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Experimental Section 

Materials and Cell Lines. 

HAuCl4·3H2O, cetyltrimethylammonium bromide (CTAB), NaBH4, and NaCl were purchased 

from Sinopharm Chemical (Shanghai, China). Dynasore, genistein, Bis-(p-

sulfonatophenyl)phenylphosphine dehydrate dipotassium (BSPP), 4, 7, 10, 13, 16, 19, 22, 25, 

32, 35, 38, 41, 44, 47, 50, 53-Hexadecaoxa-28, 29-dithiahexapentacontanedioic acid di-N-

succinimidyl ester (SH-PEG-NHS, C46H80N2O24S2, MW:1109) and O-[2-(3-

Mercaptopropionylamino)ethyl]-O′- methylpolyethylene glycol (SH-PEG-CH3, 

CH3O(CH2CH2O)nCH2CH2SH, MW: 5000) were obtained from Sigma-Aldrich (St. Louis, MO, 

U.S.A.). Tat peptide (sequence, YGRKKRRQRRR) was purchased from AnaSpec. (San Jose, CA, 

U.S.A.). Lycosin-I were synthesized by solid phase synthesis method as we described 

previously [1]. All other chemicals not mentioned here were purchased from Sigma-Aldrich. 

Human cervical carcinoma HeLa cells, mouse prostatic carcinoma Mat-LyLu cells, human 

colon carcinoma SW480 cells, human mammary epithelial HBL-100 cells, human vascular 

endothelial Huvec cells and human embryonic kidney Hek293t cells were cultured in DMEM 

medium (GIBCO) supplemented with 10% fatal bovine serum (GIBCO), 1% penicillin and 

streptomycin at 37 °C in humidified air containing 5% CO2. The primary cardiocytes and 

hippocampus neuron were acutely isolated from neonatal mice as we described previously 

[2, 3]. 

 

Synthesis and characterization of LGNPs and LGNRs  

The modification strategies to synthesize LGNPs and LGNRs were shown in Fig.S1A. GNP 

solutions showed a slight red shift of 2 nm (p value=0.018) in absorption maxima after 

binding to lycosin-I, indicating the success of peptide modification to GNPs (Fig.S1B，upper). 

This is further confirmed by the increase of Zeta–potential from -53.322.54 mV to -

33.284.37 mV (Fig.S1C, upper). Additionally, no aggregates were formed during the 

modification process as reflected in the UV-vis absorption spectra of GNP solutions before 

and after lycosin-I coating, which was also confirmed by the negligible size change of GNPs 

after peptide modification as shown in Fig.S1C.  

We also established the lycosin-I-modified gold nanorods (LGNRs) system by using similar 

modification strategy. The fabricated GNRs were characterized by DLS with approximated 

size of 65.80±3.18 nm (measured by TEM as shown in Fig.S2), and the sizes of GNRs were 

barely changed by the peptide modification (Fig.1C). Unlike GNPs, the zeta-potentials of 

GNRs were 34.172.28 mV owing to the cationic covered CTAB ligands which were used to 



stabilize the nanorods during the synthetic process. The peptide coupling increased the zeta-

potentials of GNRs to 44.031.23 mV, confirming successful conjugation of lycosin-I. 

The stability of LGNPs was investigated by dark-field microscopy under different solution 

condition. As shown in Fig.S3, LGNPs presented homogeneous intensity and color, indicative 

of no aggregation. Likewise, the statistical distribution of scattering intensities from 

individual spots in different surroundings shared the similar curve features. Above all 

confirmed the stable monodispersity of lycosin-I conjugated nanoparticles, which is 

conducive to following studies in living system. 

Intracellular accumulation of LGNPs in HeLa cells. 

To investigate the localization of LGNPs in cells, HeLa cells containing a certain amount of 

LGNPs were observed by dark-field microscope at different time points. To avoid the 

influence of excessive LGNPs, HeLa cells were gently washed and cultured with fresh culture 

media after co-incubation with 16 μg/mL of LGNPs for 1 hour. The spatial distribution of 

internalized LGNPs in HeLa cells at various time points are shown in Fig.S4. Around one hour 

later, individual LGNP appeared inside the cytosol. With time prolonging, the number of 

intracellular nanoparticles gradually increased. After 3 hours, the scattering intensities of 

entered LGNPs became inhomogeneous, indicating the formation of LGNPs aggregates. 16 

hours later, the LGNPs aggregates were concentrated and distributed mirror symmetrically 

in the corners of two daughter cells. The internalized LGNPs showed no distinct effect on 

normal cellular activities including cell division. 

Cellular uptake of LGNPs in primary mammalian cells. 

The uptake of functionalized GNPs was further investigated in two primary mammalian cells, 

rat cardiocytes and hippocampus neurons. As shown in Fig.S5, LGNPs stayed impermeable in 

those two isolated normal cells just like the PGNPs. Though TGNPs were unable to enter 

cardiocytes, they still possessed the high uptake efficiency in hippocampus neurons. These 

data further confirmed the selectivity of LGNPs intracellular translocation in cancerous cells. 

Secondary structure of S-lycosin-I. 

