
Theranostics 2016, Vol. 6, Issue 3

http://www.thno.org

328

TThheerraannoossttiiccss
2016; 6(3): 328-341. doi: 10.7150/thno.13624

Research Paper

Imalytics Preclinical: Interactive Analysis of Biomedical
Volume Data
Felix Gremse1, Marius Stärk1, Josef Ehling1, Jan Robert Menzel2, Twan Lammers1, Fabian Kiessling1

1. Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
2. Computer Graphics and Multimedia, RWTH Aachen University, Aachen, Germany

 Corresponding author: Dr. rer. medic. Dipl.-Inf. Felix Gremse, Experimental Molecular Imaging, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen,
Germany. Phone: +49 241 8089761; Fax: +49 241 803380116; E-Mail: fgremse@ukaachen.de

© Ivyspring International Publisher. Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. See
http://ivyspring.com/terms for terms and conditions.

Received: 2015.08.21; Accepted: 2015.09.25; Published: 2016.01.01

Abstract

A software tool is presented for interactive segmentation of volumetric medical data sets. To allow
interactive processing of large data sets, segmentation operations, and rendering are
GPU-accelerated. Special adjustments are provided to overcome GPU-imposed constraints such
as limited memory and host-device bandwidth. A general and efficient undo/redo mechanism is
implemented using GPU-accelerated compression of the multiclass segmentation state. A broadly
applicable set of interactive segmentation operations is provided which can be combined to solve
the quantification task of many types of imaging studies. A fully GPU-accelerated ray casting
method for multiclass segmentation rendering is implemented which is well-balanced with respect
to delay, frame rate, worst-case memory consumption, scalability, and image quality. Performance
of segmentation operations and rendering are measured using high-resolution example data sets
showing that GPU-acceleration greatly improves the performance. Compared to a reference
marching cubes implementation, the rendering was found to be superior with respect to rendering
delay and worst-case memory consumption while providing sufficiently high frame rates for in-
teractive visualization and comparable image quality. The fast interactive segmentation operations
and the accurate rendering make our tool particularly suitable for efficient analysis of multimodal
image data sets which arise in large amounts in preclinical imaging studies.

Key words: Interactive Segmentation, Medical Image Analysis, Multimodal Imaging, GPU Processing, Seg-
mentation Rendering, Undo/Redo

Introduction
Modern preclinical and clinical imaging devices

generate three-dimensional data sets at high resolu-
tions, whose large data amounts pose a challenge for
visualization and analysis. For scientific purposes, but
also increasingly for diagnosis and treatment plan-
ning in clinical applications, extraction of quantitative
measurements is needed. To derive such quantitative
measurements, segmentation is a commonly required
intermediate step. A segmentation is usually defined
as a subset of voxels, i.e., represented by a binary
mask or label mask in case of multiple regions [1].
This voxel-wise representation is suitable for many
operations such as thresholding, region growing, and

morphological operations [2]. Segmented regions can
be used to measure volumes and other properties of
organs or lesions and are useful to analyze multi-
modal data sets [3].

Automated or semi-automated methods for im-
age segmentation have been proposed for special ap-
plications such as liver segmentation [4], segmenta-
tion of multiple sclerosis lesions [5] or mouse organ
segmentation [6]. Automated segmentation methods
are usually favored over a manual segmentation
workflow because of their reduced workload for the
user and the improved user-independence. However,
for many applications an automated algorithm is

Ivyspring

International Publisher

 Theranostics 2016, Vol. 6, Issue 3

http://www.thno.org

329

simply not available and the development of an au-
tomated method for a single experiment is often not
worth the effort. Furthermore, automated methods
rarely work in all cases robustly and the remaining
cases need to be corrected manually. Therefore, a
software tool for efficient interactive segmentation is
required for many applications.

For large data sets, the processing time can
quickly become a bottle neck, both for segmentation
and rendering. Fortunately, modern graphics pro-
cessing units (GPUs) provide massive processing
power. These powerful devices come with several
limitations though. To fully load these GPUs thou-
sands of threads need to be kept busy which requires
a fine grained level of parallelism. The GPU memory
is fast, but limited in size. Furthermore, the transfer
between host and GPU memory can easily become a
bottleneck. While GPUs are becoming easier to pro-
gram, simple code that minimizes diverging thread
paths and scattered memory accesses is still the recipe
to achieve the highest performance [7].

