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Abstract 

Objective: Hepatocellular carcinoma (HCC) is a highly heterogeneous disease with a dismal prognosis. 
However, driver genes and prognostic markers in HCC remain to be identified. It is hoped that in-depth 
analysis of HCC genomes in relation to available clinicopathological information will give rise to novel 
molecular prognostic markers.  
Methods: We collected genomic data of 1,061 HCC patients from previous studies, and performed integrative 
analysis to identify significantly mutated genes and molecular prognosticators. We employed three MutSig 
algorithms (MutSigCV, MutSigCL and MutSigFN) to identify significantly mutated genes. The GISTIC2 algorithm 
was used to delineate focally amplified and deleted genomic regions. Nonnegative matrix factorization (NMF) 
was utilized to decipher mutational signatures. Kaplan-Meier survival and Cox regression analyses were used to 
associate gene mutation and copy number alteration with survival outcome. Logistic regression model was 
applied to test association between gene mutation and mutational signatures.  
Results: We discovered 11 novel driver genes, including RNF213, VAV3 and TNRC6B, with mutational 
prevalence ranging from 1% to 3%. Seven mutational signatures were also identified in HCC, some of which 
were associated with mutations of classical driver genes (e.g., TP53, TERT) as well as alcohol consumption. Focal 
amplifications of TERT and other druggable targets, including AURKA, were also revealed. Targeting AURKA by 
a small-molecule inhibitor potently induced apoptosis in HCC cells. We further demonstrated that HCC 
patients with TERT amplification displayed shortened overall survival independent of other clinicopathological 
parameters. In conclusion, our study identified novel cancer driver genes and prognostic markers in HCC, 
reiterating the translational importance of omics data in the precision medicine era. 
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Introduction 
Hepatocellular carcinoma (HCC) ranks the sixth 

most common cancer and the second leading cause of 
cancer mortality worldwide with a 5-year survival 
rate of about 17% [1]. No effective systemic treatment 

is as yet available for advanced HCC except sorafenib, 
which modestly extends the median overall survival 
from 7.9 months to 10.7 months [2]. In recent years, 
whole-genome and exome sequencing studies have 
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revealed the mutational landscape of HCC. These 
studies expanded the list of HCC-related drivers, 
including the well-known TP53, CTNNB1 and 
ARID1A, and constitutive activation of TERT via 
hotspot promoter mutations and/or amplifications [3, 
4]. Such efforts also led to the identification of 
potential druggable targets, such as actionable 
activated mutations in JAK1 [5]. However, the number 
of tumor samples analyzed in these studies is still far 
from optimal, leaving novel HCC driver genes to be 
discovered. In particular, driver genes of 
low-to-intermediate mutation frequency are expected 
to show up if more samples are added [6]. Moreover, 
the mutation spectrum bears information on 
mutagenic factors (e.g., ultraviolet in skin cancer and 
smoking in lung cancer) that have acted over the 
course of tumorigenesis [7, 8]. Our recent study also 
discovered the association between TpCpW 
mutations and APOBEC expression in gastric cancer 
[9]. It is expected that, by deciphering the mutation 
spectrum, the mutational processes operative in HCC 
and their relationship with environmental and host 
factors will be delineated. 

Stratification of cancer patients with distinct 
clinical outcomes based on molecular features is an 
important goal of precision medicine. The prognosis 
of HCC is heterogeneous with the median survival 
following diagnosis ranging from approximately 6 to 
20 months. Currently, HCC prognostication mainly 
relies on clinicopathological staging although 
molecular features, such as TP53 mutations and 
expression of cellular proliferation markers, have 
been reported to predict survival [10–12]. With the 
advent of next-generation sequencing, utilization of 
“big data” for molecular typing now becomes feasible. 
Our group previously reported on two molecular 
subtypes of gastric cancer with distinct prognostic 
outcomes based on mutation profiles of driver genes 
[9] and devised a five-gene mutational signature in 
colorectal cancer that could predict overall survival 
independent of tumor-node-metastasis (TNM) 
staging [13]. It is hoped that more in-depth analysis of 
HCC genomes in relation to available clinico-
pathological information will give rise to novel 
molecular prognostic markers. 

The purposes of this study are to identify novel 
driver genes and genetic prognosticators in HCC 
through integrative analysis of mutational profiles in 
association with clinicopathologic data from all 
previous related genomic studies [3–5, 14, 15] and the 
Cancer Genome Atlas Network. We also examined 
mutational signatures of HCC in relation to known 
endogenous and exogenous factors. 

