A H₂O₂-Responsive Theranostic Probe for Endothelial Injury Imaging and Protection

Cheng-Kun Wang, Juan Cheng, Xing-Guang Liang, Chao Tan, Quan Jiang, Yong-Zhou Hu, Ying-Mei Lu, Kohji Fukunaga, Feng Han and Xin Li

Table of Contents

Synthesis and Characterization of AP1-AP4	S2
Supplementary Figures	
Figure S1	S4
Figure S2	S4
Figure S3	S5
Figure S4	S5
Figure S5	S6
Figure S6	S6
Figure S7	S7
Figure S8	S7
Figure S9	S8
Figure S10	S8
Figure S11	S9
Figure S12	S9
Figure S13	S10
Figure S14	S10
Figure S15	S10
Figure S16	S11
Figure S17	S11
Figure S18	S12
Figure S19	S12
Figure S20	S13
Figure S21	S14
Figure S22	S15
Figure S23	S15
Figure S24	S16
Figure S25	S16
Figure S26	S16
NMR traces of AP	S17

Synthesis and characterization of AP1-AP4

General procedures

To a stirred solution of aspirin (2.0 eq) in CH_2Cl_2 at 0°C was added HOBT (1.5 eq) and EDC•HCl (1.5 eq). After 20 min, the fluorophore (1.0 eq) and *N*, *N*-diisopropylethylamine (2.5 eq) were added subsequently and the resulting mixture was stirred at ambient temperature and monitored by thinlayer chromatography analysis. After the disappearance of the fluorophore, H₂O was added to quench the reaction and the mixture was diluted with CH_2Cl_2 . The biphasic mixture was then transferred to a separatory funnel and the organic layer was washed sequentially with H₂O and brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The remaining residue was purified by flash column chromatography (SiO₂) to give the product.

Characterization

White solid (87% yield)

M.p.: 139.4-140.2 °C

 $\mathbf{R}_{\mathbf{f}} = 0.42$ (5:1, petroleum ether:EtOAc).

¹H NMR (500 MHz, CDCl₃, δ): 8.49 (s, 1H), 8.29 (d, J = 8.0, 1H), 8.08 (d, J = 8.5 Hz, 1H), 8.04 (d, J = 9.0 Hz, 1H), 7.89 (d, J = 8.5 Hz, 1H), 7.70 (s, 1H), 7.68 (d, J = 8.0 Hz, 1H), 7.44 – 7.40 (m, 2H), 7.22 (d, J = 8.0 Hz, 1H), 2.73 (d, J = 1.0 Hz, 3H), 2.32 (d, J = 1.5 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃, δ): 197.94, 169.85, 162.99, 151.44, 150.37, 136.31, 135.00, 134.67, 132.37, 131.43, 130.80, 130.05, 128.36, 126.40, 124.91, 124.25, 122.43, 122.33, 118.97, 26.80, 21.15.

IR (KBr, cm⁻¹): 3442, 1676, 1362, 1249, 1142, 902, 745.

ESI-HRMS (*m/z*): [M+H]⁺ calc'd. for C₂₁H₁₇O₅: 349.1076; found 349.1079.

White solid (79% yield)

М.р.: 153.9-155 °С

 $\mathbf{R}_{\mathbf{f}} = 0.52$ (4:1, petroleum ether:EtOAc).

