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Abstract 

Background: Biomarkers predicting response to bevacizumab in breast cancer are still missing. Since 
epigenetic modifications can contribute to an aberrant regulation of angiogenesis and treatment 
resistance, we investigated the influence of DNA methylation patterns on bevacizumab efficacy.  
Methods: Genome-wide methylation profiling using the Illumina Infinium HumanMethylation450 BeadChip 
was performed in archival FFPE specimens of 36 patients with HER2-negative metastatic breast cancer 
treated with chemotherapy in combination with bevacizumab as first-line therapy (learning set). Based on 
objective response and progression-free survival (PFS) and considering ER expression, patients were 
divided in responders (R) and non-responders (NR). Significantly differentially methylated gene loci 
(CpGs) with a strong change in methylation levels (Δβ>0.15 or Δβ<-0.15) between R and NR were 
identified and further investigated in 80 bevacizumab-treated breast cancer patients (optimization set) and 
in 15 patients treated with chemotherapy alone (control set) using targeted deep amplicon bisulfite 
sequencing. Methylated gene loci were considered predictive if there was a significant association with 
outcome (PFS) in the optimization set but not in the control set using Spearman rank correlation, Cox 
regression, and logrank test. 
Results: Differentially methylated loci in 48 genes were identified, allowing a good separation between R 
and NR (odds ratio (OR) 101, p<0.0001). Methylation of at least one cytosine in 26 gene-regions was 
significantly associated with progression-free survival (PFS) in the optimization set, but not in the control set. 
Using information from the optimization set, the panel was reduced to a 9-gene signature, which could 
divide patients from the learning set into 2 clusters, thereby predicting response with an OR of 40 
(p<0.001) and an AUC of 0.91 (LOOCV). A further restricted 3-gene methylation model showed a 
significant association of predicted responders with longer PFS in the learning and optimization set even in 
multivariate analysis with an excellent and good separation of R and NR with AUC=0.94 and AUC=0.86, 
respectively. 
Conclusion: Both a 9-gene and 3-gene methylation signature can discriminate between R and NR to a 
bevacizumab-based therapy in MBC and could help identify patients deriving greater benefit from 
bevacizumab. 
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Introduction 
For HER2-negative metastatic breast cancer 

(MBC), bevacizumab (BEV) in combination with 
paclitaxel or capecitabine is a treatment option 
approved by the European Medicines Agency (EMA). 
Several phase-III studies have shown improvement in 
progression-free survival (PFS) with bevacizumab 
when added to chemotherapy, although the extent of 
improvement in PFS varied [1-5]. The primary 
endpoint of all of these trials was PFS, thus, 
conclusions on overall survival (OS) are difficult. 
However, neither a single trial nor any meta-analysis 
showed benefit in terms of OS [6-8]. This situation 
calls for biomarkers allowing clear separation of 
patients with or without a relevant chance of clinical 
benefit from this drug. Unfortunately, established 
markers predicting substantial benefit from this 
anti-angiogenic monoclonal antibody are still lacking. 
Promising biomarkers like plasma levels of VEGF-A 
or VEGFR-2 [9, 10], tissue markers like the VEGFR 
co-receptor neuropilin-1 (NRP-1) [11-13], single 
nucleotide polymorphisms (SNPs) in VEGF-A [14] or 
clinical markers like treatment-induced hypertension 
[14-16] failed to demonstrate clinical utility or 
reproducibility. Given the complexity and multifact-
orial nature of angiogenic processes, probably no 
single biomarker is able to predict efficacy of 
anti-VEGF therapy.  

DNA methylation is one of the known 
mechanisms of epigenetic regulation and there is 
increasing evidence for its involvement in the 
development of drug resistance [17-22]. By influen-
cing expression levels of genes involved in 
angiogenesis, a certain methylation pattern could 
influence the response to an antiangiogenic therapy. 
Therefore, we aimed to generate a multigene- 
signature by using a whole-genome approach. 

