
Supplementary materials contain Supplementary Figures S1-5 and Supplementary Tables S1-4.

Supplementary Figures

Figure S1. The protein levels of PIAS3 in epithelium and stroma of colons were determined by western blotting after every DSS/ddH2O cycle. The western blotting data shown are representative of three individual analyses.

Figure S2. miR-18a enhanced NF-κB and STAT3 activity by downregulating PIAS3 expression. (**A**) Stably transfected Caco-2 cells carrying an NF-κB-dependent luciferase reporter were co-transfected with 50 nmol anti-miR-18a and 50 nmol PIAS3 siRNA for 48 h and then stimulated with 20 ng/ml TNF- α for another 12 h. (**B**) The stably transfected Caco-2 cells carrying a STAT3-dependent luciferase reporter were co-transfected with 50 nmol anti-miR-18a and 50 nmol PIAS3 siRNA for 48 h and then stimulated with 50 nmol anti-miR-18a and 50 nmol PIAS3 siRNA for 48 h and then stimulated with 50 ng/ml IL-6 for another 12 h. Finally, the cells were harvested and submitted to a luciferase activity assay. Five samples were analyzed per condition, and the experiments were performed in triplicate. Values are expressed as

the mean \pm SEM. **P*<0.05; One-way ANOVA with post-hoc Bonferroni correction.

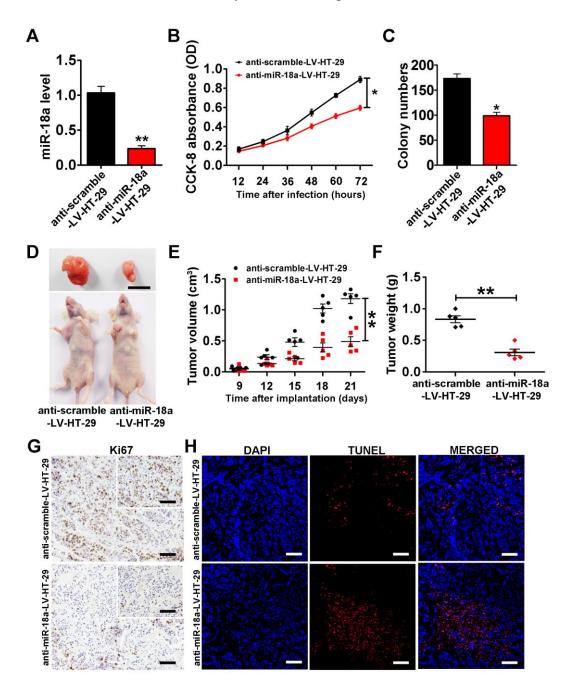
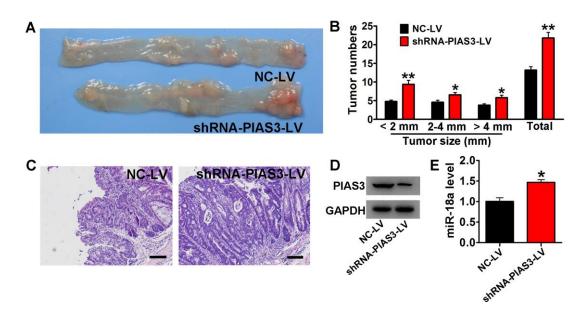



Figure S3. The effect of anti-miR-18 on CRC cell proliferation and apoptosis. (A) miR-18a levels in stably transfected anti-miR-18a-LV-HT-29 cells. (B) Cell proliferation was assayed in anti-miR-18a-LV-HT-29 cells using a CCK-8. (C) A colony formation assay was performed using anti-miR-18a-LV-HT-29 cells, and colony numbers were counted 21 days after cell seeding. (D) A representative image of tumors from tumor-bearing mice at 21 days post-implantation with

anti-miR-18a-LV-HT-29 cells. Scale bar = 1 cm. (E) The volumes of the xenograft tumors in the nude mice determined at 21 days post-implantation. (F) The weights of the xenograft tumors in the nude mice measured at 21 days post-implantation. (G) Immunohistochemical staining of Ki67 and (H) a TUNEL assay were performed in tumor tissues from nude mice 21 days post-implantation with at anti-miR-18a-LV-HT-29 cells (magnification: 200x, scale bar = 50 μ m; insert magnification: 400x, scale bar = 50 μ m). For cell experiments, five samples were analyzed per condition, and the experiments were performed in triplicate. A total of 5 mice were examined per group; values are expressed as the mean \pm SEM. *P<0.05 and ***P*<0.01; two-tailed Student's *t*-test.