¹**H NMR (500 MHz, CDCl₃, δ):** 8.23 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.72 (d, *J* = 10.0 Hz, 1H), 7.70 (dt, *J* = 7.8, 1.5 Hz, 1H), 7.55 (d, *J* = 8.5 Hz, 1H), 7.43 (td, *J* = 7.5, 1.0 Hz, 1H), 7.22 (d, *J* = 2.5 Hz, 1H), 7.21 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.16 (dd, *J* = 8.5, 2.0 Hz, 1H), 6.43 (d, *J* = 10.0 Hz, 1H), 7.16 (dd, *J* = 8.5, 2.0 Hz, 1H), 6.43 (d, *J* = 10.0 Hz, 1H), 7.16 (dd, *J* = 8.5, 2.0 Hz, 1H), 6.43 (d, *J* = 10.0 Hz, 1H), 7.16 (dd, *J* = 8.5, 2.0 Hz, 1H), 6.43 (d, *J* = 10.0 Hz, 1H), 7.16 (dd, *J* = 8.5, 2.0 Hz, 1H), 6.43 (d, *J* = 10.0 Hz, 1H), 7.16 (dd, *J* = 8.5, 2.0 Hz, 1H), 6.43 (d, *J* = 10.0 Hz, 1H), 7.16 (dd, *J* = 8.5, 2.0 Hz, 1H), 6.43 (d, *J* = 10.0 Hz, 1H), 7.16 (dd, *J* = 8.5, 2.0 Hz, 1H), 6.43 (d, *J* = 10.0 Hz, 1H), 7.16 (dd, *J* = 8.5, 2.0 Hz, 1H), 6.43 (d, *J* = 10.0 Hz, 1H), 7.16 (dd, *J* = 8.5, 2.0 Hz, 1H), 6.43 (d, *J* = 10.0 Hz, 1H), 7.16 (dd, *J* = 8.5, 2.0 Hz, 1H), 6.43 (d, *J* = 10.0 Hz, 1H), 7.16 (dd, *J* = 8.5, 2.0 Hz, 1H), 6.43 (d, *J* = 10.0 Hz, 1H), 7.16 (dd, *J* = 8.5, 2.0 Hz, 1H), 6.43 (d, *J* = 10.0 Hz, 1H), 7.16 (dd, *J* = 8.5, 2.0 Hz, 1H), 6.43 (d, *J* = 10.0 Hz, 1H), 7.16 (dd, *J* = 8.5, 2.0 Hz, 1H), 6.43 (d, *J* = 10.0 Hz, 1H), 7.16 (dd, *J* = 8.5, 2.0 Hz, 1H), 6.43 (d, *J* = 10.0 Hz, 1H), 7.16 (dd, J = 10.0 Hz, 1H), 7.16 (dd, J = 10.0 Hz, 1H), 7.16 (dd, J = 10.0 Hz, 1H), 7.16 (dd

1H) 2.32 (s, 3H).

¹³C NMR (126 MHz, CDCl₃, δ): 169.75, 162.42, 160.38, 154.94, 153.21, 151.53, 142.93, 135.24, 132.32, 128.86, 126.43, 124.31, 122.03, 118.68, 117.09, 116.43, 110.83, 21.13.
IR (KBr, cm⁻¹): 3431, 1740, 1512, 1483, 1401, 1244, 1048, 915, 754.

ESI-HRMS (*m/z*): [M+H]⁺ calc'd. for C₁₈H₁₃O₆: 325.0712; found 325.0729.

AP3

White solid (44% yield)

M.p.: 181.6-183.3 °C

 $\mathbf{R}_{\mathbf{f}} = 0.40$ (5:1, petroleum ether:EtOAc).

- ¹**H NMR (500 MHz, CDCl₃, δ):** 8.67-8.64 (m, 2H), 8.39 (dd, *J* = 8.0, 1.5 Hz, 1H), 8.31 (dd, *J* = 8.5, 1.0 Hz, 1H), 7.80-7.77 (m, 1H), 7.76 (td, *J* = 7.8, 1.5 Hz, 1H), 7.64 (d, *J* = 8.0 Hz, 1H), 7.50 (dt, *J* = 7.5, 1.0 Hz, 1H), 7.27 (dd, *J* = 8.0, 1.0 Hz, 1H), 3.58 (s, 3H), 2.26 (s, 3H).
- ¹³C NMR (126 MHz, CDCl₃, δ): 169.80, 164.43, 163.89, 162.32, 151.76, 151.67, 135.60, 132.38, 131.94, 131.92, 129.48, 128.02, 127.63, 126.62, 125.55, 124.54, 123.05, 121.78, 120.82, 119.88, 27.22, 21.11.

IR (KBr, cm⁻¹): 3438, 1755, 1660, 1452, 1234, 1148, 1077, 917, 780. **ESI-HRMS (***m*/*z***):** [M+H]⁺ calc'd. for C₂₂H₁₆NO₆: 390.0978; found 390.0980.

AP4

Yellow solid (64% yield)

М.р.: 228.9-231.2 °С

 $\mathbf{R}_{\mathbf{f}} = 0.40$ (10:1, dichloromethane:MeOH).

- ¹H NMR (500 MHz, CDCl₃, δ): 8.26 (s, 1H), 8.25 (d, J = 15 Hz, 2H), 8.21 (dd, J = 7.5, 1.5 Hz, 1H), 7.84 (d, J = 16 Hz, 1H), 7.69-7.64 (m, 2H), 7.60-7.55 (m, 3H), 7.43 (dt, J = 7.8, 1.0 Hz, 1H), 7.36(d, J = 8.5 Hz, 2H), 7.20 (dd, J = 8.0, 0.5 Hz, 1H), 4.47 (s, 3H), 2.31 (s, 3H), 1.87 (s, 6H), 1.63 (s, 3H).
- ¹³C NMR (126 MHz, CDCl₃, δ): 182.73, 169.82, 162.44, 154.95, 153.19, 151.42, 143.14, 141.65, 135.16, 132.98, 132.98, 132.36, 131.78, 130.31, 129.90, 126.46, 124.27, 123.09, 122.73, 122.19, 115.26, 113.71, 52.88, 37.56, 26.90, 26.90, 21.18.