Results 
A compendium of significantly mutated genes 
in HCC 

A total number of 190,099 somatic mutations 
from 1,061 HCC tissues were obtained, including 
3,750 nonsense, 59,990 missense, and 2,465 splice-site 
mutations together with 5,533 short insertions/ 
deletions. On average, there are 2.11 mutations per 
mega-base (Mb). To identify significantly mutated 
genes (SMGs) that are linked to HCC development, 
MutSigCV, MutSigCL and MutSigFN were employed 
to identify genes whose mutations are positively 
accumulated, clustered at hotspot, and of functional 
importance [16]. In total, 43 SMGs that were mutated 
in ≥1% of HCCs were identified, including 32 
reported HCC-related genes (e.g., TP53, CTNNB1, 
ARID1A, ARID2, AXIN1, TSC2) and 11 novel SMGs 
(e.g., RNF213, VAV3, TNRC6B, MACC1, LAMA3, 
GPAM) (Figure 1A and Table S1). In particular, five 
genes, namely TP53, CTNNB1, NFE2L2, HNF1A and 
CDKN2A, were identified as significantly mutated by 
all three algorithms. To uncover potential genetic 
interactions among SMGs in HCC development, 
co-occurrence and mutual exclusivity of mutations 
among 43 SMGs were analyzed with MuSIC [17] and 
MEMo [18]. While none of the pairs displayed 
co-occurrence, sixteen pairs of SMGs were found by 
MuSIC to be mutually exclusively mutated (Table 
S2), including CTNNB1 and TP53 (p < 0.0001), 
CTNNB1 and AXIN1 (p = 0.0003), CTNNB1 and RB1 (p 
= 0.0005) and RPL22 and TP53 (p = 0.0023). With 
MEMo, we also identified four significant modules 
preferably targeting Wnt/β-catenin, p53 signaling 
and cell cycle circuits (Table S3), which was further 
confirmed by significantly mutated pathway analysis 
(Table S4). In addition, we used an integrative model 
proposed by Zhao et al. to incorporate mutation, focal 
copy number change and expression data from a 
TCGA liver cancer study to identify mutated driver 
pathways [19]. The result showed that modules 
involving TP53, CTNNB1 and AXIN1 are significantly 
altered (Table S5). 

Promoter mutations in HCC  
Promoter mutations can alter transcription factor 

binding behaviors, such as creating new binding sites 
or abrogating existing binding sites. Consistent with a 
recent report [20], we found that TERT, which 
encodes the telomerase reverse transcriptase, was 
most significantly enriched with promoter mutations 
in HCC (Figure 1B). Apart from TERT, we identified 8 
other genes with significant enrichment for promoter 
mutations (Figure 1C and Figure S1), including 
EBNA1BP2 (encoding a binding partner of c-Myc) 
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[21], ASAP3 (encoding a GTPase-activating protein 
that functions in cell migration and invasion) [22] and 
TFPI2 (encoding a proteinase inhibitor epigenetically 
silenced in multiple human cancers) [23]. 

Pathways altered by somatic mutations in 
HCC 

By mapping SMGs and other well-known genes 
to cell signaling pathways, we observed that several 

pathways were frequently genetically altered in HCC 
(Figure 2), including p53 signaling (40.0%), 
Wnt/β-catenin signaling (30.0%), cytokine/growth 
factor receptor signaling (28.7%), and chromatin 
remodeling/transcriptional regulation (24.4%). 
Interestingly, genes involved in oxidative stress 
response (6.7%) and RNA processing (5.7%) were also 
frequently altered by somatic mutations.  

 

 
Figure 1. Significantly mutated genes (SMGs) and promoter-mutated genes identified in HCC. (A) SMGs that are mutated in ≥1% of HCC (n = 1,061) 
are listed. Mutation types are distinguished by different colors with 11 novel SMGs highlighted in red. (B) Mutation density plot of TERT. (C) Bar-plot representation 
of enrichment scores for genes enriched for promoter mutations with q values < 0.1. 
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Figure 2. Signaling pathways altered by somatic mutations in HCC. Red and blue colors denote SMGs with predicted activating and inactivating mutation, 
respectively. Genes in white color are not SMGs but have key roles in tumorigenesis. Druggable targets are marked with red stars. Note: For TERT, promoter instead 
of exomic region mutation frequency is shown. 

 

Copy number alterations in HCC 
Aside from point mutations and short 

insertions/deletions, we used GISTIC2 to analyze 
DNA copy number alterations (CNAs) based on 
segmentation data obtained from TCGA to delineate 
genome-wide focal DNA gain and loss [24]. 
Significant arm-level alterations include gain of 5q, 
6p, 7p, 7q, 8q, 17q, 20p and 20q, and loss of 4p, 4q, 6q, 
9p, 9q, 10q, 14q, 16p and 21q. Focal amplifications in 
regions containing canonical cancer genes include 
8q24.21 (MYC), 11q13.3 (CCND1), 19q12 (CCNE1), 
7q31.2 (MET), 9p24.2 (JAK2), as well as 5p15.33 
(TERT), whereas focal deletions involved 13q14.2 
(RB1), 9p21.3 (CDKN2A) and 10q23.31 (PTEN) (Figure 
3). Tumor ploidy estimated by ABSOLUTE [25] 
revealed that a large proportion of HCCs exhibited 
genome doubling (Table S6).  

