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Abstract 

Cancer is one of the leading causes of death worldwide. Many treatments have been developed so 
far, although effective, suffer from severe side effects due to low selectivity. Nanoparticles can 
improve the therapeutic index of their delivered drugs by specifically transporting them to tumors. 
However, their exogenous nature usually leads to fast clearance by mononuclear phagocytic 
system. Recently, cell membrane-camouflaged nanoparticles have been investigated for cancer 
therapy, taking advantages of excellent biocompatibility and versatile functionality of cell 
membranes. In this review, we summarized source materials and procedures that have been used 
for constructing and characterizing biomimetic nanoparticles with a focus on their application in 
cancer therapy. 
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Introduction 
Cancer is one of the leading causes of death 

worldwide [1]. Surgical resection and localized 
radiotherapy are routine treatments for the disease in 
clinic, usually followed with systemic therapy aiming 
to eradicate non-resectable and metastasized tumors. 
However, most systemically delivered free drugs are 
of low specificity, causing severe side effects that 
prevent dose escalation and therefore effective tumor 
suppression [2-4]. To improve the specificity, 
nanoparticles that can modify the pharmacokinetic 
properties of encapsulated drugs have been 
developed, some of which are already in clinical use 
[4-11]. 

Ideal nanoparticles for drug delivery should 
have prolonged blood circulation with capability to 
target tumor tissue, to bind cancer cells, and to enter 
the cytosol of cells [4, 6, 12, 13]. The size, morphology, 
and more profoundly surface properties of 
nanocarriers are key determinants for their functions 
[14-17]. For instance, surface modification of 

nanoparticles with hydrophilic and flexible polymers 
such as poly(ethylene glycol) (PEG) could prolong 
half-lives of nanoparticles and contribute to their 
accumulation in the tumor sites via enhanced 
penetration and retention (EPR) effect [18-25]. 
Decorating long-circulating nanoparticles further 
with functional moieties such as targeting ligands or 
cell penetrating peptides (CPPs) is able to increase 
their cellular adhesion and uptake [4, 26-28]. So far, 
most nanoparticle-based delivery systems focus on 
primarily synthetic strategies, which require tedious 
chemical synthesis and optimization especially when 
trying to integrate multiple functional modalities into 
one single nanoparticle. In addition, synthetic 
materials are not satisfactory in biocompatibility, and 
accelerated blood clearance (ABC) has also been 
observed from PEG which was previously believed to 
be inert [29, 30]. As a result, nanoparticles with 
tunable surface properties and good biocompatibility 
are desired. 
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Nature-derived materials provide enormous 
source for nanoparticle engineering [31-35]. In 
particular, the surface property of nanoparticles can 
be easily engineered by coating particles with 
membrane derived from cells or bio-vesicles of 
different types [36-38]. The resulting 
membrane-coated nanomedicines (CNs) are highly 
biocompatible, and can realize prolonged circulation 
and/or tumor-targeting depending on the nature of 
their shell-membrane [39-42]. So far, many types of 
membranes have been used to construct biomimetic 
core-shell nanoparticles for cancer therapy (Table 1) 
[41-47], including membranes from red-blood-cells 
(RBC), platelets, bacteria, white-blood cells (WBC), 
cancer cells, stem cells and etc. Each type of cell 
membranes has distinct functions in drug delivery, 
which will be detailed in the following sections. So 
far, the CNs have been successfully used in areas of 
detoxification, vaccination, cardio-vascular diseases 
and cancer management [11, 36, 40-43, 48]. In this 
review, we mainly focus on the recent advances in the 
development of cell-membrane coated nanoparticles 
for cancer therapy. We discussed the techniques that 
have been developed for membrane collection, inner 
particle coating and CNs characterization, and then 
highlight the applications of CNs in the treatment of 
tumors and their metastasis. Finally, we briefly 
discussed the possible challenges for the clinical 
translation of this approach. 

 
 

Table 1. Currently explored source cells for membrane coated 
nanoparticles 

Source 
cells 

Key features 

RBCs Suppressing immune attack by the abundant “self-markers” on 
their surface 
Prolonged blood circulation time (about 120 days) 
Biocompatible and biodegradable 

Platelets Selective adherence to the vasculatures of the disease sites 
Specific aggregation surrounding circulating tumor cells 
through P-selection and CD44 receptors 
Good immune-compatibility 

Bacteria Immunogenicity 
Tumor tropism 
Secret outer membrane vesicles 

Immune 
cells 

Homing to the diseased sites 
Ability to penetrate the vasculature 
Targeting metastatic cancer cells through VCAM-1-α4 integrins 
interaction 
Ability of avoiding the immune clearance 

Cancer 
cells 

Achieve vaccine applications by promoting a tumor-specific 
immune response 
Allow a unique tumor sites targeting by an inherent homotypic 
binding 

Stem cells Natural active target effect to solid tumors at diverse 
developmental stages 

Preparation of CNs: membrane, core and 
their fusion 

The preparation of cell-membrane coated 
nanoparticles involves three steps, including 
membrane extraction from cells or bio-vesicles, core 
nanoparticle preparation, and the fusion of the two 
into core-shell nanoparticles (Fig. 1). To obtain 
bio-active CNs, each of the three steps is critical. 
Membrane extraction 

Membranes of cells and bio-vesicles are 
asymmetric phospholipid-based membrane 
embedded with functional surface proteins which are 
crucial for their bio-functions [49]. To minimize 
possible denaturation of the membrane-oriented 
proteins, plasma membrane extraction must be as 
gentle as possible, and typically includes steps for cell 
lysis and membrane purification. Depending on 
whether the source cells have nucleus or not, detailed 
procedures should be modified accordingly. 