IR (KBr, cm⁻¹): 3451, 1752, 1534, 1402, 1213, 1123, 1014, 916, 760.

ESI-HRMS (*m/z*): [M+H]⁺ calc'd. for C₂₈H₂₆NO₄⁺: 441.1935; found 441.1937.

Figure S1. Fluorescence response of **AP** (10 μ M) towards H₂O₂ (100 μ M) as time lapsed. Spectra were taken in PBS (pH 7.4, 100 mM) at 37 °C.

Figure S2. Fluorescence response of **AP** (10 μ M) towards H₂O₂ (300 μ M) as time lapsed. Spectra were taken in PBS (pH 7.4, 100 mM) at 37 °C.

Figure S3. Fluorescence response of **AP** (10 μ M) towards H₂O₂ (400 μ M) as time lapsed. Spectra were taken in PBS (pH 7.4, 100 mM) at 37 °C.

Figure S4. Fluorescence response of **AP** (10 μ M) towards H₂O₂ (500 μ M) as time lapsed. Spectra were taken in PBS (pH 7.4, 100 mM) at 37 °C.

Figure S5. Fluorescence intensity of **AP** (10 μ M) at 476 nm after the treatment of H₂O₂ (200-600 μ M) for various time. Data were taken in PBS (pH 7.4, 100 mM) at 37 °C.

Figure S6. H_2O_2 dose-dependent fluorescence enhancement of **AP** (10 μ M). Spectra were taken in PBS (pH 7.4, 100 mM) at 37 °C after an incubation time of 60 min.

Figure S7. The Napierian logarithm of F_{max} minus F correlated linearly with the corresponding H₂O₂ concentrations (0 to 500 μ M), and wherein F_{max} is the maxium fluorescent intensity at 476 nm of **AP** after the treatment of a large enough amount of H₂O₂, and F is the fluorescence after the treatment of corresponding amount of H₂O₂. Data were acquired in the same way as those in Figure S5.

Figure S8. The detection limit determination of **AP.** Results were obtained as the concentration of H_2O_2 that induced a statistically significant increase in fluorescence intensity at 476 nm compared with a blank control with a *p*-value < 0.01. Experiments were carried out by incubating **AP** (10 µM) with H_2O_2 (0, 1.0, 2.5 µM) in PBS (100 mM, pH 7.4) at 37°C for 60 min and then collecting the emission at 476 nm by excitation at 375 nm. F: fluorescence intensity at 476 nm after treating **AP** with various concentrations of H_2O_2 ; F_0 : fluorescence intensity at 476 nm of probe blank control. Statistical analyses were performed with a two-tailed Student's *t*-test (n = 3). Error bars are standard deviation.

Figure S9. Fluorescent spectra of **AP** (10 μ M) in the presence of various bio-relevant reactive species (200 μ M). Spectra were taken in PBS (100 mM, pH 7.4) after an incubation time of 30 min at 37 °C with excitation 375 nm.

Figure S10. The effect of pH on **AP** stability indicated by fluorescence increase. Data shown were the fluorescence increase of **AP** (10 μ M) at 476 nm after 30 min of incubation in PBS of indicated pH, or after being treated with H₂O₂ of indicated concentration at pH 7.4. F₀ is the intensity of freshly prepared solutions at indicated pH.

Figure S11. The total ion chromatogram (TIC) traces of probe **AP** (a), 2-(2'-hydroxy-4'-fluorophenyl) benzothiazole fluorophore (b), aspirin (c) and salicylic acid (d), and that of the detection reaction.

Figure S12. MS spectra of aspirin $(m/z \ 179 \text{ for } [M-1]^{-1})$ (peak c).

Figure S13. MS spectra of salicylic acid $(m/z \ 137 \text{ for } [M-1]^{-1})$ (peak d).

Figure S14. MS spectra of **AP** $(m/z \ 406 \ \text{for} \ [\text{M}-1]^{-1})$ (peak a).

Figure S15. MS spectra of 2-(2'-hydroxy-4'-fluorophenyl) benzothiazole fluorophore (m/z 244 for [M-1]⁻¹) (peak b).