Material and Methods 
Patients and study design 

Key inclusion criteria for this analysis were 
histologically confirmed adenocarcinoma of the 
breast, locally advanced inoperable or metastatic 
tumor stage, ECOG performance status 0-3, at least 
one line of chemotherapy (taxane or capecitabine) 
alone or in combination with bevacizumab for 
advanced disease, sufficiently documented medical 
records (allowing calculation of PFS and OS) as well 
as sufficient tumor material for DNA isolation. 

Learning Set 
From the 212 breast cancer patients treated with 

chemotherapy in combination with bevacizumab 
(first- to fifth-line) at our institution between 2006 and 

2012, 116 patients fulfilled the inclusion criteria. From 
this cohort, a learning set was selected consisting of 36 
patients treated with a first-line chemotherapy and 
bevacizumab combination who clearly did (responder 
R; n=18) or did not (non-responder NR; n=18) benefit 
from this treatment based on objective response 
(ORR), progression-free survival (PFS), overall 
survival (OS) and estrogen receptor (ER) expression. 

Optimization Set 
The optimization set consisted of the 80 

remaining patients from the bevacizumab-treated 
cohort that were not included in the learning set. 
Forty-one of these patients could clearly be classified 
as R or NR based on ORR, PFS, OS, and therapy-line 
and considering ER expression. 

Control Set 
Fifteen patients who never received bevacizu-

mab and who were treated with a taxane or capecita-
bine as first-line chemotherapy were used as control 
set and were divided into R (n = 7) and NR (n = 8). 

Patient characteristics of all patient sets are 
provided in Table 1. 

Tissue samples and DNA isolation 
Formalin-fixed paraffin-embedded (FFPE) tissue 

blocks containing samples from primary tumors, or if 
available, from metastatic sites, were selected by an 
experienced breast pathologist (CH). All tissue 
samples were collected prior to the start of first-line 
chemotherapy for metastatic disease. Three to five 10 
µm sections were cut from each block without micro- 
or macro-dissection and placed in sterile Eppendorf 
tubes. DNA isolation and quantification was perfo-
rmed with the Maxwell 16 FFPE Plus LEV DNA 
Purification KIT and the PicoGreen dsDNA quantit-
ation assay, respectively. Quality of FFPE-derived 
DNA was evaluated with Illumina’s FFPE QC kit. 

Methylation analysis 

Learning Set 
Genome-wide methylation profiling using the 

Illumina Infinium HumanMethylation450 BeadChip 
was performed, which enabled determining the 
methylation state of 485,577 single CpG sites. DNA 
was deaminated with the EZ DNA Methylation Kit 
(Zymo Research) according to Illumina’s recomme-
nded deamination protocol. Bisulfite conversion was 
checked by qPCR. One assay targeting a methylated 
region of DNAJC15 and two assays targeting the 
GNAS locus (one assay for the unmethylated allele 
and one assay for the methylated allele) were used for 
quality control [23]. Deaminated DNA derived from 
blood was amplified in parallel and served as positive 
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control. A sample passed the quality control when the 
received ct-value either for the two GNAS loci or the 
DNAJC15 locus reached the threshold no later than 5 
cycles compared to the positive control. All samples 
passed the quality control. For the detection p-value, 
the intensity of the 450k-beadchip probe was 
compared with the intensities of the background 
signal (intensities of negative control probes). Only 
probes with detection p-values < 10-5 were used for 
the analysis. 544 probes had at least 50% samples with 
detection p-values > 10-5. These 544 sites were 
removed from the normalized data. 

 

Table 1. Patient characteristics. 

Patient characteristics  Learning 
set  
(n = 36)  

Optimizatio
n set (n = 
80*)  

Control 
set 
(n = 15)  

Median age 
(range)  

 61 (34-81)  60 (29-86)  62 (49-86)  

DFS  de novo metastatic 8 22% 13 16% 1 7% 
≤ 24 mo  11 31% 20 25% 5 33% 
> 24 mo  17 47% 47 59% 9 60% 

ECOG PS 0-1 35 97% 73 91% 11 73% 
3 or unknown  1 3% 7 9% 4 27% 

Grade 1 -2 + unknown 20 56% 52 65% 9 60% 
3 16 44% 28 35% 6 40% 

ER/PR status  ER or PR positive  26 72% 54 68% 10 67% 
ER and PR negative  9 25% 26 32% 5 33% 