Membrane extraction from nucleus-free cells 
Nucleus-free cells in human are highly 

differentiated cells that exert specialized function 
such as cargo delivery. RBCs and platelets are two of 
this category, which deliver oxygen and 
platelet-derived growth factors to the whole body and 
injured tissues, respectively. To fulfil their tasks, RBCs 
display membrane proteins (e.g. CD47) that enable 
their prolonged circulation in the blood (up to 120 
days [50]), while platelets have membrane proteins to 
bind P-selectin and CD44 that would only expose to 
blood under pathological conditions [51]. To obtain 
bio-active membranes from RBCs and platelets, the 
cells were firstly isolated from whole blood using 
blood fraction isolation kits and centrifugation-based 
methodology, and then lysed with either a hypotonic 
treatment or repeated freeze-thaw process. Soluble 
proteins were removed via centrifugation, and the 
purified vesicles were subsequently extruded through 
polycarbonate membranes with nanosized pores to 
obtain nanovesicles for fusion. To maintain the 
bio-activity of membrane, protease inhibitors were 
usually added to the samples stored at 4 ℃ [52, 53].  

Prokaryocyte such as bacteria is another catalog 
of nucleus-free cells, the membrane of which contains 
many proteins and thus can be used to induce 
immune response against the microorganism when 
used as vaccines. In addition, it has been reported that 
certain strains of bacteria such as Clostridium 
beijerinckii, Bifidobacterium bifidum and Salmonella 
typhimurium have tumor-targeting capability, 
allowing tumor targeted drug delivery [54]. In 
contrast to RBC and platelets, bacteria are wrapped by 
peptidoglycan in addition to cell membrane, which 
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makes cell membrane extraction challenging. 
Fortunately, many Gram-negative bacteria secret 
outer membrane vesicles which can be directly collect 
from the bacteria-filtrated culture medium via 
ultrafiltration, and therefore no cell lysis is necessary 
[55]. The membrane can also be easily engineered for 
desired purpose such as targeted drug delivery [56]. 

Membrane extraction from eukaryocyte 
 Eukaryocyte such as leukocytes have highly 

specialized functions, providing enormous source of 
bio-active membranes for nanoparticle decoration. 
Compared with nucleus-free cells, the extraction and 
purification of membrane from the eukaryocyte are 
more complicated. First, sufficient amount of 
targeting cells should be harvested from culture 
dishes (cancer cells or stem cells) or blood and tissue 
samples (leukocytes) [57-60]. Extensive enrichment 
and purification are necessary if the targeting cells are 
rare in the blood or tissues. The cells were then lysed 
with combination of hypotonic solution treatment 

and/or mechanical membrane destruction (e.g. 
extrusion) followed with discontinuous sucrose 
gradient centrifugation to remove intracellular 
biomacromolecules, intracellular vesicles and nucleus 
[43, 59]. The membrane rich fraction was then washed 
with isoionic buffers to obtain cell-membrane vesicles, 
which were further sonicated and extruded through 
porous polycarbonate membrane to give nanosized 
vesicles [60, 61].  

Core nanoparticles 
In contrast with the CNs shells that are derived 

from living cells, their inner cores are mainly made of 
synthetic materials (Table 2), including poly(lactic- 
co-glycolic acid) (PLGA), poly(ε-caprolactone) (PCL), 
gelatin, silicon nanoparticles, mesoporous silica 
nanocapsules (MSNs), liposomes, gold nanoparticles 
(AuNPs), Fe3O4 nanoparticles, and etc [45, 46, 53, 59, 
62-67]. The choice of core nanoparticles depends on 
the properties of the cargos to be delivered.  

 
 

 
Figure 1. Schematic illustration of the preparation of cell-membrane coated nanoparticles. (A) Extract of intact cell ghost from parent cells and further processing 
into nanovesicles. (B) Different types of nanoparticles that have been used as inner cores, and their fusion with nanovesicles to construct cell membrane coated 
nanoparticles. 
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Table 2. Materials used as inner cores of CNs for cancer therapy 

Materials Advantages Limits Size (nm) ζ-potential (mV) Ref 
PLGA Sustained drug release 

Biodegradable 
Controllable size 

Incompatible with hydrophilic drugs  
Low drug loading 

65 − 340 -30 − -45 [37, 61, 72, 96] 

PCL Sustained drug release 
Biodegradable 

Incompatible with hydrophilic drugs  
Low drug loading 

~ 140 -5 − -15 [53, 57, 97] 

Gelatine Hydrophilic drug delivery 
Biodegradable 

Drug leakage 
 

~85, 
140 

-24, -26 [60, 74-76, 131] 

Polyacrylamide Easy preparation 
Hydrophilic drug delivery 

Poor biodegradability 
Drug leakage 

105 -2 [77] 

Lipid Hydrophobic and hydrophilic drug delivery 
Easy preparation 

Burst drug release 60 − 110 -2 − -28 [59] 

Silicon Easy preparation 
Controllable size and shape 
Biodegradable 

Poor dispersity and stability  3000 7 − 15 [58, 67] 

Silica High drug loading 
Tunable size and drug release 
Hydrophobic and hydrophilic drug delivery 

Slow excretion 
Poor dispersity and stability  

91 5 [84] 

Gold Easy preparation 
Tunable optical properties 

Slow excretion 
Low drug loading 

40 − 80 -13 − -45 [63, 98] 

Fe3O4 MRI contrast 
Photothermal effect 

Slow degradation 
Poor dispersity and stability 

~80 -15 [88, 89] 

 

Polymeric nanoparticles 
Polymers are widely used materials for drug 

delivery, among which are PLGA, PCL, gelatin, and 
polyacrylamide. PLGA is a FDA approved polyester 
with tunable biodegradability and good 
biocompatibility [68], which can form nanoparticles of 
different size using methods such as 
nanoprecipitation and emulsion [52, 69-71]. In the 
preparation of inner core nanoparticles, PLGA with 
terminal carboxyl group are preferred. The terminal 
carboxyl groups generate a negatively charged 
surface that can repel the homo-charged outer leaflet 
of cell membrane, ensuring correct topological 
orientation of the cell membranes on the PLGA 
nanoparticles [72]. On the contrary, the size and drug 
loading have negligible if any effect on membrane 
coating efficiency [14, 36]. PCL is another type of 
polyester that has been used to construct inner cores, 
because of its biodegradability, biocompatibility and 
low glass transition temperature [73]. Compared with 
PLGA, PCL is more hydrophobic with slower 
degradation, and is thus more suitable for prolonged 
drug release. 