Mutated genes and CNAs with prognostic 
significance in HCC 

The potential association between mutation 
status of the identified SMGs and clinicopathological 
information of HCC patients was examined. TP53 is 
the most prevalently mutated gene in HCC among all 
SMGs. We found that its mutations were significantly 
associated with poorer overall survival of HCC 
patients (Figure S2; Log-rank test, p = 6.6×10-6), which 

is consistent with previous studies [11, 12]. TP53 
mutations were also associated with more advanced 
tumor grade (Odds Ratio (OR) = 2.17, Fisher's exact 
test, p = 0.0003). Apart from TP53 mutation, we found 
that TERT promoter mutations were significantly 
correlated with poorer overall survival in HCC 
(Figure 4A; p = 2.81×10-5), more advanced tumor 
grade (OR = 2.5; p = 1.02×10-5) and disease relapse (OR 
= 4.76; p = 2.33×10-12). Mutations of other genes were 
not significantly associated with survival in our 
analysis. For CNAs at both large segment- and 
focal-levels, we observed that three amplification 
regions (5q15.33, 19q13.11 and 20q13.13) and three 
deletion regions (15q21.1, 17q11.2 and 17q12) were 
significantly associated with shortened overall 
survival of HCC patients, respectively (Figure 4B and 
Figure S3). In particular, amplifications of 5q15.33 
were significantly associated with increased mRNA 
levels of TERT (Figure 4C), which was located in the 
amplified region. Importantly, amplification of TERT 
was associated with shortened overall survival of 
HCC patients (Figure 4D) independent of other 
clinicopathological parameters, including age, gender 
and TNM staging (Figure 4E). Amplifications or 
deletions of individual genes at other regions were 
not associated with altered survival of HCC patients. 
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Mutational signatures operative in HCC 
To elucidate mutagenic processes associated 

with hepatocarcinogenesis, computational framework 
as proposed by Alexandrov et al. with modifications 
was used to define mutational signatures of HCC [8]. 
We found that nucleotide changes of C>T/G>A, 
T>C/A>G and C>A/G>T dominated the mutation 
spectrum (Figure 5A). Seven mutational signatures 
(Figure 5B) were extracted from 1,061 HCCs, each of 
which contributed to different proportion of 
mutations (Figure 5C). Kernel principal component 
analysis revealed that mutational signatures 
corresponding to different studies were admixed 
(Figure 5D), suggesting minimal impact of batch 
effect on mutational signatures. Next we applied 
Bayesian-based general linear model to regress 
mutation exposures with etiological factors, tumor 
grade and mutation status of six major SMGs. We 
found that Signature 6 was positively correlated with 
TERT mutations whereas Signatures 2 and 3 were 

associated with alcohol consumption. Several 
signatures were also negatively correlated with TP53 
mutations (Figure 5E and Figure S4). However, none 
of the seven signatures was associated with hepatitis 
B virus (HBV) infection, hepatitis C virus (HCV) 
infection or non-alcoholic fatty liver disease. In 
comparison with recently updated COSMIC 
mutational signatures [8], we found that Signatures 2, 
3, 5 and 6 exhibited high similarity with COSMIC 
Signatures 16, 19/23, 24 and 22, respectively, and are 
potentially associated with HCC. For example, 
Signature 5 is known to be associated with aflatoxin 
exposures. Cosine similarities among mutational 
signatures obtained from our study and COSMIC are 
provided in Figure S5. In addition, we noted that 
Signature 6 (dominated by T>A at CpTpG) is 
prevalent in our study but absent in a study reported 
by Fujimoto et al.24, whereas the other signatures 
exhibited similar base substitution patterns. We were 
not able to calculate signature-wise cosine similarity 

 

 
Figure 3. Genome-wide focal amplification (red) and deletion (blue) peaks identified in HCC. 
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due to the unavailability of mutation signature data 
from Fujimoto et al.’s study. 

Druggable target amplifications in HCC 
We used the TARGET database to identify 

potential druggable SMGs (Figure 2) and amplified 
genes (Figure 6A). Results showed that epidermal 
growth factor receptor inhibitors (e.g., Gefitinib) 
might be beneficial for 48.4% of HCC patients by 
targeting amplified EGFR, MET, MAPK1, MAPK3 and 
CRKL. Crizontinib and vemurafenib may also benefit 
31.4% and 22.5% of HCC patients with BRAF and 
ERBB2 amplification, respectively. Of particular 
interest, AURKA was amplified in about one-third of 
HCC, which might be susceptible to the small- 
molecule inhibitor alisertib. 

Validating AURKA as a druggable target in 
HCC 

To confirm AURKA as druggable target in HCC, 
we first determined its mRNA expression in 10 HCC 

cell lines and 3 normal liver tissues. Semi-quantitative 
reverse-transcription PCR revealed that AURKA was 
strongly expressed in HCC cell lines but not normal 
liver tissues (Figure 6B). Importantly, the AURKA 
inhibitor alisertib strongly inhibited the cell viability 
(Figure 6C) and colony-forming ability (Figure 6D) of 
two HCC cell lines, namely HepG2 and Hep3B, at low 
micromolar concentrations. Flow cytometry assays 
also showed that alisertib induced apoptosis in both 
HepG2 and Hep3B cells (Figure 6E). In this regard, 
alisertib potently inhibited the auto-phosphorylation 
of AURKA on Thr288 within the activation loop 
(Figure 6F), which is an indicator of AURKA activity. 
We also tested the effects of alisertib on 2 additional 
HCC cell lines (SNU449 and SNU182) with more 
mesenchymal phenotypes. Similar to HepG2 and 
Hep3B, alisertib strongly reduced cell viability and 
colony-forming ability and markedly induced 
apoptosis. Alisertib also strongly inhibited the 
migration of SNU449 and SNU182 cells (Figure S6). 