Metastases  visceral  25 69% 58 73% 12 80% 
non-visceral  11 31% 22 27% 3 20% 

Adjuvant 
chemotherapy  

yes  17 47% 52 65% 8 53% 
no  19 53% 28 35% 7 47% 

Line of therapy  first-line  36 100
% 

27 34% 15 100
% 

second-line  -  -  19 24% -  -  
> second-line  -  -  34 42% -  -  

Chemotherapy 
backbone  

paclitaxel or 
docetaxel  

22 61% 64 80% 12  80% 

capecitabine  14 39% 15 19% 3  20% 
Sample type  primary tumor  29 81% 65 81% 8  53% 

metastases  7 19% 15 19% 7  47% 
Outcome 
months 
(95%CI)  

median PFS  8.8 
(5.1-16.6) 

7.8 (6.5-9.3) 5.5 
(4.3-NA)  

median OS  22.6 
(18.4-33.5) 

18.9 
(16.4-21.7) 

11.2 
(7.5-NA) 

Responder/no
n-responder  

R / NR  18 / 18  
(12 / 17)** 

 16  8 / 7  

* One sample was removed because of missing values in the methylation analyses 
** Restricted to samples from the primary tumor 
DFS: disease-free survival; ECOG PS: Eastern Cooperative Oncology Group 
Performance Status; ER: estrogen receptor; PR: progesterone receptor; CI: 
confidence interval; PFS: progression-free survival; OS: overall survival; R: 
responder; NR: non-responder 

 
 Afterwards, Bead Chip analysis was performed. 

To ensure equal signal distributions for each subarray 
(samples) and to remove technical bias, the data 
underwent quantile normalization. Furthermore, a 
peak correction algorithm was applied to the 
normalized data [24, 25]. 

Optimization / Control Set 
The methylation status of CpGs (± 200 base 

pairs) selected in the learning set was determined by 

targeted bisulfite sequencing (TDBS) [26, 27] on an 
IonTorrent PGM System. The MSP-HTPrimer was 
used for assay design following a bisulfite 
sequencing-specific approach, which enriches the 
region of interest independently of the methylation 
state [27]. Primer design resulted in assays with a 
length of 118-292 bp (average: 242 bp). The assays 
designed for bisulfite-assisted genomic sequencing 
PCR (BSP) were used to enrich the respective target 
regions in 96 deaminated samples. The EZ-96 DNA 
Methylation Kit (Zymo Research) was used according 
to manufacturer’s recommendations to deaminate the 
samples. Target enrichment was done by qPCR in 
single PCR reactions, followed by pooling of the 48 
targets sample by sample. Library preparation and 
targeted sequencing for the Ion Torrent PGM was 
done following the manufacturer’s protocol. Briefly, 
after DNA end repair to generate blunt ends, 
individual barcodes and sequencing adapters (Xpress 
Barcode Adapters, Thermo Fisher Scientific) were 
attached to the pooled targets of each sample and 
purified with AMPure XP magnetic beads (Beckman 
Coulter). Generated libraries were quantified using 
the Ion Library Quantitation Kit (Thermo Fisher 
Scientific). The samples were divided in 3 batches of 
32 samples each. For each batch, the barcoded 
samples were pooled equimolar for the template 
preparation by emulsion PCR with the Ion PGM HI-Q 
OT2 KIT on the Ion One Touch 2 Instrument (Thermo 
Fisher Scientific). Enrichment of Ion Sphere Particles 
(ISPs) was done on the Ion One Touch ES Instrument 
(Thermo Fisher Scientific). Quality of ISPs was 
controlled with the Ion Sphere Quality Control Assay 
(Thermo Fisher Scientific) on the Qubit 2.0 
Fluorometer. The 318 Chip Kit v2 (Thermo Fisher 
Scientific) was used to sequence the two sample 
batches with the Ion PGM Hi-Q Sequencing Kit. The 
sequencing reads were aligned to the hg19 reference 
genome and fitted to the 48 designed amplicons. A 
special workflow, which was recently published by 
Pabinger et al. was used to map the reads from the Ion 
Torrent PGM to the reference genome [28].  