In addition to the hydrophobic polymers, 
hydrophilic biopolymers such as gelatin and 
polyacrylamide have also been used to build nanogels 
as cores of CNs [60, 74, 75, 78, 129]. Gelatin is a natural 
polypeptide derived from the connective tissues of 
animal, and has been widely used in cosmetic and 
pharmaceutical industries because of its 
biodegradability, biocompatibility and low 
antigenicity [74, 75]. After crosslinking, gelatin is able 
to form nanogels that can be used as carriers for 
hydrophilic drugs such as doxorubicin (Dox) and 
vancomycin, the release of which are controlled by 

cell membrane coating [76]. Synthetic hydrophilic 
polymer such as polyacrylamide has also been used to 
construct core nanogel of CNs for Dox [77]. 
Regardless of the materials, all these core nanogels 
were around 100 nm, with a significant negative 
charge (< -20 mV).  

Liposomes 
Polymeric nanoparticles are ideal carriers for 

hydrophobic drugs. Liposomes, on the contrary, are 
capable to deliver both hydrophilic and hydrophobic 
drugs [80]. More importantly, the surface properties 
and size of the liposomes could be easily engineered 
by varying the types of component lipids and by 
extrusion liposomes through membranes of different 
pore sizes, respectively. Recently, cell-membrane 
coated liposomes have been used for the delivery of 
emtansine [59].  

Silicon nanoparticles 
Silicon is a type of materials that have been 

widely used in the preparation of semiconductors, 
and can easily be processed at nanoscale in large 
quantity. Due to its good biodegradability and 
biocompatibility, silicon nanoparticles of different 
morphologies and functions have been evaluated in 
biomedical applications [80], and previous studies 
showed that disc-shaped microparticles were superior 
to sphere- or rod-shaped ones in regards to 
establishing interactions with endothelium, while disc 
with diameter of ~ 1 and >2 μm were able to target 
breast and lung cancer, respectively [81]. Dox-loaded 
silicon nanoparticles have been used as core 
nanoparticles which form leukocyte-CNs through 
electrostatic attraction with leukocyte-derived 
membrane of ~7.41 mV [58]. In addition to leukocyte 
membrane decoration, their disc-shape may also 
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contribute to the reduction of phagocytosis by Kuffer 
cells in the liver [82]. 

Mesoporous silica nanoparticles (MSNs) 
MSNs are silica-based nanoparticles with 

uniform cylindrical pores which could be loaded with 
drugs for cancer therapy [64, 65]. Different from 
silicon nanoparticles, the sizes of cylindrical pores and 
MSNs can both be tuned via different starting 
materials and preparation protocols during synthesis. 
As a result, MSNs have been used as carriers for 
cargos of different sizes, and it is also possible to 
control the drug release rate via adjusting the size of 
the pores [83]. In order to be encapsulated by cell 
membranes, MSNs with slightly positive surface 
charge was used [84]. 

Gold nanoparticles 
AuNP is another type of inner cores that have 

been enveloped with cell membranes. Compared with 
the previous discussed nanoparticles, gold 
nanoparticles are characteristic for their localized 
surface plasmon resonance (LSPR) effect, which could 
convert adsorbed light into heat for cancer 
hyperthermia therapy and light-controlled drug 
release. Zhang’s group first demonstrated that 70 nm 
AuNPs (with a negative ζ-potential at ~ -42.2 mV) 
could be coated with RBC membrane [46]. Lately, 
gold nanocage and gold nanoshell were used in order 
to maximize the LSPR effect [63, 85, 86], since hollow 
nanoparticle such as gold nanocage is more efficient 
in converting light into heat [87]. Regardless of their 
morphology, the sizes of those inner cores were 
60-100 nm in diameter, with ζ-potential at -13.2 and 
-16.5 mV [63, 85, 86]. 

Magnetic nanoparticles 
Very recently, clustered Fe3O4 magnetic 

nanoparticles (MNs) has been used as core of CNs for 
photothermal therapy of cancer [88], because MNs 
possess broad photoabsorption in the near-infrared 
(NIR) range and can convert the energy to heat [89]. 
MNs can also serve as contrast agents for magnetic 
resonance imaging (MRI) because of their 
superparamagnetic properties, and are biocompatible 
and biodegradable [90]. In order to achieve prolonged 
circulation and efficient encapsulation, MNs of ~80 
nm with ζ-potential at -15 mV were prepared for 
encapsulation. 

The success in demonstrating the versatility of 
cell membrane coating strategy using different core 
nanoparticles allows one to choose suitable 
nanoparticles for specific drug and purpose, as each 
type of core nanoparticles have their own pros and 
cons (Table 2). For instance, polyesters such as PLGA 

and PCL are suitable for sustained delivery of 
hydrophobic drugs, while nanogels and liposomes are 
compatible with hydrophilic drugs although suffering 
from fast drug leakage. Inorganic nanoparticles can be 
easily engineered into different sizes and shapes, the 
adjustment of which parameters might be used to 
regulate the pharmacokinetic behavior and cellular 
uptake of nanoparticles [16, 81, 91-93]. However, most 
inorganic nanoparticles showed slow degradation 
and elimination in the body, which could be a 
potential problem for biomedical applications. It is 
clear therefore that the core nanoparticles play a 
crucial role in determining the drug releasing, size 
and shape of CNs, and should be carefully crafted for 
different purposes. 

