Supplementary Data:

Cascaded Electrochemiluminescence Signal-Amplifier for Detection of Telomerase Activity from Tumor Cells and Tissues

Zhaoyan Zhao^{1, 4‡}, Qingqin Tan^{1, 4‡}, Xiaoxia Zhan⁷, Jingyan Lin⁶, Zhijin Fan¹, Keng Xiao¹, Bing Li¹, Yuhui Liao^{1, 2, 4, 6,}* and Xi Huang^{1,2,3,4,5,6,*}

1. Program of Infection and Immunity, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China

2. Department of Internal Medicine, Guangzhou Women and Children's Medical Center,

Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China

3. Sino-French Hoffmann Institute of Immunology, College of Basic Medical Science, Guangzhou Medical University, Guangzhou, China

4. Key Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China

5. The First Hospital of Jilin University, Changchun, China

6. Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China

7. Department of Laboratory Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.

‡These authors contributed equally to this work.

*Corresponding Authors: liaoyh8@mail.sysu.edu.cn, huangxi6@mail.sysu.edu.cn.

Figure S1. MS data for DPR with the polymerization degree of 10.

Figure S2. MS data for DPR with the polymerization degree of 50.

Figure S3. MS data for DPR with the polymerization degree of 100.

Figure S4. Intensity Ratio between the Single ECL Luminophor and the Polymer Probe.

Figure S5. ECL Intensity of Heated and Inactivated Telomerase Samples.

Note	Sensitivity	Specificity	Consume time	Cost
TRAP Assays[1, 2]	about 50 cells	primer-dimers and impurities lead to less-than-satisfact ory specificity	Sample pretreatment: 60min Telomerase extension: 30min PCR amplification: 60-90min gel electrophoresis detection : 2-3h	About: 80 yuan RMB
Modified TRAP assays[3, 4]	2-10 cells	preferable specificity in tumor cells and tissues	Sample pretreatment: 60min Telomerase extension: 30min PCR amplification: 60-90min capturing and signal:2-180min	About: 80-100 yuan RMB
PCR Amplification-Fre e Detection Modes[5-8]	10-1000 cells	preferable specificity in tumor cells	Sample pretreatment: 60min Telomerase extension: 60-240min capturing and signal: 2-120min	About: 35-120 yuan RME
Cascaded ECL Signal Amplifier	100, 50, 100 cells for A549, MCF7 and HepG2 cell	preferable specificity in tumor cells and	sample and reagents pretreatment: 60min Telomerase extension: 30min	About: 35 yuan RMB

Table S1. Comparison between Cascaded ECL Signal Amplifier and Existing Methods.

REFERENCES

1. Mieczysław A. Piatyszek NWK, Scott L. Weinrich, Keiko Hiyama ,Eiso Hiyama , Woodring E. Wright I & Jerry W. Shay. Detection of telomerase activity in human cells and tumors by a telomeric repeat amplification protocol (TRAP). Methods in Cell Science. 1995; 17: 1-15.

2. Kim NW, Wu F. Advances in quantification and characterization of telomerase activity by the telomeric repeat amplification protocol (TRAP). Nucleic Acids Research. 1997; Vol. 25: 2595–7.

3. Zhou X, Xing D. Assays for human telomerase activity: progress and prospects. Chem Soc Rev. 2012; 41: 4643-56.

Yi Xiao KYD, Takanori Uzawa, Andrew Csordas, Jiangrong Qian, H. Tom Soh PSD, Eric
Lagally, Alan J. Heeger, and, Plaxco KW. Detection of Telomerase Activity in High
Concentration of Cell Lysates Using Primer-Modified Gold Nanoparticles. Journal of the
American Chemical Society. 2010; 132: 15299–307.

5. Zhang Z, Wu L, Wang J, Ren J, Qu X. A Pt-nanoparticle electrocatalytic assay used for PCR-free sensitive telomerase detection. Chemical Communications. 2013; 49: 9986-8.

6. Wang Y, Yang L, Liu W, Li B, Jin Y. An ultra-sensitive colorimetric assay for reliable visual detection of telomerase activity. Analyst. 2017; 142: 3235-40.

 Zong S, Wang Z, Chen H, Hu G, Liu M, Chen P, et al. Colorimetry and SERS dual-mode detection of telomerase activity: combining rapid screening with high sensitivity. Nanoscale. 2014; 6: 1808-16.

Wang J, Wu L, Ren J, Qu X. Visual detection of telomerase activity with a tunable dynamic range by using a gold nanoparticle probe-based hybridization protection strategy. Nanoscale. 2014; 6: 1661-6.