Statistical analysis 
All analyses were performed using the statistical 

software environment R including packages survival, 
ChAMP, IMA, ROCR as well as BRB array tools for 
class prediction, and Genesis for hierarchical 
clustering and heatmap visualization. 

Learning Set 
After quantile normalization and type I/II peak 

correction, significantly differentially methylated 
gene loci (CpGs) between R and NR (P < 0.001) were 
identified using a moderated t-test, whereby the 
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variance of individual CpGs is calculated using 
information from all selected CpGs (chip analyses 
methylation pipeline, ChAMP) [29]. Significantly 
differentially methylated gene loci between R and NR 
(P < 0.001; |Δβ|>0.10 or |Δβ|>0.15 as stated) were 
selected and further validated if they showed an AUC 
≥ 0.85 by logistic regression analysis, and/or sites in 
proximity to genes known to be involved in 
angiogenesis or carcinogenesis, and/or were included 
in significantly differentially methylated regions as 
identified by Illumina Methylation Analyzer (IMA) 
[25] or the Probe Lasso method [30].  

Control Set  
Cox regression analysis was used to associate 

methylation with PFS. 

Optimization Set 
Cox regression was used to associate 

methylation with PFS and OS. A hazard ratio was 
calculated for an increase of 10% in methylation level. 
Receiver operating characteristics (ROC) analyses, 
class prediction, and (consistent) differential 
methylation of single CpGs, were used to select CpGs 
predicting R and NR in the optimization set.  

Gene-panel 
Logistic regression (LR) models of a 9-gene 

methylation signature (based on single CpG-ß-values) 
and all combinations of 1 to 4 of the respective CpGs 
were learned from the learning set and then, based on 
leave-one-out cross validation (LOOCV), the model 
with the highest AUC was selected. As an optimal 
cutoff the point in the ROC curve closest to the true 
positive rate of 1 and the false positive rate of 0 was 
used. Only models with less than 35% missing values 
in the optimization set were considered. For 
validation ROC analyses of the logistic regression 
models and a logrank test to analyze the differences in 
PFS and OS between predicted R and NR were 
performed in the learning set and the optimization 
set. 

Multivariate Analysis  
Multivariate Cox regression analyses on PFS and 

OS were performed in the learning set and the 
optimization set on the predicted R and NR (based on 
the 3 CpGs/genes logistic regression model) and 
included the clinicopathological factors length of 
disease-free survival (DFS) between surgery of the 
primary tumor and recurrence, adjuvant chemother-
apy, ECOG performance score, histologic subtype, 
tumor grade, receptor status, location of metastases, 
line of therapy, and origin of the specimen as 
categorical covariates. A Wald test was used to assess 

the significant impact of individual covariates 
(coefficients) and the overall model fit.  

Endpoints 
Progression-free survival (PFS) was defined as 

time from treatment initiation until progression or 
death from any cause, whichever occurred first. 
Overall survival (OS) was defined as time from 
treatment initiation until death from any cause. 
Patients alive (for OS) and who had not experienced 
progression (for PFS) at the data cutoff date, were 
censored at the last follow-up date. Overall response 
rate (ORR) was defined as the proportion of patients 
who achieved a complete or partial response. Because 
of the retrospective nature of the study, no 
categorization according to RECIST was possible. 
Therefore, partial response was defined as a relevant 
reduction in tumor burden as per clinical routine 
assessment and complete response as disappearance 
of all signs of cancer. 

Ethics 
The study was approved by the Ethics 

Committee of the province Salzburg (IRB number: 
415-EP/73/67-2011). 