Fusion process 
The prepared cell membrane vesicles and core 

nanoparticles need to be fused together to obtain CNs. 
The fusion process should be efficient, but must not 
induce drug leakage and protein denaturation. 
Membrane extrusion and ultrasonic treatment are the 
two most frequently used methods in the literatures 
[37, 60, 61, 63, 86, 94-97]. Membrane extrusion 
technique was firstly employed, which involves 
sequential extrusion of samples (mixture of cell 
membrane vesicles and core nanoparticles) through 
pores of different sizes. Although this technique is 
effective, large scale preparation is challenging. 
Sonication has therefore been explored to induce the 
fusion of PLGA nanoparticles with platelet membrane 
derived vehicles that display numerous 
“self-recognized” proteins [52]. The frequency, power 
and duration of the sonication process should be 
optimized to maximize fusion efficiency and 
minimize protein denaturation and drug leakage. For 
both techniques, the cell membrane-to-nanoparticles 
ratio should be carefully controlled to ensuring 
complete surface coverage with cell membranes [37, 
98]. Recently, microfluidic electroporation-based 
method was developed to achieve complete 
membrane coverage on the core nanoparticles, during 
which process pulse voltage, duration, and flow 
velocity should be optimized [88]. 

Characterizations 
Characterizations of resulting CNs for their 

physiochemical and biological functions are necessary 
before biological evaluation. Since the cell membranes 
can be distinguished from core nanoparticles in 
electron density, surface charge, permeability and 
protein composition, we can determine whether the 
cell membranes have been coated on the nanoparticles 
or not [37, 52, 77, 99]. 
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Physicochemical properties 
Transmission electron microscopy (TEM) is 

regarded as a golden standard to characterize the 
core-shell structure of CNs, because the cell 
membranes that composed of lipids and proteins are 
usually of different electron density compared with 
the inner cores [37]. Figure 2A shows typical TEM 
images of polymeric inner core, nano-sized membrane 
vesicle and the fusion nanoparticles. The CNs, under 
TEM, are white spherical core nanoparticles 
enveloped by light-gray circles indicating the 
coverage of cell membranes. On the contrary, the 
inner cores are spherical nanoparticles in sharp 
contrast with the background, and the hollow cell 
membrane derived vesicles are white circles due to 

the collapse of the vesicles. Membrane coating would 
change the size and ζ-potential of nanoparticles (Fig. 
2B) [53], and could significantly enhance the colloidal 
stability of nanoparticles. For instance, PCL 
nanoparticles and MSNs stabilized by surfactants or 
interparticular electrostatic repulsion would 
aggregate in PBS during prolonged storage. In sharp 
contrast, their corresponding CNs were resistant to 
hyperionic treatment, due to the presence of 
ziwitterionic membrane protein (Fig. 2C) [60, 72]. 
Membrane coating could also retarded the drug 
release from the core nanoparticles by placing a 
diffusion barrier surrounding the particles (Fig. 2D) 
[77]. 

 

 
Figure 2. Characterization of cell-membrane coated nanoparticles. (A) Typical TEM images of bare core nanoparticle, cell-membrane vesicle, and the fused 
cell-membrane coated nanoparticle. (B) The change in the size and ζ–potential of nanoparticles before and after cell-membrane coating. (C) The influence of 
cell-membrane to polymer ratio and trypsin-treatment on the stability of nanoparticles in PBS. (D) Dox release profiles from bare Dox loaded vesicles and Dox 
loaded platelet-mimicking vesicles under acidic and neutral pH. Representative SDS-PAGE result showing that the membrane proteins on RBCs were reserved after 
being processed into RBC vesicles (RVs) and RVPNs. (F) Western-blot and flow cytometry assay demonstrating the retention of characteristic membrane proteins 
on CNs. (G) TEM images of CNs reacted dynabeads® or colloidal gold that coated with antibodies against either exoplasmic or cytoplasmic domains of 
trans-membrane proteins. Reproduced with permission from reference [53, 69, 72, 77, 98, 116]. 
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Biological properties 
The above mentioned characterizations only tell 

whether cell membranes decoration is successful or 
not, but it is more important to verify the orientation 
and biological activity of the cell membranes on the 
surface of nanoparticles. Sodium dodecyl sulfate 
polyacrylamide gel electrophoresis (SDS-PAGE) and 
Western blot, widely used in molecular biology to 
monitor the protein expression profiles of cells [61], 
are therefore adopted as standard methods to 
characterize membrane proteins on CNs. Typically, 
SDS-PAGE is performed first to compare the protein 
profiles of source cell membranes, extracted 
membranes and derived nanoparticles (Fig. 2E). The 
presence of specific makers (such as CD47 on RBC 
membrane coated nanoparticles [53]) were further 
verified by Western-blot or flow cytometry (Fig. 2F). 
Comparable protein profiles and the preservation of 
protein markers are considered as good indicators for 
retained biological functions after membrane coating. 
However, the cell membrane is asymmetric, and thus 
correct topological orientation of the membranes on 
the core nanoparticles is also crucial for the 
cell-membrane coated nanoparticles to exert their 
desired functions. Antibody decorated Dynabeads® 
and colloidal gold conjugated antibodies could be 
used to characterize the orientation of cell membranes 
(Fig. 2F). In these circumstances, high-quality 
antibodies that only recognize the extracellular 
domain of targeted protein are required. 