Figure S4. Knockdown of colonic PIAS3 further promoted CAC progression. shRNA-PIAS3-LV was intracolonically administered into AOM-treated C57BL/6J mice at the beginning of each DSS/ddH₂O cycle. (**A**) Images of the colons harvested from AOM-DSS-induced mice after three treatments with shRNA-PIAS3-LV. (**B**) Tumor numbers were counted and tumor sizes were determined using a caliper (> 2 mm) or a dissection microscope (< 2 mm). (**C**) Colon sections from AOM-DSS-induced mice that received three shRNA-PIAS3-LV treatments were

examined by H&E staining (magnification: 100x, scale bar = 100 μ m). (**D**) The expression levels of PIAS3 and (**E**) miR-18a levels in colon tissues from CAC mice following shRNA-PIAS3-LV treatments. The western blotting data shown are representative of three individual analyses. A total of 5 mice were examined per group; values are expressed as the mean \pm SEM. **P*<0.05 and ***P*<0.01; two-tailed Student's *t*-test.

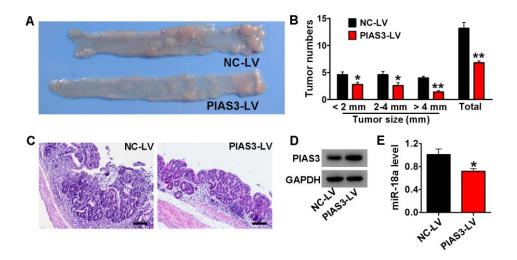


Figure S5. Overexpression of colonic PIAS3 inhibited tumor growth in the advanced stages of CAC mice. PIAS3-LV were intracolonically administered into AOM-treated C57BL/6J mice on day 52 and day 56 during the third DSS/ddH2O cycle. (A) Images of the colons harvested from AOM-DSS-induced mice after treatments with PIAS3-LV. (B) Tumor numbers were counted, and tumor sizes were determined using a caliper (> 2 mm) or a dissection microscope (< 2 mm). (C) Colon sections from AOM-DSS-induced mice that received PIAS3-LV treatments were examined by H&E staining (magnification: 100x, scale bar = 100 μ m). (D) The expression levels of PIAS3 and (E) miR-18a levels in colon tissues from CAC mice following PIAS3-LV treatments. The western blotting data shown are representative of three individual analyses. **P*<0.05 and ***P*<0.01; two-tailed Student's *t*-test.

Supplementary Tables

Table S1. The primer, siRNA and shRNAsequences used in this study.

Gene	Sequence (5' to 3')		
miR-18a Forward	ACACTCCAGCTGGGTAAGGTGCATCTAGTG		
Reverse	CTCAACTGGTGTCGTGGAGTCGGCAATTCA		
	GTTGAGTATCTGCA		
URP	TGGTGTCGTGGAGTCG		
U6 Forward	CTCGCTTCGGCAGCACA		
U6 Reverse	AACGCTTCACGAATTTGCGT		
hsm-C13orf25 Forward	CAGTAAAGGTAAGGAGAGCTCAATCTG		
Reverse	CATACAACCACTAAGCTAAAGAATAATCTGA		
hsm-PIAS3 Forward	TGTCACCATGAAACCATTGC		
Reverse	AGGTAAAGTGCGCTTCCTCA		
hsm-β-actin Forward	GACCTCTATGCCAACACAGTGC		
Reverse	GTACTCCTGCTTGCTGATCCAC		
hsm-RelA Forward	d GGGAAGGAACGCTGTCAGAG		
Reverse	e TAGCCTCAGGGTACTCCATCA		
mus-IL-6 Forward	CAAAGCCAGAGTCCTTCAGAG		
Reverse	GCCACTCCTTCTGTGACTCC		
mus-IL-1β Forward	CCCAACTGGTACATCAGCACCTC		
Reverse	GACACGGATTCCATGGTGAAGTC		
mus-TNF- α Forward	ACCACGCTCTTCTGTCTACT		
Reverse	AGGAGGTTGACTTTCTCCTG		
mus-Bcl-2 Forward	TAGAGAGATGCGAGGAACCGATG		
Reverse	ATAAGCAATCCCAGGGTCTGTCC		