Results 
The different steps of biomarker discovery are 

summarized in a flow chart in Figure 1. In the 
learning set (n = 36) 417 CpGs showed significantly 
different methylation between R (n = 18) and NR (n = 
18) with a Δβ-value > 0.10 or < -0.10 (P < 0.001). In R, 
206 sites were hypermethylated and 211 sites were 
hypomethylated. To avoid a potential confounding by 
the different sample types (metastases samples are 
more represented in the R group) only samples from 
the primary tumor were further investigated (Figure 
S1). A panel of 48 genes (48 CpGs from Illumina’s 
450k array) allowed a good separation between R and 
NR (odds ratio = 101, P < 0.0001; Figure S2). Details on 
the selection methods and the CpG position for each 
gene are provided in Table S1. These 48 CpGs ± 200 
base pairs (including 361 CpGs in total) were 
sequenced in the optimization and control set, 
respectively. At least one methylated cytosine within 
26 of 48 analyzed regions was significantly associated 
with PFS or OS in the optimization set (n = 80) or had 
an AUC value > 0.7 in a ROC analysis. None of the 
analyzed CpGs showed a significant association of 
methylation levels with PFS in the control set (n = 15) 
in the same direction (Table S2). By using information 
from the optimization set based on consistency of the 
methylation and close genomic positions, the 
methylation panel was further reduced to 9 genes (16 
CpGs) (Table S3). 
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Figure 1. Data analysis workflow. 

 
Going back to the learning set, unsupervised 

hierarchical clustering according to the methylation 
status of these 9 genes could divide patients into 2 
clusters predicting R and NR with an odds ratio of 40 
(P < 0.001) (Figure 2A). A ROC analysis of a logistic 
regression model for this 9-gene methylation 
signature (Table S4) resulted in AUC of 1.0 (AUC 
LOOCV 0.91) in the learning set (Figure 2B). The 
hazard ratios (HR) for predicted R and NR in the 
learning set were 0.18 (95%CI 0.01-NA; P < 0.001) and 
0.24 (95%CI 0.07-0.38; P < 0.001) for PFS and OS, 
respectively (Figure 2C, 1D). In the optimization set 
from the 17 patients with a complete methylation 
profile of all 9 CpGs (genes), 9 patients could be 
predicted as R and 8 patients as NR. Predicted 
responders were associated with longer PFS (median 
PFS 9.5 months vs. 5.3 months; HR 0.61; 95%CI 
0.21-1.60) and longer OS (median OS 26.7 months vs. 
16.8 months; HR 0.56; 95%CI 0.18-NA), however, in 
both cases not to a significant extent (P = 0.29 and P = 
0.21, respectively; Figure S3). To include more 
patients and hence increase the power, the number of 
CpGs was reduced by testing all possible logistic 
regression models including maximal 4 CpGs (genes). 
The best model with a 3-gene signature (Table S4) was 

based on the methylation status of single CpGs in 
MLH1, POLK, and TMBIM6, with an AUC of 0.94 in 
the learning set (Figure 3A) and an AUC of 0.86 in the 
optimization set (Figure 3B). The median PFS for 
predicted R and NR by the 3-gene signature was 19.3 
months and 4.9 months in the learning set (HR 0.26, 
95%CI 0.07-0.35; P < 0.001) and 9.7 months and 5.5 
months in the optimization set (HR 0.29, 95%CI 
0.04-0.21; P < 0.001), respectively (Figure 3C, 3D). The 
median OS was 36.3 months for predicted R and 18.4 
months for predicted NR in the learning set (HR 0.30, 
95%CI 0.13-0.61; P = 0.001) and 22.8 months for 
predicted R and 10.8 months for predicted NR in the 
optimization set (HR 0.36, 95%CI 0.09-0.50; P = 4.8 x 
10-4) (Figure 3E, 3F). The median PFS and OS of 
patients from the optimization set not classified (n=32 
of 80) because of missing values were 7.5 months and 
19.9 months, respectively, lying in between the 
median values for predicted R and predicted NR 
(Figure 3D, 3F). The association of predicted 
responders with longer PFS (P = 0.001 and P < 0.001) 
and longer OS (P = 0.019 and P < 0.001) remained 
significant in multivariate analysis both in the learning 
set and the optimization set (Table 2). 
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Figure 2: (A) Unsupervised hierarchical clustering of the learning set (450k–chip methylation data) according to the methylation status of the 9 genes deduced from 
TDBS-derived methylation data of the optimization set allowed a good separation between R (Cluster A) and NR (Cluster B) with an odds ratio of 40 (P < 0.0001). 
(B) ROC analyses of a logistic regression model for the 9 genes in the learning set resulted in AUC of 1.0 (AUCLOOCV 0.91). (C) Progression-free survival (PFS) and 
(D) overall survival (OS) for predicted R and predicted NR from the learning set according to the 9-gene methylation signature. 