We present a newly developed GPU-accelerated
tool for interactive segmentation with several essen-
tial and novel contributions. For reliable operation,
we used a segmentation rendering with bounded
worst case memory requirements. This is important to
avoid sudden breakdown in special situations, e.g.,
when thresholding a noisy data set. Furthermore, all
segmented regions, which we call 'classes', are ren-
dered together and the memory consumption is in-
dependent on the segmentation state and the number
of segmented regions. Moreover, the preprocessing of
the segmentation rendering, including computation of
a space-leaping data structure required for efficient
ray casting, is GPU-accelerated to minimize the delay
between a segmentation operation and visualization
of the result. A fast filter is proposed to reduce stair-

case artifacts, which result from the discrete nature of
the segmentation maps, while maintaining visibility
of small structures. After the preprocessing, views can
be rendered at high frame rates from any viewing
position to allow interactive inspection of the seg-
mentation state by rotation, panning, and zooming.
The segmentation rendering can be combined with
other isosurfaces and transparent overlays, i.e., vol-
ume rendering, in a way that it generates geometri-
cally correct images suitable for stereo vision.

The bottleneck incurred by limited GPU memory
and transfer bandwidth is compensated by com-
pressing and decompressing the segmentation maps
on the GPU, enabling a general and efficient un-
do/redo mechanism. A set of fast segmentation op-
erations is implemented which can be used to handle
many types of applications (Figure 1).

To assess the speed-up realized by
GPU-processing, we carried out performance meas-
urements for several operations. We compared our
approach for segmentation rendering with a reference
implementation of marching cubes to show that it is
faster under many relevant conditions while main-
taining favorable worst-case memory requirements.

While other systems for interactive medical im-
age inspection and analysis were proposed earlier
[8–11], we believe that our system bears novel con-
tributions due to its broad applicability, robustness
achieved through bounded worst case memory con-
sumption, its efficient undo/redo implementation,
and the fast visual response after changing the seg-
mentation state. While many of the segmentation op-
erations may be supported by other tools in a general
purpose setting, our tool is particularly suitable for
efficient interactive analysis of multimodal image
data sets which arise in large amounts in preclinical
imaging studies.

Figure 1: Interactive segmentation applications. A) Organ segmentation for biodistribution determination. B) Marker segmentation for multimodal image fusion. C) Bone
segmentation and labeling. D) Segmented blood vessels of a mouse with a stenosed carotid artery. E) Segmented tumor blood vessels. F) Fat segmentation (visceral and sub
cutaneous fat of a mouse). Data sets were acquired using µCT (micro Computed Tomography).

 Theranostics 2016, Vol. 6, Issue 3

http://www.thno.org

330

The software, named Imalytics Preclinical, has
been used for analysis of passive drug delivery sys-
tems [12], active targeting [13], biodistribution analy-
sis [14], probe development [15], cell labeling [16],
ballistic soap experiments [17], blood perfusion [18],
dental implants [19], functional ultrasound [20], ath-
erosclerotic inflammation [21], atherosclerotic calcifi-
cations [22], carotid artery stenoses [23], tis-
sue-engineering [24], and quantification of body fat
[25]. Information about the availability of the software
can be found on our institutional website
(http://exmi.rwth-aachen.de/).

Related Work
Parallel processing, using the shared memory

paradigm, is particularly helpful to reduce the delay
after each segmentation step. Simple operations, such
as thresholding are straightforward to parallelize.
Others, such as region growing, are more difficult
[26]. Morphologic operations, e.g., dilation, erosion,
opening, and closing, can be efficiently implemented
using the Euclidian distance transform. This operation
receives a binary 3D mask as input and the output is
defined as a 3D image where the voxel values contain
the distances to the closest true voxel. Dilation and
erosion are implemented by applying a threshold on
the output of the distance transform. The construction
time is linear in the number of voxels and independ-
ent of the state of the binary mask [27]. Recently, the
accurate Euclidian distance transform has been im-
plemented for GPUs [28]. The implementation re-
quires multiple buffers however, which may conflict
with the limited memory situation for GPUs.

For undo/redo, the usual implementation is to
provide a reverse operation or to store the previous
state. This is problematic because reverse operations
are not available for many operations, e.g., morpho-
logic operations [2] and storage of multiple segmen-
tation states would require excessive amounts of
memory.