 

 
Figure 4. Prognostic significance of TERT promoter mutations and amplification in HCC. (A) Kaplan-Meier survival analysis with respect to TERT 
promoter mutation status. (B) Amplification of 5q15.33 was associated with shortened overall survival in HCC patients. (C) Significant positive correlation between 
TERT Gistic score and mRNA expression levels in TERT-amplified samples. (D) HCC patients with TERT amplifications exhibited poorer overall survival. (E) 
Multivariate Cox regression analysis of HCCs with or without TERT amplification in relation to age, gender, race, HBV status and TNM staging. 
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Figure 5. Mutation signatures operative in HCC and their correlation with gene mutations and alcohol consumption. (A) Lego plot of mutation 
patterns in 1,061 HCC samples. Single-nucleotide substitutions are divided into six categories with 16 surrounding flanking bases. Inset pie chart shows the 
proportion of 6 categories of mutation patterns. (B) Seven mutational signatures were extracted from HCC. (C) Proportion of 7 mutation signatures in individual 
HCC samples. (D) Kernel principal component analysis was conducted for mutational signatures with HCC samples from different studies labeled with different 
colors. (E-G) Significant association of mutation signatures with (E) TERT mutation status, (F) TP53 mutation status and (G) alcohol consumption were identified. 
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Discussion 
In this study, we performed a systematic 

analysis of 1,061 HCC genomes, which is the largest 
number of HCC samples for integrative analysis thus 
far, and correlated our analysis with clinical features. 
The main findings that emerged from our study 
include: (1) Identification of new SMGs and genes 
enriched with promoter mutations; (2) Association 
between TERT amplification/promoter mutations 
and poorer overall survival in HCC; (3) Correlation of 
HCC mutation signatures with alcohol consumption 
and mutations of canonical cancer genes; (4) 
Identification of druggable targets in HCC, including 
AURKA, whose inhibition was experimentally 
confirmed to induce apoptosis in HCC cells. 

Through three different MutSig algorithms, we 
rediscovered 32 reported SMGs and identified 11 
novel SMGs that are mutated in ≥1% of HCC. 
Importantly, several newly identified SMGs, 
including VAV3 [26], MACC1 [27], GPAM [28] and 
DYRK1A [29], have been reported to take part in the 
pathogenesis of other cancer types. RNF213, which 
was mutated at the highest frequency (2.7%) among 
the 11 novel SMGs, encodes an E3 ubiquitin-protein 
ligase that is known to degrade NFAT1 [30], a 
transcription factor that can in turn activate MDM2 
for promoting p53 degradation [31]. VAV3, another 
novel SMG that was mutated in 2.3% of HCC, has also 
been shown to promote prostate cancer metastasis 
through activating Rac1 [32]. It is estimated that the 
current sample size has a high power (98%) to identify 
new SMGs mutated in 3% of HCC samples. It is 
therefore unlikely that further increasing sample size 
will lead to identification of novel high-frequency 
(>3%) drivers. However, the statistical power reduces 
to 66% and 6% for SMGs mutated in 2% and 1% of 
samples, respectively. Based on a background 
mutation rate of 2.11 mutations per Mb in HCC from 
this study, 4,200 cases are required to identify SMGs 
in 1% of patients with 80% power. These estimations 
underscore the importance of a larger sample size to 
discover more drivers with low-to-intermediate 
mutation frequencies (1-3%) in HCC.  

A potential limitation of this study is that results 
might be confounded by batch effect, which is 
common for meta-analysis of genomic data. To 
address batch effect in SMG identification, we used 
stringent criteria (e.g., filtering out cohort-biased 
genes) to get rid of artifacts. However, carcinogenesis 
is closely related to environmental factors, which may 
confer unique selective pressure over specific driver 

genes. Thus de facto cohort-specific drivers might have 
been removed from the final SMG list.  

Pertinent to clinical practice, our analysis 
showed that genetic alterations of TERT and TP53 
were correlated with poorer overall survival in HCC 
patients. Concordantly, previous studies have shown 
that TP53 mutations were associated with shortened 
survival and disease recurrence in HCC [11, 12]. Our 
analysis further identified TERT amplification/ 
promoter mutations as a novel unfavorable 
prognosticator in HCC. TERT promoter mutations 
have been reported to create binding sites for E- 
twenty-six (ETS) transcription factors [33], leading to 
TERT upregulation in different cancer types [20, 34, 
35]. However, it is noteworthy that TERT promoter 
mutation frequency might be underestimated in this 
study due to unavailability of mutation status outside 
exomic regions obtained from TCGA level 3 dataset 
and incomplete capture/sequencing.  

Except Signature 6, the mutational signatures 
extracted from our study and those reported by 
Fujimoto et al. [29] showed similar base substitution 
patterns. However, there are still subtle variations 
between these two studies probably because we used 
only exomic mutations while Fujimoto et al. used all 
mutations identified from whole-genome sequencing 
data [15]. In addition, our study incorporated 
genomic data from different geographic areas, and 
each may have its own distinct mutation signatures, 
therefore leading to identification of Signature 6 in 
our study. 