 

Table 2. Multivariate Cox proportional hazards regression model for the association of predicted responders with DFS and OS in the 
learning set (A) and the optimization set (B) 

      PFS  OS 
    n n1 n2   coef HR 95%-CI p p*   coef HR 95%-CI p p* 
(A) Learning set †                 
Predicted responders R vs. NR 36 15 21   -1.755 0.17 0.06-0.51 0.001  

 
 
 
0.002 

  -1.354 0.26 0.08-0.80 0.019  
 
 
 
0.003 

DFS  M1 vs. <24 mo 36 8 11  -1.000 0.37 0.09-1.43 0.150  -0.044 0.96 0.21-4.45 0.960 
>24 mo vs. <24 mo 17 11  -0.107 0.90 0.35-2.32 0.830  0.560 1.75 0.63-4.87 0.280 

Adjuvant chemotherapy yes vs. no 36 18 18  -0.664 0.51 0.17-1.57 0.240  0.250 1.28 0.45-3.63 0.640 
Histology lobular+other vs. ductal 36 8 28  -0.559 0.57 0.14-2.28 0.430  -0.975 0.38 0.09-1.50 0.170 
Tumor grade  3 vs. 1|2|unknown 36 16 20  -0.396 0.67 0.27-1.70 0.400  -0.282 0.75 0.32-1.77 0.520 
Receptor status HR+/HER2- vs. HR-/HER2- 36 26 10  0.030 1.03 0.33-3.26 0.960  -0.749 0.47 0.16-1.42 0.180 
Type of metastases visceral vs. non-visceral 36 25 11  1.039 2.83 0.88-9.11 0.082  1.393 4.03 1.11-14.63 0.034 
Origin of specimen metastasis vs. primary tumor 36 7 29   -0.810 0.45 0.13-1.58 0.210   -0.913 0.40 0.12-1.37 0.140 
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      PFS  OS 
    n n1 n2   coef HR 95%-CI p p*   coef HR 95%-CI p p* 
(B) Optimization set                 
Predicted responders R vs. NR 48 34 14   -1.914 0.15 0.05-0.41 <0.001  

 
 
 
 
 
0.006 

  -1.573 0.21 0.08-0.51 0.001  
 
 
 
 
 
0.009 

DFS  M1 vs. <24 mo 48 9 12  0.524 1.69 0.39-7.27 0.480  0.069 1.07 0.26-4.49 0.930 
>24 mo vs. <24 mo 27 12  -0.056 0.95 0.33-2.73 0.920  -0.710 0.49 0.17-1.45 0.200 

Adjuvant chemotherapy yes vs. no 48 31 17  0.084 1.09 0.45-2.65 0.850  -0.304 0.74 0.30-1.83 0.510 
ECOG PS ≥2 vs. 0|1 48 4 44  1.026 2.79 0.75-10.42 0.130  1.761 5.82 1.50-22.56 0.011 
Histology lobular vs. ductal 48 6 37  1.196 3.31 1.05-10.41 0.041  1.236 3.44 1.07-11.11 0.039 