3D rendering of volume data can be classified
into direct and indirect methods [29]. For the special
purpose of segmentation rendering, both types of
methods can be applied. Indirect rendering methods
and particularly the marching cubes algorithm [30,31]
are traditionally used [32]. The marching cubes algo-
rithm extracts triangles from the volume data to ap-
proximate an isosurface. These triangles can be ren-
dered at high speed for any viewing position by a
GPU. The triangle extraction can be costly, however,
even with GPU-accelerated methods [33]. Further-
more, the worst case memory consumption can be
excessive, because up to 5 triangles can be generated
per voxel [33].

Direct rendering methods, also called ray casting

or volume rendering, compute the image by travers-
ing the volume along individual rays for each camera
pixel. The final color is accumulated as the ray is
traced through the volume. Ray casting benefits from
early termination, i.e., the tracing can be stopped
when an opaque state is reached. Furthermore, empty
space regions can be skipped (“space-leaping”) using
special data structures [34]. Ray casting has been used
to visualize segmentations before. In [35], a modified
z-buffer was used to select the visible voxels for a
subsequent ray tracing step. Hadwiger et al. com-
bined the segmentation rendering with transparent
volume rendering [36]. Sherbondy et al. applied a
general volume rendering for a GPU-accelerated re-
gion growing method [37].

To implement efficient space-leaping, tree-based
structures such as k-dimensional trees or octrees are
most commonly used [38]. GPU implementations for
tree structures have been proposed, but adjustments
were necessary, particularly due to limited memory
and registers per GPU thread or to avoid recursive or
excessively diverging code paths [39]. When using
tree structures for ray casting, much time is spent
during traversal of the tree [40]. Flat grid-based opti-
mization structures are an alternative to tree struc-
tures [41]. They provide the distance to the closest
opaque voxel and indicate a safe jumping distance
[42,43]. When using a distance map, this is called
sphere casting [44]. Ray casting code is much simpler
for flat grid-based structures, bearing advantages for
GPU processing. Furthermore, grid-based structures
are more predictable with respect to memory re-
quirements and computation cost [38], which is es-
sential for a robust segmentation tool.

For marching cubes, the frame rendering time is
proportional to the number of triangles, which, alt-
hough depending on the image structure, is propor-
tional to the number of voxels, i.e., cubic in the vol-
ume diameter. Ray casting on the other hand is more
affected by the target resolution of the 2D image be-
cause the cost for each ray is linear in the volume
diameter. For these theoretical reasons, ray casting
should outperform marching cubes for large data sets,
but the question is, whether the turning point is
reached with practically relevant data sets and when
generating images of high resolution.

Segmentation Operations
In this section, a set of interactive segmentation

operations is described, which is sufficient for many
problems. A segmentation defines a partition of the
voxels into a set of user-defined classes, such as "liv-
er", "tumor", or, "bone". Some operations require one
or more seed points or an input and output class to
specify or restrict the operation. These can be pro-

 Theranostics 2016, Vol. 6, Issue 3

http://www.thno.org

331

vided by clicking into slice views or into the rendered
3D image. In the latter case, the depth map resulting
from the last rendering is used to find the corre-
sponding point in 3D [35].

Segmentation Representation
Segmentation maps are represented as 3D data

sets with one byte per voxel which stores the class
index associated to the voxel. The value 0 is reserved
for unclassified while the value 255 is reserved to be
used as hidden temporary class. Therefore, 254 dif-
ferent non-overlapping classes can be represented.
The user can add, remove, or rename classes and
change their colors.

Compression of Segmentation Maps
To reduce memory consumption and mitigate

the limited transfer bandwidth between host and
GPU memory, a GPU-based compression and de-
compression method for segmentation maps is im-
plemented. The segmentation maps are highly com-
pressible by simple run length encoding in many
practical cases. To compress and decompress, each
GPU thread operates on one row of the 3D data set in
the Y direction, i.e., the second leading dimension.
This is advantageous because the memory accesses of
successive GPU threads are coalesced, i.e., parallel
threads access adjacent memory addresses. Each run
is encoded using two bytes (1 byte for the class, 1 byte
for the run length) and the compressed data of all
rows is concatenated. In detail, the compression op-
erates in three steps. In the first step only the number
of runs per row is determined, indicating the amount
of storage needed for this row. In the second step, a
parallel prefix sum of these individual row sizes is
computed using the thrust library, available with the
CUDA toolkit [45]. The parallel prefix sum vector in-
dicates the “row starts”, i.e., the destination locations
for the compressed row data. In the third pass, the
rows are compressed using the known storage loca-
tion for each row. The decompression requires a sin-
gle pass only, making use of the stored row starts.
While the row starts can be recovered from the com-
pressed data, we store them to achieve faster decom-
pression on the expense of a suboptimal compression
ratio.