Our discovery of novel actionable targets, 
including AURKA, has strong therapeutic 
implications for HCC. Amplification of AURKA is 
oncogenic and has been observed in colorectal, 
gastric, prostate, and breast cancers [36]. Importantly, 
the AURKA inhibitor alisertib is currently being 
assessed in multiple Phase II and III clinical trials for 
hematological malignancies and solid tumors (HCC 
not included). Based on our findings, HCC patients, 
especially those with AURKA amplification, might 
also benefit from alisertib.  

In conclusion, through integrative analysis of 
1,061 HCC genomes to increase statistical power, 11 
novel driver genes with mutational prevalence 
ranging from 1% to 3% were identified. Novel 
association between TERT amplification and 
shortened overall survival in HCC patients was also 
identified. Our findings not only shed new light on 
the genetic basis of HCC, but may also be leveraged to 
accelerate the interpretation of cancer genome data for 
prognostication and personalized intervention. 
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Figure 6. Amplified druggable targets and experimental validation of AURKA. (A) Heatmap representation of amplified druggable targets and 
corresponding inhibitors are shown. (B) Semi-quantitative PCR was performed to detect AURKA mRNA levels in HCC cell lines and normal liver tissues. ACTB was 
used as internal control. (C) HepG2 and Hep3B cells were exposed to varying concentrations of alisertib for 48 h. Cell viability was assessed by MTT analysis. Inset: 
IC50 values of alisertib in HepG2 and Hep3B cells. (D) Colony formation assay of HepG2 and Hep3B cells treated with varying concentrations of alisertib for 48 h. (E) 
Apoptosis was detected by flow cytometric analysis of HCC cells double-stained with 7-AAD and annexin V. Percentages of apoptotic cells (the lower and upper right 
quadrants) are indicated. (F) Western blot analysis of phosphorylation of AURKA at T288, total AURKA and ACTB. Data are presented as mean ± SEM of at least 
three independent experiments. *p < 0.05; **p < 0.01, significantly different from control. 
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Materials and Methods 
Genomic data 

All point mutations and short insertions/ 
deletions were collected from ICGC Data Release 18 
and supplementary information of previous studies 
representing 1,069 HCC patients of 4 geographically 
different origins [3–5, 14, 15]. Eight hyper-mutated 
samples (0.75%) with ≥ 500 somatic mutations in 
exomic regions were discarded to avoid their undue 
effects on genomic analysis. Duplicated mutations 
were merged to keep only one record. All somatic 
mutations were examined in a panel of 442 sequenced 
normal samples in which variations present in this 
panel were removed. Copy number change and gene 
expression data were obtained from TCGA Data 
Portal. 

Identification of significantly mutated genes 
We identified significantly mutated genes 

(SMGs) with three algorithms using MutSigCV, 
MutSigCL and MutSigFN. MutSigCV quantifies 
significance of non-silent mutations in a gene based 
on background mutation rate estimated by silent 
mutations with other confounding covariates taken 
into account. MutSigCL and MutSigFN measure the 
significance of hotspot mutations and functional 
impacts of mutations, respectively. In MutSigFN 
analysis, CADD and Polyphen2 scores available from 
dbNSFP database were separately used [37]. For 
efficient computation, a two-step permutation was 
carried out, in which 999 times were performed in the 
first step to define candidate SMGs (i.e., those with p < 
0.05) followed by extensive permutation with 
1,000,000 times. We then combined p values obtained 
from the 1st and 2nd steps. p values were then false 
discovery rate (FDR)-corrected (q values) using the 
method of Benjamini and Hochberg. For the final 
analysis of SMGs, we applied additional filtering 
criteria to eliminate possible false positives that may 
result from the batch effect via combining somatic 
mutations from different studies. A gene was 
considered to be a SMG if the following conditions 
were satisfied: (1) statistically significant (q value < 
0.1) by at least one of the MutSig algorithms; (2) 
expressed in the TCGA pan-cancer dataset, human 
cancer cell lines and/or reported in previous studies 
[6, 38–41]; (3) mutated in at least 3 out of 7 cohorts; (4) 
mutational prevalence comparable among different 
cohorts. This produced a final list of 43 SMGs with 
mutational prevalence ≥1%. 

Identification of genes enriched with promoter 
mutations 

The promoter of a gene is defined as the region 

0-3 kb upstream of its transcription start site. To 
control for heterogeneity of background mutation 
rates, mutation context and DNA replication time 
were taken into account. Mutation contexts are 
classified into 6 categories, including C>T mutation in 
CpG dinucleotide (CpG>T), mutation of C in TpC 
(C>mut), A>T mutation in TpA (TpA>T), C>T and 
C>A mutations outside CpG, TpC and TpA, as well as 
other mutations. The overall background and 
observed number of mutations in category i were 
calculated and denoted as Ni and ki, respectively. The 
latter can be modelled by a binomial distribution with 
background mutation rate in category i as: 

pi = Ni / ki 

ki ~ dbin(pi, Ni) 

The Bayesian inference can be used to estimate pi 
with a beta prior distribution for pi: 

pi ~ dbeta(a, b), where a and b are hyper parameters 

Given that DNA replication timing is associated 
with substantially varying background mutation 
rates, we clustered genomic regions into 4 distinct 
clusters, denoted as C1-4, based on the distribution of 
DNA replication timing data (Figure S7) obtained 
from a previous study [42]. Estimation of pi was 
performed separately for C1-4. Bayesian inference of 
pi was performed with JAGS and R package R2jags. 