Recent applications in cancer therapy 
Most anticancer drugs suffer from severe side 

effects that limit their clinic application. 
Nanomedicine prepared from PEGylated and 
bioresponsive materials have shown great successes 
in improving the therapeutic index of these anticancer 
drugs [100-102]. Recently, CNs have received many 
attentions because of their unique advantages, one of 
which is their easy functionalization. For instance, 
biomolecules such as CD47, glycans and sialic acid 
moieties can be introduced onto the surface of 
nanoparticles via enveloping them with membranes 
from RBCs to realize prolonged blood circulation [72, 
98, 103]. Tumor targeting capability can be introduced 
to nanomedicine by decorating synthetic 
nanoparticles with membranes from macrophages, 
cancer cells or platelets [57, 59, 77]. In this section, we 
summarized the applications of CNs in cancer 
therapy with a focus on their extraordinary efficiency 
in vivo.  

RBC derived long circulating CNs  
Tumors are characteristic for their EPR effect, 

which preferentially traps nanoparticles and 

macromolecules. To maximize the intratumoral 
accumulation of nanoparticles, prolonged blood 
circulation of nanoparticles is required. The 
state-of-art techniques to improve the half-lives of 
nanoparticles include PEGylation, zwitterionization, 
and the recently developed self-peptide decoration 
[104, 105]. Zhang’s Lab innovatively explored RBC 
membrane-camouflaged nanoparticles as 
long-circulating nanoparticles for cancer therapy [37]. 
The half-life of DiD-labeled RBC 
membrane-camouflaged nanoparticles was 
significantly longer than PEGylated nanoparticles 
(39.6 v.s. 15.8 h), with substantial amount of 
camouflaged nanoparticles retained in blood even 72 
h after injection (Fig. 3A). The prolonged circulation 
of RBC-CNs is mainly due to their 
membrane-oriented CD47 which can inhibit their 
phagocytosis by macrophages residing in RES 
systems (liver, lungs and spleen) (Fig. 3B) [37]. In 
addition, RBC membrane coating could also minimize 
accelerated blood clearance – a phenomenon 
commonly observed in PEGylated nanoparticles 
during repeated dosing [96]. Whenever necessary, one 
could easily introduce active targeting modalities into 
the system via lipid insertion, membrane fusion or 
covalent conjugation methods to improve cell binding 
and cellular entry of anticancer drugs [38, 47, 106]. 

 
 

 
Figure 3. Pharmacokinetic behavior and biodistribution of DiD-loaded 
nanoparticles. The pharmacokinetic profiles (A) and biodistrubution (B) of RBC 
membrane coated, PEGylated and bare nanoparticles after intravenous injection 
through the tail vein of mice. Reproduced with permission from reference [37]. 
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Piao and colleagues have used this technology to 
improve the hyperthermia therapy of gold nanocages 
on primary tumor (Fig. 4) [86]. As we discussed 
above, gold nanocages have superior photothermal 
property, but their biocompatibility and selectivity are 
not satisfactory. RBC membrane coating dramatically 
prolonged the half-life of gold nanocage in circulation 
from 1 to 9.5 h, resulting in a two-fold increase in their 
intratumoral deposition at 24 and 48 h after injection 
(Fig. 4A). Subsequent localized laser irradiation (850 
nm, 1 W/cm2, 10 min) raise the temperature of tumors 
in mice treated with RBC membrane coated gold 
nanocage (RBC-AuNC) to 42℃ and above (Fig. 4B-C), 
which induced the apoptosis and necrosis of cancer 
cells. As a result, the RBC-AuNC treated mice 
survived longer than other groups with complete 
tumor regression observed (Fig. 4D). Instead of 
AuNC, Rao et al. used clustered Fe3O4 magnetic 
nanoparticles as photosensitizer and contrast agent 
for MRI, and achieved enhanced intratumoral 
accumulation and anticancer activity when compared 
with bare magnetic nanoparticles [88]. 

For most types of cancer, metastasis is one of the 
major causes of death. To inhibit and eliminate 
metastasis tumor, Li’s group designed a novel 
RBC-mimetic vesicle-coated hybrid polymeric NPs 
(RVPNs) that could simultaneously target both 
primary breast cancer and their lung metastasis (Fig. 
5) [53]. The RVPNs, when co-delivered with tumor 
penetrating peptide iRGD [107-109], showed 
increased accumulation than bare NPs in both 
primary tumors (5.59-fold) and their lung metastasis 
sites (4.2-fold) with enhanced tumor penetration (Fig. 
5A-B). The growth of primary tumor was inhibited by 
90% while lung metastasis was reduced by 95% 
without noticeable histological changes in major 
organs (Fig. 5C-E). To further improve the specificity 
of the treatment, they included photosensitizer DiR 
into the RBC membrane, and created NIR responsive 
nanoparticles for simultaneous tumor imaging, 
imaging guided hyperthermia therapy and 
thermo-triggered chemotherapy, receiving even 
better antitumor efficacy [97]. 

 

 
Figure 4. Pharmacokinetic behavior and anticancer activity of cell membrane coated gold nanocages. (A) The retention and distribution of bare 
poly(vinylpyrrolidone) gold nanocage (PVP-AuNC) and RBC-AuNC after intravenous injection. Thermographs (B) and the temperature (C) in the tumors of mice 
treated with PVP-AuNC and RBC-AuNC combined with laser irradiation (850 nm, 1 W/cm2, 10 min). (D) The mouse survival ratio from different treatment groups. 
Reproduced with permission from reference [86]. 
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Figure 5. The biodistribution, anticancer activity and toxicity of RVPNs co-delivered with iRGD. (A) The distribution of RVPNs/iRGD and control formulations in 
the lungs and tumors. (B) 2D- and 3D-reconstructed confocal laser scanning microscope (CLSM) images of the tumor/lung distribution of RVPNs/iRGD and control 
formulations in the primary tumors and the lungs with metastatic foci 24 h post i.v. administration. (C) The growth of primary tumor and (D) the number of 
pulmonary metastatic nodules in mice after repeated treatments. (E) Representative H&E staining images of tumor sections treated with different formulations. 
Reproduced with permission from reference [53].  