General Undo/Redo Implementation
Undo and redo is enabled for all segmentation

operations by providing a fast and general imple-
mentation. After each segmentation step, the seg-
mentation map is compressed on the GPU. The com-
pressed data is transferred to the host memory and
maintained in a list, to enable iteration through the
previous states (Figure 2). The maximum size of the
undo/redo list is set to a default of 20 segmentation

states which seem to be appropriate for many appli-
cations. To restore a state, the segmentation is trans-
ferred to the GPU and decompressed.

Figure 2: Undo/redo mechanism. GPU-accelerated compression enables a
general and efficient undo/redo implementation. The strongly compressed segmen-
tation map is transferred between host and GPU memory. It is expanded, processed
and compressed on the GPU. The bandwidths were measured using a GeForce Titan
GPU.

Euclidian Distance Transform
The Euclidian distance transform is useful for

several segmentation operations such as dilation and
erosion [27]. The distance map of a binary input mask
has the same dimensions as the binary mask and the
resulting intensities are the Euclidian distance to the
nearest foreground voxel. For 3D masks, the compu-
tation can be separated into incremental passes along
the scan lines along the X, Y, and Z dimension [27].
Since the processing cost is linear in the image di-
mensions, the total cost is linear with respect to the
number of voxels.

In [28] a GPU-based implementation has been
proposed using doubly linked lists embedded into a
2D texture which requires memory overhead propor-
tional to the number of voxels. We implemented a
GPU-based version with less memory overhead. The
X, Y, and Z passes are computed sequentially as in
[28] but for each pass (X, Y, and Z), each scan line is
processed by a single GPU thread by directly apply-
ing the method developed by Maurer and colleagues
[27]. The processing of each pass is performed using
inline memory usage and much less overhead because
each thread utilizes a temporary buffer of the same
size as the scan line. Since the number of threads is on
the order of several thousands, this requires much less
memory overhead than another 3D buffer, at least for
large data sets. Since the squared distances between
voxels are integral, the computations are performed
using integer operations. To reduce the memory
overhead, the distance map can be computed and
stored using unsigned 16 bit or 8 bit integers. In this
case the resulting distances are clamped to maxima of
255 and 15, respectively, because the squared values

 Theranostics 2016, Vol. 6, Issue 3

http://www.thno.org

332

are stored.

Basic Operations
A thresholding operation classifies voxels based

on their intensities using an upper or lower threshold
or both. In our tool, the input class is used to restrict
the operation while the output class indicates the re-
sulting class. Thresholding can be used as a starting
point, e.g., to segment all bright regions. This often
results in several disconnected regions that need to be
isolated, which can be achieved by a region growing
operation in combination with a seed point. The re-
gion growing can be further guided or constrained
using a maximum distance from the seed point, a
maximum volume or an end point. Using a maximum
distance is useful to isolate ribs for example (Figure
1C) using a few tries to find the appropriate distance.
While parallel GPU-based region growing methods
have been proposed [26], our current implementation
is running on the CPU, making use of a breadth first
search. Therefore, the computational cost is deter-
mined by the volume of the filled region, which is
often much smaller than the entire data set.

Morphologic operations, i.e., dilation, erosion,
opening, and closing, are implemented using the dis-
tance transform [46]. To dilate a class by a distance d,
the distance transform is computed for this class and
then the voxels with distance below d are reassigned.
Erosion is implemented similarly and opening and
closing are successive calls to dilation and erosion.
They are useful to remove small islets or fill holes,
respectively. Since the computational cost of our
GPU-based distance transform is linear with respect
to the number of voxels, dilation, erosion, opening,
and closing can be computed in linear complexity,
independent on the parameters d. Usage of the Eu-
clidian distance map is more natural than when using
a rectangular kernel, which results in hard-edged
segmentations (Figure 3).

Several other segmentation operations were im-
plemented. For instance, a class can be moved inter-
actively by dragging the mouse. Classes can be de-

leted or assigned completely to another class. A class
can be smoothed which is implemented by Gaussian
filtering of the binary class mask and successive
thresholding. Vessel diameters can be determined
using the method described in [47]. All connected
components below or above a user provided volume
can be found. For a given segmentation, statistics can
be computed such as volume, mean intensity, and
standard deviation of the underlay or overlay.