other vs. ductal 5 37  1.669 5.31 1.73-16.30 0.004  1.160 3.19 1.05-9.70 0.041 
Tumor grade 3 vs. 1|2|unknown 48 17 31  1.518 4.56 1.60-13.01 0.005  1.091 2.98 1.14-7.77 0.026 
Receptor status HR+/HER2- vs. HR-/HER2- 48 30 18  0.778 2.18 0.74-6.43 0.160  0.655 1.92 0.68-5.44 0.220 
Type of metastases visceral vs. non-visceral 48 31 17  0.741 2.10 0.86-5.10 0.100  0.508 1.66 0.67-4.11 0.270 
Line of therapy ≥2nd vs. 1st 48 33 15  -0.356 0.70 0.31-1.57 0.390  0.135 1.14 0.53-2.47 0.730 
Origin of specimen metastasis vs. primary tumor 48 11 37   0.138 1.15 0.42-3.16 0.790   -0.150 0.86 0.36-2.08 0.740 
* overall p-value using Wald test  
† “ECOC PS” and “line of therapy” were not included in multivariate analysis in the learning set because all patients had ECOG PS 0 or 1 and all were treated 1st-line. 
DFS: disease-free survival; ECOG PS: Eastern Cooperative Oncology Group Performance Status; ER: estrogen receptor; PR: progesterone receptor; CI: confidence interval; 
PFS: progression-free survival; OS: overall survival; coef is the coefficient in the Cox regression model for the respective variable; HR: hazard ratio (=exp(coef)); R: responder; 
NR: non-responder 

 

Discussion 
To our knowledge this is the first DNA 

methylation study investigating efficacy prediction 
for bevacizumab in cancer, especially in breast cancer 
patients. Using FFPE-derived DNA from primary 
tumor sections, we generated both a 9-gene and a 
3-gene methylation signature with a high predictive 
value for bevacizumab efficacy in patients with MBC.  

Single molecular alterations like estrogen 
receptor expression or HER2 overexpression are 
routinely used to estimate prognosis and treatment 
efficacy in breast cancer. Other alterations like 
BRCA1/2 mutation, HER2 mutation or ESR1 
mutation are on the verge of getting clinically 
meaningful. Single gene approaches, however, have 
several limitations: techniques like immunohisto-
chemistry have a low reproducibility, they allow only 
a rough classification into different subgroups and 
they ignore other genes affecting the same biologic 
pathway. Gene expression studies in breast cancer 
have demonstrated that mRNA signatures can predict 
different biological behavior, prognosis and therape-
utic success more effectively than singe gene 
evaluations [31-34]. Such signatures developed by 
genome-wide approaches do not only reflect discrete 
differences in specific mRNA expressions but also the 
complex interplay between different genes, which is 
part of the so-called interactome. In a similar way, 
DNA methylation profiles, representing gene 
regulation on an epigenetic level, can mirror the 
molecular state of a cell [35]. Probably, the complex 
gene interactions can be even better represented since 
DNA methylation regulates gene networks rather 
than single genes [36]. In addition, using DNA instead 
of RNA for profiling has several advantages: 
compared to RNA or proteins, DNA and the DNA 

CpG-methylation profile is a much more robust 
analytical material [26, 37]. Furthermore, DNA 
methylation causes a stable long-term programming 
of the genome [38], whereas transcription activity is 
much more influenced by transient signals. Therefore, 
DNA methylation best fulfills prerequisites for 
developing robust biomarkers [26, 37]. 

Several proteins involved in angiogenesis like 
VEGF-A, VEGF-R2 (KDR) and VEGF-R3 (FLT4) are 
known to be silenced by promoter hypermethylation. 
Nevertheless, we used an unsupervised whole 
genome approach for biomarker generation because 
resistance or extraordinary sensitivity to anti-VEGF 
therapy are not automatically driven by genes directly 
involved in angiogenesis [39]. Confining biomarker 
research to predefined genes based on a biological 
rationale carries the danger of missing crucial 
information. VEGF-A plasma levels, for example, 
showed promising early results [40, 41] but failed 
when prospectively validated [10].  

Furthermore, for the same reason, we did not 
concentrate on methylation sites within specific 
genomic regions like promotors or CpG island shores. 
The impact of the exact location of DNA methylation 
on gene expression is still not fully understood [42] 
and seems to vary between molecular subtypes of 
breast cancer [43]. Therefore, exclusion of methylation 
sites apart from promotors or CpG island shores 
could reduce the success rate of methylation 
biomarkers. Furthermore, non-protein-coding DNA 
like DNA transcribed into microRNAs seems to be 
regulated and dysregulated by methylation as well 
[44], making the regulatory machinery even more 
complex. Accordingly, most of the genes of our 9-gene 
signature (PKNOX2, POLK, UNC119, SNRPN, 
TMBIM6, MLH1 and GNAS) are not linked to 
angiogenesis yet. 
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Figure 3: (A) ROC analyses of a logistic regression model for the 3 genes in the learning set resulted in AUC of 0.94 and (B) in the optimization set resulted in AUC 
of 0.86. Progression-free survival (PFS) for predicted R and predicted NR according to the 3-gene methylation signature in the learning set (C) and in the optimization 
set (D), as well as overall survival (OS) in the learning set (E) and the optimization set (F). 

