

Supplementary Figure. 1 F1 PDX tumor grafts resemble the patient tumors from where they are derived. A-C, The corresponding expression of CDK1, PDK1 and β-catenin in clinical tumor tissues. D, Image represented the mouse model of F1 PDX tumors. E-F, In comparison of the protein expression levels, PDX tumors highly mimic the paired clinical tumors analysed by western blot. G, Hep Par1, cytokeratin 7 (CK7), cytokeratin 20 (CK20) and CEA staining for F1 PDX tumors and paired clinical tissues. Scale bar represent $100 \mu \mathrm{~m}$.

Supplementary Figure. 2 Effectiveness of RO3306 and sorafenib on PDX tumors. A-B, The growth curves of HCC case \#4 and \#10 PDX models, respectively. C-D, The no inhibition effect of indicated treatments on HCC case \#9 PDX models, due to the low tumor progression process. E , The tumor weight during the treatments from day 1 to day 30 with no obvious body weight change.(${ }^{*}, \mathrm{p}<0.05 ;{ }^{* *}, \mathrm{p}<0.01$ compared to control.)

Supplementary figure 3

Supplementary Figure. 3 The combined effect on the EMT transition. A-C, The synergistic effect of increased E-Cadherin and decreased Snail1 and Snail 2 on F1 PDX models. D, The combined treatment could decrease Snail1 and upregulate E-Cadherin analysed by western blot (left: case \#4; right: PDX case \#10) . (*, p < 0.05; **, p < 0.01 compared to control and ${ }^{\#}, \mathrm{p}<0.05$ compared to single agent treatments.)

Supplementary figure 4

Supplementary Figure. 4 Anticancer effect of RO3306 and sorafenib combination or alone on 97H sphere cells. A, The morphology of sphere formation in indicated treatment groups. B, The suppression effect on CD90 and EpCAM CSCs. C, Low dose of RO3306 ($4 \mu \mathrm{M}$) and sorafenib ($2.5 \mu \mathrm{M}$) decreased the stemness-related genes Nanog and Sox2. D, Low dose RO3306 and sorafenib combination for 72 h promoted CSCs enter into a Sub-G1 phase. (*, p < 0.01 compared to control. \#, p < 0.05 compared to single agent treatments).

Supplementary Figure. 5 RO3306 and sorafenib alone or combination on the mRNA levels of EMT in 97H sphere cells. A-E, The synergistic effect of downregulation N-Cadherin, Snail1 and Snail2, whereas the E-Cadherin and CK19 were upregulated. F, The synergistic effect on ABCB1 drugs resistance gene. G, Western blot analysis of E-Cadherin and Snail 1 in indicated groups. (*, p < 0.01 compared to control. \#, p < 0.05 compared to single agent treatments).

Supplementary Figure. 6 The combined effect on CSCs tumorigenicity after 100 days. A, The indicated points of the pretreated-CSCs injection. B, Images of recurrence tumor and new emerging tumor after 100 days. C, Statistical comparison of tumor incidence (\%) in various pretreat-groups after 100 days without further treatment. D, Tumor weight of 97H CSC-derived orthotopic tumor models in indicated groups. E, The percentage of lung metastasis 100\%, 40\%,20\% and 0% in four indicated treatments labeled above. (${ }^{*}$, $p<0.01$ compared to control. ${ }^{\#}, \mathrm{p}<0.05$ compared to single agent treatments).

Supplementary figure 7

A

Supplementary Figure. 7 The interaction of PDK1 and AKT, and CDK1 silencing effect on 97H sphere cells. A, The Co-IP analysis the interaction between PDK1 and AKT. BE, Knockdown CDK1 reverse EMT process. F, The CD90+ CSCs population of shCDK1 knockdown compared with the scramble group after 24 h . (*, p < 0.01 compared to control).

Supplementary figure 8

Supplementary Figure. 8 The expression level of β-catenin in cytoplasm and nucleus of various groups and CDK1 Knockdown. A,Level of β-catenin in cytoplasm and nucleus were measured by western blot analysis. Decreased β-catenin was detected both in cytoplasm and nucleus. A-tubulin and Histone H3 as control loading.

Supplementary figure 9

Supplementary Figure. 9 The CDK1-PDK1- β-Catenin axis. A schematic diagram illustrates the proposed CDK1-PDK1- β-Catenin associated pathways and its downstream targets EMT relates to HCC progression and metastasis.

Table S1
Table S1: Primer sequences

Primer	Sequence (5' to 3') F: forward; R: reverse
NANOG	F: CAAAGGCAAACAACCCACTT
	R: TCTGCTGGAGGCTGAGGTAT
OCT4	F: CTCACCCTGGGGGTTCTATT
	R: CTCCAGGTTGCCTCTCACTC
SOX2	F: GCTGCGAACAGTCAGACAGA
	R: ACCTCCCGTCCAAGGTAGG
CDH1	F: CGACCCAACCCAAGAATCTA
	R: AGGCTGTGCCTTCCTACAGA
CDH2	F: GACAATGCCCCTCAAGTGTT
	R: CCATTAAGCCGAGTGATGGT
CK19	F: TTTGAGACGGAACAGGCTCT
	R: AATCCACCTCCACACTGACC
SNAIL1	F: CACTATGCCGCGCTCTTTC
	R: GGTCGTAGGGCTGCTGGAA
SNAIL2	F: GAGCATTTGCAGACAGGTCA
	R: GCTTCGGAGTGAAGAAATGC
ABCB1	F: GCCTGGCAGCTGGAAGACAAATAC
	R: ATGGCCAAAATCACAAGGGTTAGC
shRNA-Scramble 1	AGCGGGATGTGCTTATGCAGGATTCCACGAGTGGAA TCCTGCATAAGCACATCC
shRNA-CDK1-2	agCGGGTCAGTACATGGATTCTTCACTCGAGAGTGA AGAATCCATGTACTGACC
shRNA-Scramble 11	AAAAGGATGTGCTTATGCAGGATTCCACTCGTGGAA
	TCCTGCATAAGCACATCC
shRNA-CDK1-22	AAAAGGTCAGTACATGGATTCTTCACTCTCGAGTGA AGAATCCATGTACTGACC