After pi is available, the expected number of 
promoter mutations in a gene from genomic region Cj 
(where j = 1, 2, 3 and 4) is modelled as a Poisson 
distribution with expected number of mutations: 

𝜆𝜆𝐶𝐶𝐶𝐶 = �𝑝𝑝𝑖𝑖

6

𝑖𝑖=1

×  𝑁𝑁𝑖𝑖 

A p value was calculated for each gene and 
subjected to multiple hypothesis test correction. A 
promoter mutation-enriched gene was selected if its q 
value was less than 0.1 and considered to be 
expressed in previous studies [38][39]. 

Deciphering mutation signatures 
A computational framework as previously 

described was used to extract mutation signatures 
that are operative in HCC [43]. Since the 
divergence-based update negative matrix 
factorization (NMF) algorithm used by default did not 
give compelling results, the multiplicative update 
algorithm was used, which produced higher stability 
along with lower reconstruction error at the same 
number of mutation signatures (Figure S8). 

Survival analysis 
Association of mutation status with patients’ 

overall survival was assessed by Kaplan-Meier 
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survival curve and the log-rank test. Univariate and 
multivariate Cox model were constructed to estimate 
hazard ratios for prognosticators with a p value less 
than 0.05 in the log-rank test. All these analyses were 
performed with R survival package. 

Cell culture and AURKA inhibitor 
All human HCC cell lines were purchased from 

American Type Culture Collection (ATCC, 
Washington, DC, USA) and cultured in Dulbecco’s 
Modified Eagle’s Medium (DMEM, GIBCO-BRL) 
medium supplemented with 10% fetal bovine serum 
(FBS), 100 U/mL penicillin, and 100 μg/mL 
streptomycin in humidified air at 37°C with 5% CO2. 
Alisertib (MLN8237) was purchased from 
MedChemExpress (New Jersey, USA). 

RNA extraction and semi-quantitative 
reverse-transcription-PCR 

Total RNA was extracted from HCC cell lines 
and tissue samples using Trizol reagent (Invitrogen, 
Carlsbad, CA). Complementary DNA was 
synthesized from total RNA using ABITM reverse 
transcription kit and (Applied Biosystems, Foster 
City, CA). For semi-quantitative reverse- 
transcription-PCR, AURKA and ACTB were 
amplified with AmpliTaq Gold DNA polymerase 
(Applied Biosystems) using the following primers: 
AURKA forward, 5′-GGAATATGCACCACTTGGA 
ACA-3′; AURKA reverse, 5′-TAAGACAGGGCATTT 
GCCAAT-3′; ACTB forward, 5′-CATCCACGAAACT 
ACCTTCAACTCC-3′; ACTB reverse, 5′-GAGCCGCC 
GATCCACACG-3′.  

Functional assays 
Cell viability was assayed using 

3-(4,5-dimethylthiazolyl)- 2,5-diphenyltetrazoliumbr-
omide (MTT) assays (Sigma-Aldrich, Carlsbad, CA, 
USA). Briefly, cells were plated in 96-well plates (1,500 
cells per well). After 24 h, cells were treated with 
various concentrations of alisertib. After 48 h, 0.5 
mg/mL MTT was added to each well. Four hours 
later, cells were lysed with dimethyl sulfoxide 
(DMSO), and absorbance rates were measured at 570 
nm using a microplate reader (Bio-Rad, Hercules, CA, 
USA). For colony formation assay, cells were 
trypsinized to single cell suspensions and were 
seeded in 12-well plates at 1000/well. After 14 days 
culture in DMEM medium, the colonies were stained 
with Crystal Violent solution and the number of 
colonies was counted. Cell migration was measured 
with Transwell insert chambers (ThermoFisher, Hong 
Kong, China). Phycoerythrin (PE) Annexin 
V/7-Amino-Actinomycin (7-AAD) double staining 
(Apoptosis Detection Kit, BD Biosciences, San Jose, 
CA, USA) was performed to detect apoptosis. In brief, 

cells were washed and resuspended in binding buffer 
prior to the addition of PE-labeled Annexin V and 
7-AAD for 10 min. Suspensions were immediately 
analyzed by flow cytometry using BD Accuri™ C6 
Cytometer (BD Biosciences). Each experiment was 
performed in triplicate. 

Statistical analysis 
All statistical analyses were performed using the 

SPSS 17.0 software package (SPSS, Chicago, IL, USA). 
Experimental data were expressed as the mean ± 
SEM. For comparison of means between two groups, a 
two- tailed t-test was used, and for comparison of 
means among three groups, one-way ANOVA was 
used. Significance was accepted at p < 0.05. 

Abbreviations 
CNA: copy number alteration; HCC: 

hepatocellular carcinoma; SMG: significantly mutated 
gene; TNM: tumor-node-metastasis. 