 
Aside from successful inhibition of primary and 

metastasized tumors, prolonged antitumor effect is 
required. Inducing antitumor immunity is one 
promising way to achieve this goal. Guo and 
colleagues thus delivered a mannose decorated RBC 
coated nanoparticle (Man-RBC-NPhgp) (Fig. 6) [96]. 
Man-RBC-NPhgp significantly improved the 
accumulation and retention of hgp10025-33 in draining 
lymph node, with enhanced uptake and activation of 
antigen presenting cells (Fig. 6A-B). Repeated 
vaccination with the nanoparticles induced profound 
protection against melanoma in mice both 
preventatively and therapeutically. The 
pre-vaccinated mice became more resistant to the 
formation of melanoma after inoculation, while the 
tumor growth was greatly retarded after vaccination 
(Fig. 6C). More importantly, the lung metastasis of 

melanoma was also reduced by more than 70% (Fig. 
6D). 

Stem and immune cells derived tumor 
microenvironment targeting CNs 

Circulating CNs must accumulate in tumors to 
be effective. To achieve this goal, tumor 
microenvironment-responsive materials and 
neovasculature targeting ligands have been 
extensively explored, taking advantages of the 
pathological features of tumors [110, 111]. Actually, 
cells including mesenchymal stem cells (MSCs) and 
immune cells are actively recruited to the tumors in 
vivo [112, 113]. For instance, the process of tumor 
formation and progression requires active recruitment 
and proliferation of circulating stem cells, majority of 
which are mesenchyme stem cells (MSCs) [114, 115]. 
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Given the important role of MSCs, Naama et al. 
produced MSCs-derived nanoghosts (NGs) as a 
targeted drug delivery system for the treatment of 
cancer [116]. The NGs exhibited desired selectivity 
towards two kinds of cells PC3 and MCF7. Due to 
their great affinity for tumor, the growth of tumor was 
significantly retarded upon a single intraperitoneal 
(IP) injection in vivo. Gao and co-workers took one 
step further and coated their gelatin nanogels with 

membranes derived from MSCs for tumor specific 
delivery of Dox [60]. MSCs-decorated CNs 
(SCMGs-Dox) significantly improved the cellular 
uptake, intratumoral accumulation and intratumoral 
penetration of Dox when compared with bared 
gelatin nanoparticles (Gelatin-Dox) and free Dox (Fig. 
7A-D). SCMGs-Dox was the most potent in inhibiting 
the growth of tumors (Fig 7E). 

 

 
Figure 6. The efficacy of Man-RBC-NPhgp. (A) The image of LN and spleen at 24 h after intradermal injection of Man-RBC-NPhgp. (B) Dendritic cells maturation 
induced by combination Man-RBC-NPhgp with monophosphoryl lipid (MPLA) in vitro, probed by the expression of CD86 and secretion of TNF-α, IL-12, and IFN-γ 
from BMDCs treated with different formulations. (C) Efficacy of Man-RBC-NPhgp in preventing tumor occurrence in vivo. (D) The growth inhibition of established 
tumor by different vaccines. Reproduced with permission from reference [96]. 
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Figure 7. Cancer targeting and inhibition capability of MSC-CNs. CLSM images (A) and quantitative analysis (B) of the HeLa cells after 1 h incubation with withfree 
Dox, gelatin-Dox, and SCMGs-Dox. Scale bar = 25 µm. (C) Intratumoral accumulation of doxorubicin delivered by gelatin or SCMGs 24 h after administration. (D) 
Frozen section of the tumor 24 h after FITC-SCMGs (green) injection. Scale bar = 100 µm. (E) Tumor volume changes in mice received different treatments. 
Reproduced with permission from reference [60]. 

 
 
Tumor has capability to induce chronic 

inflammation which would recruit leukocytes 
towards tumors [117, 118]. Parodi and colleagues 
encapsulated the silicon particles with leukocytes 
derived membranes to obtain leukolike vectors 
(LLVs) (Fig. 8) [58]. LLVs could enter inflamed 
endothelial cells (TNF-α pretreated) through LFA-1 
mediated pathway involving the reorganization of 
intracellular actin filaments into basket-like 
structures, and avoided lysosomal sequestration, 
while bare silicon particle could not (Fig. 8A-B). In a 
cellular blood vessel model (Fig. 8C), around 70% of 
Dox-loaded LLV (Dox LLV) penetrated through the 
monolayer form by endothelia cells and reached the 
beneath cancer cells, compared with 30% penetration 
for bare particles. Dox was therefore delivered across 
the cell monolayer to kill the beneath residing cancer 
cells. Dox LLVs also increased the intratumor 
deposition of drug (2-fold) with slower liver clearance 
(Fig. 8D). In consistent with these results, He and 
colleagues found that capsule-cushioned leukocyte 
membrane vesicles (CLMVs) showed lower 
accumulation in the liver and higher deposition in the 
tumor when compared with bare vesicles [113]. In 
addition to leukocytes, cell membranes from 
monocytes and macrophages have also been used to 
decorate synthetic nanoparticles such as PLGA 
nanoparticles, gold nanoshells, MSNs and liposomes 
[59, 63, 119, 120]. For instance, Cao and colleagues 

coated their emtansine-loaded liposomes with 
macrophage membranes to combat lung metastasis of 
breast cancer [59]. The CNs showed strong affinity for 
cancer cells via the interaction between integrin α4 (on 
macrophage membrane) and vascular cell adhesion 
molecule-1 (VCAM-1, on cancer cells), achieving 2- to 
3-fold increase in accumulation in lung metastasis 
sites and reduced number of metastasis nodules. 