Table S2. Correlation between clinicopathological parameters and CDK1 high or low expression

Parameters	Category	$\begin{aligned} & \text { Cases } \\ & (\mathrm{n}=39) \end{aligned}$	CDK1 level		P
			low	high	
Sex	Male	32	19	13	0.139
	Female	7	2	5	
Age	≥ 60	22	12	10	0.921
	<60	17	9	8	
Tumor UICC7 stage	I-II	30	17	13	0.519
	III-V	9	4	5	
Tumor size	$\leq 5 \mathrm{~mm}$	16	9	7	0.802
	$>5 \mathrm{~mm}$	23	12	11	
Tumor nodules (no.)	1-2 nodeuls	31	15	16	0.178
	≥ 3 nodeuls	8	6	2	
Venous infiltration	absent	22	13	9	0.455
	present	17	8	9	
HBsAg	positive	34	18	16	0.768
	negative	5	3	2	
AFP level	low than 20ng/ml	16	9	7	0.802
	high than 20ng/ml	23	12	11	
One year recurrence	no recurrence	29	19	10	0.013*
	recurrence	10	2	8	
Five year recurrence	no recurrence	21	15	6	0.017*
	recurrence	18	6	12	

Table S3. Correlation between clinicopathological parameters and CDK1 and PDK1 related

Parameters	Category	$\begin{aligned} & \text { Cases } \\ & (\mathrm{n}=39) \\ & \hline \end{aligned}$	CDK1 and PDK1 related		P
			NO	YES	
Sex	Male	28	15	13	0.790
	Female	5	3	2	
Age	≥ 60	19	10	9	0.797
	<60	14	8	6	
Tumor UICC7 stage	I-II	25	14	11	0.767
	III-V	8	4	4	
Tumor size	$\leq 5 \mathrm{~mm}$	14	9	5	0.335
	$>5 \mathrm{~mm}$	19	9	10	
Tumor nodules (no.)	1-2 nodeuls	31	15	16	0.604
	≥ 3 nodeuls	8	6	2	
Venous infiltration	absent	25	13	12	0.898
	present	8	5	3	
HBsAg	positive	28	16	12	0.478
	negative	5	2	3	
AFP level	low than 20ng/ml	13	9	4	0.172
	high than 20ng/ml	20	9	11	
One year recurrence	no recurrence	24	15	9	0.134
	recurrence	9	3	6	
Five year recurrence	no recurrence	18	13	5	0.025*
	recurrence	15	5	10	

Table S4. The association of clinicopathological parameters, CDK1, PDK1 and CDK1 related PDK1 expression with HCC overall survival and disease-free survival using univariate and multivariate analysis

Clinical parameters	Overall survival					Disease free survival					
	Univariate analysis		multivariate analysis			Univariate analysis			multivariate analysis		
	HR 95\%Cl	p value	HR	95\%CI	p value	HR	95\%CI	p value	HR	95\%CI	p value
Sex (male vs. female)	3.08 (0.92-10.36)	0.069				1.93	(0.70-5.35)	0.204			
Age (<60 vs. ≥ 60)	1.37 (0.44-4.24)	0.590				1.58	(0.68-3.67)	0.283			
HBsAg (pres vs. abs)	0.74 (0.16-3.38)	0.698				0.74	0.24-2.21)	0.586			
AFP level	1.39 (0.42-4.63)	0.589				2.07	(0.80-5.32)	0.132			
(≤ 20 vs. ≥ 20)											
Tumor UICC7 stage	5.84 (1.84-18.50)	0.003**	4.01	(1.16-13.90)	0.029*	4.33	(1.74-10.758)	0.002**	4.49	1.50-13.36)	0.007**
(I, II and III, IV,V)											
Tumor size	2.44 (0.66-9.05)	0.181				1.91	(0.77-4.74)	0.160			
(<5 vs. ≥ 5)											
Tumor nodules (no.)	2.15 (0.68-6.79)	0.191				1.54	(0.65-3.68)	0.328			
(≤ 1 vs. ≥ 2)											
Venous infiltration	3.15 (0.95-10.50)	0.061				3.16	(1.29-7.75)	0.012*	3.32	(1.11-9.99)	0.032*
(pres vs. abs)											
CDK1 (low or high)	4.20 (1.11-15.90)	0.023*	1.99	(0.37-10.69)	0.424	2.08	(0.81-5.38)	0.130			
PDK1 (Low or high)	4.20 (1.11-15.90)	0.035*	2.61	0.52-13.21)	0.247	2.31	(0.95-5.58)	0.064			
CDK1 related PDK1	1.04 (0.28-3.86)	0.96				2.91	(1.06-7.96)	0.038**	4.62	1.47-14.54)	0.009**
(yes or no)											

Univariate and multivariate analysis by cox proportional hazard regression model was used to analyze the risk factors associated with the survival. HR, hazard ratio; Cl , confidence interval. ${ }^{*}, p<0.05 ;{ }^{* *}, p<0.01$.