The secondary structure of S-lycosin-I was detected by circular dichroism spectrum as we 

described in early studies [1, 4]. Briefly, S-lycosin-I were dissolved and diluted to a final 

concentration of 50 μM by water and POPC-lipid (0.5 mg/mL) separately. The CD spectrum 

of different peptide dilutions from 190 nm to 260 nm were measured at scanning speed of 

200 nm/s three times.  Mean residue ellipticity were derived from CD millidegrees after 

background subtraction and smoothing. As shown in Fig.S6, S-lycosin-I showed a random coil 

structure with or without lipids, while lycosin-I displayed obvious α-helical structure in the 



presence of POPC [4]. The data verified the alteration of S-lycosin-I in secondary structure 

compared with natural lycosin-I. 

Intracellular uptake kinetics of LGNPs entering HeLa cells.  

As revealed by the kinetical data of LGNPs intracellular translocation (Fig.S7), the 

intracellular uptake of LGNPs in HeLa cells was a nanoparticle concentration- and incubation 

time-dependent process. The intake of LGNPs will reach saturation at nanoparticle 

concentration of 64 μg/mL (for 2-hour co-incubation) and at time point of 10 hours at fixed 

concentration. 

Cell viabilities of GNPs-treated HeLa cells. 

The cytotoxicity of different GNPs was tested by MTT assay. The results in Fig.S8 confirmed 

the safety of LGNPs to cell viability even at the treated concentration of 128 μg/mL. These 

data suggested that LGNPs can effectively accumulated and aggregated in cells with no 

effect on cell viability, which reveals the great potential of LGNPs in drug delivery for its 

biocompatibility and stability in cells. 

The photothermal effect of LGNRs. 

As shown in Fig.S10, the photothermal efficiency was not affected by the conjugation of 

lycosin-I. After 2-minitue exposure to NIR irradiation (808 nm, 5 W/cm2), the temperature of 

LGNRs solution rose to around 53 °C just like bare GNRs, while blank solution without GNRs 

kept at room temperature of 20 °C under the same condition. 

The transmission electron microscope images of LGNRs-loaded tumor cells from tumor-

bearing mice. 

The tumor tissues of each group in GNR-treated mice were fixed and sliced for transmission 

electron microscopy (TEM) examination. Fig.S11 clearly showed the intracellular LGNRs 

scattered in the cytoplasm, while PGNRs were mostly clustered in vesicles with evidently 

reduced amounts. 

 

 



 

Fig.S1 A) Schematic diagram of LGNP and LGNR functionalization. B) UV-vis absorption 

spectra of two kinds of gold nanoparticles before (black) and after (red) lycosin-I 

modification. C) Sizes and zeta-potentials of two kinds of gold nanoparticles before and after 

lycosin-I modification (meanSD, n=3).  

 

  



 

 

Fig.S2 TEM image of A) LGNPs and B) LGNRs. 

  



 

 

Fig.S3 Dark-field microscopic images of LGNPs in A) water, B) PBS, C) cell culture medium. D) 

Bare GNPs in PBS. E) Scattering intensity distributions of LGNPs in various solutions. The 

scale bar represents 10 m. 



 

Fig.S4 Intracellular distributions of LGNPs in HeLa cells after been internalized for 1 hour (A), 

3 hours (B), 6 hours (C), 12 hours (D), 16 hours (E) and 24 hours (F). The scale bar represents 

10 m. 

 

  



 

 

Fig.S5 Cellular uptake of LGNPs in primary mammalian cells. The scale bar represents 10 m. 

 



 

Fig.S6 Secondary structure of S-lycosin-I. Circular dichroism spectrometry of S-lycosin-I in 

water with or without or POPC lipids. 

  



 

 

 

 

Fig.S7 A) Quantitative analysis of cellular intake of LGNPs in HeLa cells under different LGNPs 

concentration. B) Time growth curve of cellular internalized LGNPs in HeLa cells. (mean±SD, 

n=3) 

  



 

 

 

Fig.S8 Cell viability assay of three kinds of GNPs against HeLa cells (mean±SD, n=3).  

  



 

Fig.S9 The ratios of LGNPs accumulation in vivo. A) Bio-distribution of LGNPs in normal mice. 

B) Bio-distribution of LGNPs in tumor-bearing mice. Nanoparticles were injected into mice 

via administration routes of intravenous (IV), intratumor (IT) or intraperitoneal (IP) injection 

(mean±SD, n=5) with 200 g per mouse. 

  



 

Table.S1 The absolute contents of LGNPs in normal mice. 

 

Table.S2 The absolute contents of LGNPs and PGNPs in tumor-bearing mice. 

  



 

 

 

 

Fig.S10 Temperature increase of water solutions with and without GNRs after NIR irradiation 

(808 nm, 5W/cm2).  

  



 

 

Fig.S11 Transmission electron microscopy images of tumor tissues from LGNRs (A and B) and 

PGNRs (C and D) treated mice. The tilted arrows indicate gold nanoparticles. (Mic JEM-1200, 

HV: 80 kV, magnification: 20000 for A-B, 100000 for B-C) 
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