Contour Delineation
While thresholding and region growing are

usually preferred for their ease of use, their applica-
tion is often difficult, e.g., in the absence of strong
contrast as for soft tissue organs in CT images. Organs
or lesions that have a relatively simple shape, such as
the bladder, kidneys, or, in many cases, tumors, can
be segmented by interactively delineating the region
boundaries. The user can draw “scribbles” in 2D slices
to specify the boundaries of objects. Based on these, a
temporary 3D region is computed that approximates
the convex hull of the scribbles. The user can incre-
mentally provide more scribbles until the accuracy is
found to be acceptable. These scribbles can be drawn
in any slices of any orientation because they are
drawn into a temporary 3D data set of the same size
as the data set to be segmented. The computation of
the region embraced by the scribbles approximates
the convex hull defined by the scribbles in 3D. It is
performed as follows: a subset, e.g., 100.000, of all
possible pairs of scribble points, is randomly selected
and these pairs are connected by plotting lines be-
tween them. The gaps between these lines are filled
using a morphological closing operation using a dis-
tance proportional to the size of the region (10% of the
bounding box of the scribbles). This approach is pri-
marily meant for convex regions, however,
non-convex regions, e.g., stomach and liver, can be
segmented incrementally because of the fast imple-
mentation. Furthermore, the scribbles can be used to
delete parts of a segmentation or to split a connected
component, e.g., to separate two bones at a joint.

Figure 3: Dilation using a spherical kernel. A) Bones of a mouse scanned with µCT were segmented by thresholding. B) The result after dilation with a box kernel appears
hard-edged. C) The result after dilation with a spherical kernel appears more natural because no spatial directions are favored.

 Theranostics 2016, Vol. 6, Issue 3

http://www.thno.org

333

Segmentation Visualization
We provide a sphere casting and a marching

cubes implementation for segmentation rendering.
Both methods have a preprocessing phase, after
which views from any viewing position can be ren-
dered efficiently. The preprocessing starts from the
compressed segmentation state, expands it into a
temporary buffer and builds the data structures re-
quired for efficient frame rendering. When the user
initiates a segmentation operation, all memory re-
quired for rendering is released, except the com-
pressed buffer. This is done to provide as much as
possible free GPU memory for the segmentation op-
eration. After performing the segmentation operation,
the new segmentation state is compressed and the
preprocessing for rendering is performed again. In
this way the conflicting memory requirements for
rendering and segmentation are reduced. The pre-
processing includes a staircase filter which is required
to generate a smooth surface appearance. Both sphere
casting and marching cubes are fully
GPU-accelerated, including the preprocessing phases.
They generate visually indistinguishable results and
are therefore exchangeable from an application de-
velopment point of view. They differ in terms of
memory consumption and frame rate and are affected
by the type of segmentation in different ways. An-
ti-aliasing is implemented by 2x2 super-sampling for
sphere casting and by 4 times OpenGL mul-
ti-sampling for marching cubes.

Staircase Filter
In contrast to a regular volumetric data set, e.g., a

CT data set, the segmentation is represented by dis-

crete indices. If this would be rendered directly, the
image would show staircase artifacts (Figure 4) which
can be very distracting due to the unnatural appear-
ance. To define a smooth surface and achieve a more
natural visualization, the binary opaqueness mask
(values are 0 and 255) is smoothed using a nonlinear
staircase filter. A linear Gaussian filter or box filter
would smooth away thin regions, which is particu-
larly problematic when rendering fine vessel struc-
tures. Our proposed staircase filter is an adjusted
3x3x3 box filter which operates on 8 bit data sets.
Similar to a regular separable box filter the kernel [1/3
1/3 1/3] is applied in X, Y, and Z directions. To
maintain the visibility state, i.e., to keep visible voxels
above the visibility threshold β + τ (e.g., 128) and in-
visible voxels below the threshold, an additional con-
straint is applied after each pass. Voxel intensities
above β + τ (τ is a margin, e.g., 5) stay above β + τ and
intensities below β - τ stay below β - τ. This constraint
is applied after each of the three passes of the separa-
ble box filter. Each thread processes one row of the
data set which allows inline memory usage, i.e., an-
other buffer is not required.

