimics or inhibitors. (E, F) qRT-PCR for *miR-203* in A549 cells transfected with *miR-203* mimics or inhibitors for 24 h. Data are shown as the mean \pm S.E.M. of three independent experiments (two-tailed Student strest). (G, H) The expression of *miR-203* in A549 cells after silencing or overexpression of HCP5 was detected by qRT-PCR. Data are shown as the mean \pm S.E.M. of three independent experiments (two-tailed Student's t-test). (I) The expression of *P15*, *P21* and *P57* in A549 cells after silencing or increasing HCP5 was detected by qRT-PCR. Data are

shown as the mean \pm S.E.M. of three independent experiments (two-tailed Student's t-test). **P*< 0.05, ***P* < 0.01, ****P* < 0.001.

Figure S1

С

The partial sequence of the HCP5 promoter region

Red-Predicted SMAD3 binding sites(site 1, site 2 and site 3)

Figure S3

Figure S4

Figure S5

Figure S6

No.	Age	Sex	Grade	TX	NX	MX
1	49	female	moderately-poorly differentiated	2	0	0
2	58	female	well-moderately differentiated	1	0	0
3	55	female	moderately differentiated	3	2	0
4	60	female	well-moderately differentiated	1	0	0
5	40	male	moderately-poorly differentiated	4	2	0
6	43	male	moderately-poorly differentiated	2	1	0
7	58	male	moderately-poorly differentiated	4	0	0
8	73	male	moderately differentiated	2	0	0
9	61	male	moderately-poorly differentiated	4	0	0
10	60	male	moderately-poorly differentiated	4	0	0
11	58	male	moderately-poorly differentiated	4	0	0
12	47	female	moderately differentiated	3	0	0
13	53	female	moderately differentiated	3	1	0
14	47	male	moderately differentiated	2	0	0
15	60	male	moderately differentiated	3	0	0
16	59	female	moderately differentiated	2	0	0
17	75	female	moderately-poorly differentiated	2	0	0
18	64	male	moderately differentiated	3	2	0
19	57	female	moderately-poorly differentiated	2	1	0
20	34	male	poorly differentiated	3	2	0
21	40	male	Mucinous adenocarcinoma	3	2	0
22	50	female	moderately-poorly differentiated	3	2	0
23	65	male	moderately differentiated	2	0	0
24	46	male	moderately-poorly differentiated	3	1	0
25	67	female	moderately-poorly differentiated	2	0	0
26	84	male	poorly differentiated	2	1	0
27	50	female	moderately-poorly differentiated	3	2	0
28	57	female	moderately-poorly differentiated	2	1	0
29	55	male	moderately-poorly differentiated	4	1	0
30	51	male	poorly differentiated	2	2	0

Table S1. Data of 30 clinicopathologic LUAD patients for analyzing the expression of HCP5.

Antihady	Company	Catalog #	Species	Dilution	Note	
Anubody	Company			WB		
GAPDH	Proteintech	10494-1-AP	Rabbit	1:5000		
IgG	Santa Cruz Blotechnology	SC-2025	Mouse	1:2000	CHIP(1:500)	
Snail	Cell Signaling Technology	3879	Rabbit	1:1000		
Slug	Cell Signaling Technology	9585	Rabbit	1:1000		
Vimentin	Cell Signaling Technology	5741	Rabbit	1:1000	IF(1:100)	
N-Cadherin	Cell Signaling Technology	13116	Rabbit	1:1000		
E-Cadherin	Cell Signaling Technology	3195	Rabbit	1:1000	IF(1:100)	
SMAD3	Thermo Fisher	MA5-14939	Rabbit	1:1000	CHIP(1:50)	
Phospho-Smad3	Thermo Fisher	MA5-14936	Rabbit	1:1000		
Snail	OriGene	TA506430	Mouse	1:800		
Slug	Proteintech	12129.1.AP	Rabbit	1:1000		

Table S2. Information on antibodies used in this study.