~8.018 ~9.022 ~7.547 ~7.547 ~7.5132 ~7.5132 ~7.457 ~7.5132 ~7.457 ~7.5132 ~7.457 ~7.5132 ~7.5132 ~7.5132 ~7.5132 ~7.133 ~7.5132 ~7.7133 ~7.5132 ~7.71333 ~7.71333 ~7.71333 ~7.71333 ~7.71333 ~7.71333 ~7.71333

Figure S16. ¹H NMR spectra of the fluorophore yielded in the detection reaction. **AP** was reacted with H_2O_2 in a mixture of PBS and EtOH (1:1) at ambient temperature. The mixture was then extracted with EtOAc. After a quick wash with brine of the EtOAc phase, it was dried over anhydrous Na₂SO₄, evaporated and the residue characterized by ¹H NMR.

Figure S17. Structures of probe AP1-AP4.

Figure S18. Fluorescent responses of probe **AP** or **AP1-AP4** towards H₂O₂. Probes (10 μ M) were treated with H₂O₂ (200 μ M) for 30 min at 37°C in PBS (pH 7.4, 100 mM). Then the fluorescence increase in comparison to the freshly prepared probe solutions was recorded by a fluorescence spectrophotometer at 476 nm for **AP** (λ_{ex} 375 nm), 431 nm for **AP1** (λ_{ex} 324 nm), 455 nm for **AP2** (λ_{ex} 324 nm), 551 nm for **AP3** (λ_{ex} 374 nm), 553 nm for **AP4** (λ_{ex} 517 nm).

Figure S19. Mean cell viability under indicated conditions determined with a Cell Counting Kit-8 assay. EA.hy926 cells were treated with different concentrations of probe **AP** for 24 h, then CCK8 assay was used to check the cytotoxicity of **AP** probe. Ns, no significant changes.

Figure S20. Representative confocal images of temporal increase of **AP** fluorescence in endothelial cells. The cells were seeded on 24-well glass cover slips overnight and then pre-incubated with **AP** (5.0 μ M) for 15 min, followed by stimulation with or without H₂O₂ (50 μ M) for 5, 15, 30 min. PI counterstaining indicated nuclear localization (blue). All images were captured using a Nikon A1R confocal microscope. Overlay image of all captured fluorescence intensities are shown. Scale bar represents 20 μ m.

Figure S21. Confocal immunofluorescence images of probe **AP** were obtained from HUVEC cells following various concentrations of H_2O_2 challenge. The cells were seeded on 24-well glass cover slips overnight and then pre-incubated with **AP** (5.0 μ M) for 15 min, followed by stimulation with or without H_2O_2 (25-200 μ M) for 15 min. PI counterstaining indicated nuclear localization (blue). All images were captured using a Nikon A1R confocal microscope. Overlay image of all captured fluorescence intensities are shown. Scale bar represents 20 μ m.

Figure S22. Representative confocal images of temporal increase of **AP** fluorescence in HUVEC cells. The cells were seeded on 24-well glass cover slips overnight and then pre-incubated with **AP** (5.0 μ M) for 15 min, followed by stimulation with H₂O₂ (100 μ M) for indicated time. PI counterstaining indicated nuclear localization (blue). Overlay image of all captured fluorescence intensities are shown. Scale bar represents 20 μ m.

Figure S23. OGD agents caused no change to AP fluorescence.

Figure S24. The intracellular H_2O_2 levels were checked using a Hydrogen Peroxde Assay Kit (Beyotime Biotechnology) according to manufacturer instructions. Time-dependent accumulation of H_2O_2 was observed in EA.hy926 cells over 0.5-2 h following OGD treatment.

Figure S25. Probe **AP** reduced H₂O₂-induced EA.hy926 endothelial apoptosis. The apoptosis of endothelial cells was determined using flow cytometry with annexin V-FITC/propidium iodide (PI). The EA.hy926 cells were seeded on 12-well plates overnight and then pre-incubated with **AP** (25.0 μ M) for 15 min, followed by stimulation with H₂O₂ (200 μ M) for 12 h in DMEM medium.

Figure S26. The protective role of **AP** against H_2O_2 -induced HUVEC apoptosis. The apoptosis of HUVEC cells was determined using flow cytometry with annexin V-FITC/propidium iodide (PI). The cells were seeded on 12-well plates overnight and then pre-incubated with **AP** (25 μ M) for 15 min, followed by stimulation with H_2O_2 (200 μ M) for 4 h in HBSS medium.