mus-Bcl-xL Forward GGCAACCCATCCTGGCACCT

Reverse AGCGCTCCTGGCCTTTCCG

mus-Cox-2 Forward TGGGTGTGAAGGGAAATAAGG

Reverse CATCATATTTGAGCCTTGGGG

mus-c-Myc Forward GCTCTCCATCCTATGTTGCGG

Reverse TCCAAGTAACTCGGTCATCATCT

mus-CyclinD1 Forward CCCAACAACTTCCTCTCCT

Reverse TCCAGAAGGGCTTCAATCTG

mus-PIAS3 Forward GGACGTGTCCTGTGTGTGACAA

Reverse ATCTCATCACAATCCGAACAGGAA

 $mus{-}\beta{-}actin\ Forward \quad GGTGTGATGGTGGGAATGGG$

Reverse ACGGTTGGCCTTAGGGTTCAG

PIAS3 siRNA sense GACAGAGAGUCAGCACUAUUU

antisense AUAGUGCUGACUCUGUCUU

PIAS3 shRNA CCGGGCTGACATCCAAGGTTTAGATCTCGAG

A TCTAAACCTTGGATGTCAGCTTTTTG

Clinicopathological feature	Number (n)	Proportion (%)
All cases	5	100
Age (years)		
≤45	3	60
>45	2	40
Gender		
Female	3	60
Male	2	40
Differentiation		
Well-moderately	4	80
differentiated		
Poorly differentiated	1	20

 Table S2. The clinicopathological features of the CAC patients in this study.

Clinicopathological feature	Number (n)	Proportion (%)	
All cases	46	100	
Age (years)			
≤60	22	47.8	
>60	24	52.2	
Gender			
Female	15	32.6	
Male	31	67.4	
Tumor location			
Colon	19	41.3	
Rectum	27 58.7		
TNM stage			
T1	1	2.2	
T2	12	26.1	
T3	30	65.2	
T4	3	6.5	
Differentiation			
Well differentiated	7	15.2	
Moderately differentiated	32	69.6	
Poorly differentiated	7	15.2	

 Table S3. The clinicopathological features of the CRC patients in this study.

Antibody	Poly/monoc	Manufacturer	Dilution
	lonal		
P-STAT3	Monoclonal	Cell Signaling	1:2,000
		Technology Inc. (#9145)	
STAT3	Monoclonal	Cell Signaling	1:1,000
		Technology Inc. (#8232)	
PIAS3	Polyclonal	Cell Signaling	1:1,000
		Technology Inc. (#4164)	(WB)
PIAS3	Polyclonal	Abgent (AP1245a)	1:100
			(IHC)
HRP-conjugated goat	Monoclonal	Jackson	1:2,000
anti-rabbit IgG		ImmunoResearch	
		(111-005-003)	
HRP-conjugated anti-GAPDH	Monoclonal	KangChen Bio-tech	1:10,000
		Inc.(KG-5G5)	
Ki67	Polyclonal	Abcam (ab21700)	1:100
Biotinylated goat anti-rabbit	Monoclonal	Boster Biological	1:100
IgG		technology (11F12B)	
α-SMA	Monoclonal	Cell Signaling	1:1,000
		Technology Inc	
		(#19245)	
Pan-Keratin	Monoclonal	Cell Signaling	1:1,000
		Technology Inc. (#4545)	

Table S4. The antibodies used in this study.