Cancer cell derived CNs for tumor cell 
targeting 

The capability of a nanomedicine to recognize 
cancer cells after their intratumoral accumulation is 
crucial for subsequent cellular entry, which is another 
critical step during drug transportation. The most 
popular strategy is decorating nanomedicine with 
ligands that can bind to specifically overexpressed 
receptors on cancer cells [121]. Fang et al. first 
explored homotypic targeting strategy for 
MDA-MB-435 cancer cell-targeted drug delivery, 
where they coated PLGA nanoparticles with plasma 
membranes derived from the same type of cancer cells 
[61]. The cancer cell coated nanoparticles (CCNPs) 
showed strong affinity for MDA-MB-435 cancer cells 
resulting in 20- and 40-fold higher cellular uptake 
compared with bare PLGA nanoparticles and 
RBC-CNs, respectively (Fig. 9A), while no difference 
was observed on human foreskin fibroblasts. The 
homotypic affinity between cancer cell membranes is 
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believed to be derived from interaction between 
carcinoembryonic antigen and galectin-3 expressed 
on cancer cells [122] Sun and colleagues fabricated a 
4T1 cell membrane-coated biomimetic drug delivery 
platform with the same strategy to combat breast 
cancer and its metastasis in lungs [57]. In consistent 
with previous observation by Fang and co-workers, 
the 4T1 derived CNs (CPPNs) preferentially targeted 
to 4T1 cancer cells but not lung fibroblast WML2 cells 
and macrophage RAW264.7 cells. Furthermore, the 
accumulation of model drug in primary tumor and 
metastasized site in lungs increased by 3.3- and 
2.5-fold when delivered with CPPNs instead of bare 
nanoparticles (Fig. 9B). After multiple dosing, both 

the growth of orthotopic tumor and the lung 
metastasis were greatly inhibited (Fig. 9C-D). They 
further decorated Dox-loaded gold nanocages with 
cancer cells membranes in the aim of realizing 
simultaneous tumor imaging and dual-modality 
treatment [85]. Upon light irradiation, gold nanocages 
produced heat that eradicate surrounding cancer cells 
via hyperthermia effect and at the same time could 
trigger the release of Dox from cell membrane-coated 
nanocages to exert chemotherapy against cancer cells. 
In addition to cancer targeted drug delivery, cancer 
cell membrane coated nanoparticles could also be 
used as imaging contrast and vaccine, which would 
facilitate further treatment of cancer [57, 61, 123]. 

 
 
 

 
Figure 8. Tumor homing efficiency of LLVs. (A) Quantification of particle adhesion to inflamed endothelium (pretreated with TNF-α) following 30 min of flow. 
**P<0.01, ***P<0.001. (B) Confocal microscopy of HUVEC treated with NPS (red) or LLV (green) for 3 h show reorganization of actin filaments (orange). (C) Schematic 
of a transwell chamber for assaying transport across an endothelial monolayer, and its application in the studies of HUVEC (endothelial, brown) and MDA-MB-231 
(cancer, blue) cell viability. (D) Time-dependent accumulation of systemically administered J774-derived LLV (green) and NPS particles (red) in the liver and B16 
melanoma tumor of live mice. Reproduced with permission from reference [58]. 
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Figure 9. Homotypic targeting and treatment of tumor with cancer cell membrane coated nanoparticles. (A) Flow cytometric analysis of MDA-MB-435 cells 
incubated with CCNP and control formulations. (B) Quantitative analysis of tumor and lung distribution of PTX delivered with CPPNs. (C) Tumor-growth profiles 
in mice treated with CPPNs or control groups. (D) In vivo bioluminescence imaging of the mice bearing lung metastasis of the 4T1 bloodstream metastasis model. 
Reproduced with permission from reference [69]. 

 

Platelets derived CNs for circulating tumor 
cell targeting 

Recent studies on breast cancer showed that 
cancer cells are able to disseminate long before the 
establishment of detectable primary tumor [124, 125]. 
These findings highlight the importance to target and 
eradicate circulating tumor cells (CTCs). Platelets play 
an important role during tumor metastasis, because 
they could recognize and interact with 
CD44-overexpressing CTCs in blood via P-selectin 
and form an outer shell which aid the survival of 

CTCs during circulation [77, 126]. At the same time, 
the platelets could also target niches for cancer 
metastasis through recognizing exposed extracellular 
matrix [127]. However, platelets themselves are not 
able to kill cancer cells, so they should be armed to 
exert anticancer activity. For instance, decorating 
platelets with immune-modulating anti-PDL1 
antibody can promote the delivery of anti-PDL1 
antibody to the tumor sites and target CTCs, and 
therefore inhibit the tumor recurrence and metastasis 
[128].  
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Figure 10. Circulating cancer cell binding and eradication metastasis efficiency of platelet mimicking nanoparticles. (A) Extracellular distribution of TRAIL loaded 
nanovehicle (TRAIL-NV) and TRAIL loaded platelet membrane coated nanovehicle (TRAIL-PM-NV) after 2 h incubation. (B) The induced apoptosis of MDA-MB-231 
cells treated with TRAIL-Dox-NV and TRAIL-Dox-PM-NV after incubation for 12 h using the APO-BrdU TUNEL assay. (C) Region-of-interest (ROI) analysis of 
fluorescent intensities from the tumors and normal tissues. (D) Representative images of the MDA-MB-231 tumors after treatment with different TRAIL/Dox 
formulations at day 16 (from top to bottom, 1: saline, 2: TRAIL-Dox-NV, 3: TRAIL-PM-NV, 4: Dox loaded platelet membrane coated nanovehicle (Dox-PM-NV), 5: 
TRAIL-Dox-PM-NV) at TRAIL dose of 1 mg·kg−1 and Dox dose of 2 mg·kg−1. (D) Quantification of visible metastatic nodules. i) Saline; ii) TRAIL-Dox-NV; iii) 
TRAIL-Dox-PM-NV. Reproduced with permission from reference [77]. 