Supplementary Material  
Supplementary figures and tables. 
http://www.thno.org/v08p1740s1.pdf  

Acknowledgements 
This project was supported by research funds 

from RGC-GRF Hong Kong (766613; 14114615), 
RGC-ECS (24115815); National Basic Research 
Program of China (973 Program, 2013CB531401), 
Theme-based Research Scheme of the Hong Kong 
Research Grants Council (T12-403-11); Collaborative 
Research Fund (HKU3/CRF11R, CUHK3/CRF/12R) 
of the Research Grant Council Hong Kong, Shenzhen 
Municipal Science and Technology R & D fund 
(JCYJ20130401151108652), Shenzhen Science and 
Technology Programme (JCYJ20150630165236956, 
JCYC20140905151710921), Shenzhen Virtual 
University Park Support Scheme to CUHK Shenzhen 
Research Institute, and Natural Science Foundation of 
Guangdong Province (2015A030313886) of 
Department of Science and Technology of Guangdong 
Province. The study sponsor in the study design has 
no role in data collection, analysis or interpretation. 

Author Contributions 
J Yu and WKK Wu designed and managed the 

project. X Li, M Wang, Y Zhou, X Fang, X Zhang, 
performed bioinformatic analysis. W Kang and W Xu 
performed the experiments. J Yu, WKK Wu, SH 
Wong, MTV Chan, JJY Sung, and X Li analyzed the 
data. X Li, WKK Wu and J Yu wrote the paper. MTV 
Chan, H Yang, SH Wong, and JJY Sung revised the 
paper. 



 Theranostics 2018, Vol. 8, Issue 6 
 

 
http://www.thno.org 

1751 

Competing Interests 
The authors declare no competing financial 

interests. 

References 
1.  Torre LA, Bray F, Siegel RL et al. Global Cancer Statistics, 2012. J Clin. 2015; 

65:87–108. 
2.  Llovet JM, Ricci S, Mazzaferro V et al. Sorafenib in advanced hepatocellular 

carcinoma. N Engl J Med. 2008; 359:378–390. 
3.  Schulze K, Imbeaud S, Letouzé E et al. Exome sequencing of hepatocellular 

carcinomas identifies new mutational signatures and potential therapeutic 
targets. Nat Genet. 2015; 47:505–511. 

4.  Totoki Y, Tatsuno K, Covington KR et al. Trans-ancestry mutational landscape 
of hepatocellular carcinoma genomes. Nat Genet. 2014; 46:1267–1273. 

5.  Kan Z, Zheng H, Liu X et al. Whole-genome sequencing identifies recurrent 
mutations in hepatocellular carcinoma. Genome Res. 2013; 23:1422–33. 

6.  Lawrence MS, Stojanov P, Mermel CH et al. Discovery and saturation analysis 
of cancer genes across 21 tumour types. Nature 2014; 505:495–501. 

7.  Helleday T, Eshtad S, Nik-Zainal S. Mechanisms underlying mutational 
signatures in human cancers. Nat Rev Genet. 2014; 15:585–98. 

8.  Alexandrov LB, Nik-Zainal S, Wedge DC et al. Signatures of mutational 
processes in human cancer. Nature 2013; 500:415–21. 

9.  Li X, Wu WKK, Xing R et al. Distinct subtypes of gastric cancer defined by 
molecular characterization include novel mutational signatures with 
prognostic capability. Cancer Res. 2016; 76:1724–1733. 

10.  Tang S, Wu WKK, Li X et al. Stratification of Digestive Cancers with Different 
Pathological Features and Survival Outcomes by MicroRNA Expression. Sci 
Rep. 2016; 6:24466. 

11.  Honda K, Sbisà E, Tullo a et al. P53 Mutation Is a Poor Prognostic Indicator for 
Survival in Patients With Hepatocellular Carcinoma Undergoing Surgical 
Tumour Ablation. Br J Cancer 1998; 77:776–782. 

12.  Hayashi H, Sugio K, Matsumata T et al. The clinical significance of p53 gene 
mutation in hepatocellular carcinomas from Japan. Hepatology 1995; 
22:1702–7. 

13.  Yu J, Wu WKK, Li X-XX et al. Novel recurrently mutated genes and a 
prognostic mutation signature in colorectal cancer. Gut 2014; 64:1–10. 

14.  Fujimoto A, Furuta M, Totoki Y et al. Whole-genome mutational landscape 
and characterization of noncoding and structural mutations in liver cancer. 
Nat Genet. 2016; 4:1–13. 

15.  Fujimoto A, Totoki Y, Abe T et al. Whole-genome sequencing of liver cancers 
identifies etiological influences on mutation patterns and recurrent mutations 
in chromatin regulators. Nat Genet. 2012; 44:760–4. 

16.  Lawrence MS, Stojanov P, Polak P et al. Mutational heterogeneity in cancer 
and the search for new cancer-associated genes. Nature 2013; 499:214–218. 

17.  Dees ND, Zhang Q, Kandoth C et al. MuSiC: identifying mutational 
significance in cancer genomes. Genome Res. 2012; 22:1589–1598. 