 
In our analysis, the predicted difference in OS 

between patients categorized as R and NR according 
to the methylation pattern is more than 1 year in both 
cohorts, with a risk reduction for death of more than 

60% (HR 0.30 and 0.36 in learning set and optimiz-
ation set, respectively). When scored according to the 
European Society for Medical Oncology Magnitude of 
Clinical Benefit Scale (ESMO-MCBS) [45], such a trial 
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result would result in a score of 4 out of 5 points (-1 
point because no data on quality of life are available), 
while the approval study E2100 randomizing between 
paclitaxel plus bevacizumab and paclitaxel alone [4], 
reached 2 points only [45]. Knowing that none of the 
randomized phase III trials in HER2 negative breast 
cancer comparing bevacizumab plus chemotherapy 
with chemotherapy alone showed any effect on 
overall survival [1, 3-5, 10, 46, 47], such a survival 
difference would, if confirmed, certainly influence 
clinical practice. The risk reduction for progression or 
death (PFS) was more than 70% in both cohorts (HR 
0.26 and HR 0.29, respectively). Notably, the absolute 
median PFS and OS values in the two cohorts differed 
significantly. The main explanation for this 
observation is that 46% of patients in the optimization 
set were treated in second-line and beyond. 
Furthermore, the two cohorts were not matched 
according to other factors known to influence 
outcome (e.g., adjuvant chemotherapy, chemotherapy 
backbone, location and number of metastases, etc.). 
However, a risk reduction in PFS of this magnitude 
was never observed in clinical trials investigating 
bevacizumab efficacy (HR ranging between 0.60 and 
0.69 in first-line trials [3-5, 10]) and the HR were 
nearly identical in the two cohorts of patients. If 
confirmed, this approach could lead to more effective 
and cost-efficient use of bevacizumab in the clinical 
setting. 

This study has several limitations. First of all, no 
clear validation of the 48-gene-signature generated in 
the learning set was possible, because low DNA 
content of some samples prevented the analysis of all 
selected CpGs in our validation set (therefore called 
optimization set). Second, the control set, including 
patients treated with first-line chemotherapy without 
bevacizumab, was very small. Third, it is a 
single-institution, uncontrolled study, which limits 
any firm conclusion about the utility of the 
methylation signatures. A further caveat might be that 
two different techniques were used in the learning 
and control/optimization sets: bead chip technology 
vs. targeted bisulfite sequencing. However, previous 
analyses have shown that generally methylation 
scores obtained by Illumina 450K analysis replicate 
well using targeted sequencing approaches [28]. In 
addition, this technical switch allowed a selection of 
genes that can be robustly analyzed by targeted 
bisulfite sequencing in archival FFPE samples, which 
is an important issue for biomarkers when transferred 
into the clinic.  

In conclusion, this is the first study providing 
predictive DNA methylation signatures for 
bevacizumab efficacy in MBC: a 9-gene as well as a 
3-gene-methylation signature could reproducibly 

discriminate between responders and non-responders 
to a bevacizumab-based therapy in two different 
patient sets. Before such a signature can be 
implemented in treatment decision-making, these 
data have to be validated in larger cohorts, ideally in 
tissue samples from a prospective trial. To 
demonstrate clinical utility according to the roadmap 
for development of omics-based tests defined by the 
United States Institute of Medicine (IOM) [48], a 
prospective retrospective study is planned using 
DNA samples from a randomized phase III trial 
comparing chemotherapy plus bevacizumab with 
chemotherapy alone. 
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