 
Hu et al. designed platelet-mimicking vesicles for 

the delivery of Dox and TRAIL (TRAIL-Dox-PM-NV) 
[77]. The surface-conjugated TRAIL here bond to the 
DR4 and DR5 on the tumor cell surface, and 
augmented the cellular uptake of TRAIL-Dox-PM-NV 
by cancer cells [129, 130]. Indeed, the 
TRAIL-Dox-PM-NV showed strong affinity for 
MDA-MB-231 human breast cancer cells, and induced 
profound cell apoptosis after 12 h incubation (Fig. 
10A). The high affinity of TRAIL-Dox-PM-NV for 
MDA-MB-231 cells also significantly improved the 
intratumoral accumulation of anticancer drug (Fig. 
10B). More importantly, TRAIL-Dox-PM-NV 
treatment killed the intravenous injected 
MDA-MB-231 cells more efficiently than Dox and 
TRAIL-loaded nanovehicle (TRAIL-Dox-NV), and the 
number of lung metastasis sites reduced to less than 
10% of the non-treated groups (Fig. 10C). Although 
the platelet-membrane-coated nanomedicine can 
specifically target tumor sites, the inflammation 
signals released by the tumor was not strong enough 
to induce high intratumoral accumulation of 
nanomedicine. To address this issue, the same group 
developed a Arg-Gly-Asp (RGD) decorated and 
tumor necrosis factor α (TNF-α) loaded nanogel as 

signal transmission nanocarrier A (NCA) for 
combination use with their platelet-membrane-coated 
nanocarrier B (NCB), a platelet membrane-coated 
paclitaxel (PTX) loaded acid responsive dextran 
nanostructure [131]. NCA can bind to neovasculatures 
in the tumor and amplify inflammation signals which 
then recruited the NCB to exert antitumor activity.  

Conclusion 
 Successful cancer therapy requires drugs being 

specifically delivered to the tumors. Carriers made of 
synthetic materials or derived from living objects 
have been explored. Recently developed cell 
membrane-camouflaged strategies created 
nanocarriers from both synthetic and biological 
materials, and thus are versatile in cargo 
encapsulation and feasible in surface 
functionalization. This strategy has been proven to be 
efficient in delivering drugs ranging from small 
molecular, biomacromolecules to functional 
nanoparticles, and also feasible in achieving 
prolonged circulation, tumor homing, cancer cell 
specific targeting and etc, using cell membranes 
harvested from RBCs, platelets, macrophages, cancer 
cells, stem cells and others. The success of CNs in 
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drug delivery mainly attribute to two aspects. First, 
cell membrane enveloping greatly improve the 
stability of synthetic nanoparticles during 
transportation, minimize the clearance of 
nanoparticles by macrophages and monocytes, and 
enhance affinity of nanoparticle for cancer cells. 
Second, the core nanoparticles enable the delivery of 
various treatments to the cancer cells including 
chemotherapy, photothermal therapy, 
immunotherapy and etc. Although it is obvious that 
cell membrane-camouflaged nanoparticles hold great 
potential in cancer therapy, there are challenges must 
be addressed before the clinical translation of the 
CNs. The biggest and maybe also the most important 
challenge is their large scale production with 
acceptable batch-to-batch variation. The limitation of 
the source cell membrane is one of the causes, because 
some types of cells such as stem cells are rare in the 
body, while some others such as leukocytes are highly 
heterogeneous. The procedures used for fusion must 
be scalable and optimized for maximized efficiency. 
Recent effort to achieve complete membrane coverage 
using microfluidic electroporation technology is an 
important attempt to achieve this goal. Quality 
control of the CNs is another major challenge must be 
resolved. The source cell membrane must be free of 
contamination such as pyrogen and virus, and 
portions of CNs with denatured proteins should be 
eliminated in order to prevent potential immune 
response against endogenous antigens. Given the 
great potential of cell membrane coated nanomedicine 
in cancer therapy, however, we believe these issues 
will be addressed in the near future after active 
pursuing in the area, and the cell membrane coated 
nanomedicine would make a great impact to the drug 
delivery technology. 

Abbreviation 
PEG, poly(ethylene glycol); EPR, enhanced 

penetration and retention; CPPs, cell penetrating 
peptides; ABC, accelerated blood clearance; CNs, cell 
membrane-coated nanomedicines; RBC, red blood 
cell; WBC, white blood cell; PLGA, 
poly(lactic-co-glycolic acid); PCL, 
poly(ε-caprolactone); MSN, mesoporous silica 
nanocapsules; AuNPs, gold nanoparticles; MSNs, 
mesoporous silica nanoparticles; LSPR, localized 
surface plasmon resonance; MNs, magnetic 
nanoparticles; NIR, near-infrared; MRI, magnetic 
resonance imaging; TEM, transmission electron 
microscopy; SDS-PAGE, sodium dodecyl sulfate 
polyacrylamide gel electrophoresis; RBC-AuNC, RBC 
membrane coated gold nanocage; Man-RBC-NPhgp, 
mannose decorated RBC coated nanoparticle; MSCs, 
mesenchymal stem cells; NGs, nanoghosts; Dox, 

doxorubicin; LLVs, leukolike vectors; CLMVs, 
capsule-cushioned leukocyte membrane vesicles; 
VCAM-1, vascular cell adhesion molecule-1; CCNPs, 
cancer cell coated nanoparticles; CTCs, circulating 
tumor cells; TRAIL-Dox-PM-NV, TRAIL decorated 
doxorubicin loaded platelet-mimicking vesicles; 
TRAIL-Dox-NV, TRAIL-decorated doxorubicin 
loaded nanovehicle; RGD, Arg-Gly-Asp; TNF-α, 
tumor necrosis factor α; PTX, paclitaxel; NCA, 
nanocarrier A; NCB, nanocarrier B. 
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