18.  Ciriello G, Cerami E, Sander C, Schultz N. Mutual exclusivity analysis 
identifies oncogenic network modules. Genome Res. 2012; 22:398–406. 

19.  Zhao J, Zhang S, Wu L-Y, Zhang X-S. Efficient methods for identifying 
mutated driver pathways in cancer. Bioinformatics 2012; 28:2940–2947. 

20.  Charles Nault J, Mallet M, Pilati C et al. High frequency of telomerase 
reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma 
and preneoplastic lesions. Nat Commun. 2013; 4:2218-2238. 

21.  Liao P, Wang W, Shen M et al. A positive feedback loop between EBP2 and 
c-Myc regulates rDNA transcription, cell proliferation, and tumorigenesis. 
Cell Death Dis. 2014; 5:1032-1040. 

22.  Fan C, Tian Y, Miao Y et al. ASAP3 expression in non-small cell lung cancer: 
association with cancer development and patients’ clinical outcome. Tumor 
Biol. 2013; 35:1489–1494. 

23.  Sierko E, Wojtukiewicz MZ, Kisiel W. The role of tissue factor pathway 
inhibitor-2 in cancer biology. Semin Thromb Hemost. 2007; 33:653–659. 

24.  Mermel CH, Schumacher SE, Hill B et al. GISTIC2.0 facilitates sensitive and 
confident localization of the targets of focal somatic copy-number alteration in 
human cancers. Genome Biol. 2011; 12:41-49. 

25.  Carter SL, Cibulskis K, Helman E et al. Absolute quantification of somatic 
DNA alterations in human cancer. Nat Biotechnol. 2012; 30:413–421. 

26.  Uen Y-H, Fang C-L, Hseu Y-C et al. VAV3 oncogene expression in colorectal 
cancer: clinical aspects and functional characterization. Sci Rep. 2015; 
5:9360-9368. 

27.  Stein U, Walther W, Arlt F et al. MACC1, a newly identified key regulator of 
HGF-MET signaling, predicts colon cancer metastasis. Nat Med. 2009; 
15:59–67. 

28.  Brockm??ller SF, Bucher E, M??ller BM et al. Integration of metabolomics and 
expression of glycerol-3-phosphate acyltransferase (GPAM) in breast 
cancer-link to patient survival, hormone receptor status, and metabolic 
profiling. J Proteome Res. 2012; 11:850–860. 

29.  Abbassi R, Johns TG, Kassiou M, Munoz L. DYRK1A in neurodegeneration 
and cancer: Molecular basis and clinical implications. Pharmacol Ther. 2015; 
151:87–98. 

30.  Scholz B, Korn C, Wojtarowicz J et al. Endothelial RSPO3 Controls Vascular 
Stability and Pruning through Non-canonical WNT/Ca(2+)/NFAT Signaling. 
Dev Cell 2016; 36:79–93. 

31.  Zhang X, Zhang Z, Cheng J et al. Transcription factor NFAT1 activates the 
mdm2 oncogene independent of p53. J Biol Chem. 2012; 287:30468–30476. 

32.  Lin KT, Gong J, Li CF et al. Vav3-Rac1 signaling regulates prostate cancer 
metastasis with elevated Vav3 expression correlating with prostate cancer 
progression and posttreatment recurrence. Cancer Res. 2012; 72:3000–3009. 

33.  Horn S. TERT Promoter Mutations in Familial and Sporadic Melanoma. 
Science 2007; 12:1895–1900. 

34.  Vinagre J, Almeida A, Pópulo H et al. Frequency of TERT promoter mutations 
in human cancers. Nat Commun. 2013; 4:2185-2196. 

35.  Huang FW, Hodis E, Xu MJ et al. Highly recurrent TERT promoter mutations 
in human melanoma. Science 2013; 339:957–9. 

36.  Hilton JF, Shapiro GI. Aurora kinase inhibition as an anticancer strategy. J Clin 
Oncol. 2014; 32:57–59. 

37.  Liu X, Jian X, Boerwinkle E. dbNSFP v2.0: A database of human 
non-synonymous SNVs and their functional predictions and annotations. 
Hum Mutat. 2013; 34:2393–2402. 

38.  Klijn C, Durinck S, Stawiski EW et al. A comprehensive transcriptional portrait 
of human cancer cell lines. Nat Biotechnol. 2014; 33:306-312. 

39.  Kandoth C, McLellan MD, Vandin F et al. Mutational landscape and 
significance across 12 major cancer types. Nature 2013; 502:333–339. 

40.  Tamborero D, Gonzalez-Perez A, Perez-Llamas C et al. Comprehensive 
identification of mutational cancer driver genes across 12 tumor types. Sci Rep. 
2013; 3:2650-2658. 

41.  Futreal PA, Coin L, Marshall M et al. A census of human cancer genes. Nat 
Rev Cancer 2004; 4:177–183. 

42.  Duquenne L, Huvet M, Chen C et al. Impact of replication timing on non-CpG 
and CpG substitution rates in mammalian genomes. Genome Res. 2010; 
20:447–457. 

43.  Alexandrov LBB, Nik-Zainal S, Wedge DCC et al. Deciphering signatures of 
mutational processes operative in human cancer. Cell Rep. 2013; 3:246–59. 

 