Primers used in qRT-PCR analysis			
Primer name	Primer sequence(5'to3')		
β-Actin	GTCACCGGAGTCCATCACGAT		
	TCACCAACTGGGACGACATG		
GAPDH	CAAGGTCATCCATGACAACTTTG		
	GTCCACCACCCTGTTGCTGTAG		
U6	CTCGCTTCGGCAGCACA		
	AACGCTTCACGAATTTGCGT		
HCP5	GACTCTCCTACTGGTGCTTGGT		
	CACTGCCTGGTGAGCCTGTT		
SMAD3	CACGCAGAACGTGAACACC		
	GGCAGTAGATAACGTGAGGGA		
Snai1	TGCGTCTGCGGAACCTG		
	GGACTCTTGGTGCTTGTGGA		
Slug	TGTGACAAGGAATATGTGAGCC		
	TGAGCCCTCAGATTTGACCTG		
Vimentin	CCTGAACCTGAGGGAAACTAA		
	GCAGAAAGGCACTTGAAAGC		
E-Cadherin	GCCCCATCAGGCCTCCGTTT		
	ACCTTGCCTTCTTTGTCTTTGTTGGA		
TWIST	AAGCTGCAGCTATGTGGCTCACG		
	AATCACTGTCCACGGGCCTGTCT		
ZEB1	ACTCTGATTCTACACCGC		
	TGTCACATTGATAGGGCTT		
P15	CGGGGTCGGGTAGAGGA		
	GCGCTGCCC ATCATCAT		
P57	ACATCCACGATGGAGCGTC		
	GGAAGTCGTAATCCC AGCGG		
P21	CCTCATCCCGTGTTCTCCTTT		
	GTACCACCCAGCG GACAAGT		
miR-203a-3p F	CGCGGTGAAATGTTTAGGACCACTAG		

Table S3. Primers used in this study.

Table S4. HCP5 siRNA, shRNA and primers used in plasmid construction used
in this study.

siRNAs and shRNAs designed for silencing HCP5(5'to3')			
siRNA#001	sense-CCAACAUAUUUCUCUGCUU		
	Antisense-AAGCAGAGAAAUAUGUUGG		
siRNA#002	sense-GCUGAUGAGUAGGACAUUU		
	Antisense-AAAUGUCCUACUCAUCAGC		
sh-HCP5-1	CGCGGCTGATGAGTAGGACATTTCTCGAGAAATGTCCTACTC		
	ATCAGCTTTTTTG		
sh-HCP5-2	CGCGGATCTATTACCTGTGCCTGGACTCGAGTCCAGGCACAG		
	GTAATAGATCTTTTTTG		

Primers used in plasmid construction(5'to3')				
CDU UCD5	CCG GAATTCGACTCA GATTCTCCCCAG AC			
редн-него	TTTTCCTTTTGCGGCCGCTTCATGTGGGATCCACAAC			
	CTAGCTAGCGGTTGAAGCCGTATGTTGCTGAGACC			
H1	CCGGCGCGCCAAGCttTAATTGTAATCTGTAATTAAA			
	TATATGTGC			
ЦЭ	CTAGCTAGCGGTTGAAGCCGTATGTTGCTGAGACC			
112	CCCAAGCTTTATCTAGGAGCCCCTCACCCCATAGT			
112	CTAGCTAGCGTTTCAGGATGGAGGCTGCT			
ПЭ	CCCAAGCTTTGCGGATGTGCTCACCAACT			
Ц4	CGGCTAGCTAGCGGGGCAAATAAAAATGTAG			
П4	CCCAAGCTTCAAGGAATAGGAGATTATCCC			
115	CTAGCTAGCGAAAGTTCCAGTATCTGAGGGA			
НЭ	CGCGCCCCAAGCTTTAATTGTAATCTGTAATTA			
IIC	CTAGCTAGCGTTTCAGGATGGAGGCTGCT			
ПО	CCCAAGCTTTGCGGATGTGCTCACCAACT			
	TAATTCTAGGCGATCGCTCGAGGACTCAGATTCTCC			
psiCHECK2-HCP5	CCAGACGC			
Wild-Type	TTTTATTGCGGCCAGCGGCCGCTTCATGTGGGATCC			
	ACAACACT			
	CTTGGTTGTTCAGGGCGTAAAGTGGTTTGGGTGTTTT			
psiCHECK2-HCP5	CTGGGGATG			
Mutant	CATCCCCAGAAAACACCCCAAACCACTTTACGCCCTG			
	AACAACCAAG			
pcDNA3.1-HCP5	CTAGCTAGCGACTCAGATTCTCCCCAGACG			
	CCCAAGCTTTTCATGTGGGATCCACAACAC			
	CTAGCTAGCAAGTACACCCTAGGTGTTGTG			
pcDNA3.1-HCP5-ant isense	CCCAAGCTTCTGAGTCTAAGAGGGGGTCTGC			

Name	Probe sequence(5'to3')	Labeled fluorescein	
HCP5-1	AGAACAGCAGGAGGAGGGTT		
HCP5-2	TAAT+TGTAATC+TGCCCAGGT	5'CY3	
HCP5-3	GAGA+TCATTT+CTGCC+TTGAT		
has-miR-203a-3p	CTAGTGG+TCCTAAACATT+TC AC	5'FAM	

Table S5. HCP5 RNA-FISH probes used in this study.