Sphere Casting
Our segmentation rendering method is essen-

tially reduced to render an isosurface. An isosurface is
defined as the set of points whose intensity is equal to
a given threshold, the isovalue. When rendering an
isosurface by ray casting, the first intersection be-
tween the ray and the isosurface is sought. Each pixel,
i.e., ray, is computed by a single GPU thread.

Figure 4: Quality aspects of segmentation rendering. A) The discrete nature of a segmentation results in staircase artifacts (top) if not compensated with surface
smoothing (bottom). Shown is a mouse lung from a µCT scan. B) Aliasing artifacts (top) at edges, e.g., of ribs or bronchi, can be avoided by super-sampling (bottom). C) Rendering
of a segmentation of the chest bones and blood vessels of the same mouse, using a coarse mesh approximation (top) and high quality rendering (bottom).

 Theranostics 2016, Vol. 6, Issue 3

http://www.thno.org

334

The preprocessing required before rendering
starts by decompressing the segmentation state into a
3D buffer (1 byte per voxel). Then this is converted
with inline memory usage into a binary opaqueness
mask (0 and 255). Subsequently the staircase filter is
applied to the buffer (Figure 5). The smoothed data set
is copied into a 3D texture (1 byte per voxel) to enable
hardware-accelerated trilinear filtering during ray
casting. To enable empty space leaping, i.e., sphere
casting, a 3D distance map is computed [48], the voxel
intensities of which provide the distance to the closest
opaque voxel, a distance which can be safely skipped
in any direction during ray casting [42]. The distance
map is computed using the same algorithm as for the
segmentation operations described above. To reduce
the memory requirements the distance map is com-
puted, stored, and used at a resolution reduced by a
factor of two in each dimension. In detail, the
opaqueness mask is down-sampled by factor two in
each dimension using the maximum operator, to
avoid that single voxels are missed. The distance map
is computed in 16 bit mode using this down-sampled
mask and the final distances are stored using 8 bits
per voxel. Storage of this distance map therefore re-
quires one byte per 2³ = 8 voxels. Finally, the buffer is
filled with the segmentation map again using another
decompression operation because this is required for
the coloring step. The cost of all preprocessing steps is
linear in the number of voxels, i.e., O(N³). Excluding
the size of the compressed segmentation, which is
often negligible, the occupied memory on the GPU
amounts to 2.125 bytes per voxel, i.e., 1 byte for the
segmentation, 1 byte for the smoothed opaqueness
mask inside the texture, and 0.125 bytes for the
down-sampled distance map.

The code for casting each ray is very straight-
forward: the ray advances iteratively along its direc-

tion until the image intensity is above the isovalue
(Figure 6). The step size is determined by the corre-
sponding intensity of the distance map, but if this
value is below a safety margin, the step size is set to a
fixed value, e.g., 0.3 times the voxel size. Once a posi-
tion above the isovalue is found, a more accurate po-
sition is determined using a few iterations of bisection
[36]. In the next step, the coloring is applied for each
pixel (Figure 5) by searching for the nearest segmen-
tation voxel in a 3x3x3 neighborhood. Therefore, all
classes are rendered together in a single step. Finally,
the color and brightness are computed assuming
Lambertian reflection and a virtual light source. For
sphere tracing, the maximal jumping distance is lim-
ited to 510 (corresponding to 255 in the
down-sampled 8 bit distance map), which is not a
problem because it enables sufficiently large jumps in
practice.

Figure 5: Segmentation rendering. A) The segmentation (top, axial slice through
lung and heart) is converted into an opaqueness mask (middle) and smoothed to avoid
staircase artifacts (bottom). B) The isosurface of all opaque classes is rendered at
once. C) As a final step, the rendered image is colored. Here, the skeleton and organs
of a µCT scan of a mouse are shown.

Figure 6: Sphere casting. A) Shown is a sagittal slice through a segmentation of a mouse skull (from a µCT scan). Sphere casting makes use of a distance map (red overlay) to
leap through empty spaces. B) Rendered 3D image.

 Theranostics 2016, Vol. 6, Issue 3

http://www.thno.org

335

Marching Cubes
The marching cubes algorithm extracts triangles

which approximate the isosurface [30,31]. The image
intensities are considered to generate vertices with
sub-voxel accuracy. For each voxel, up to five trian-
gles, i.e., 15 vertices are computed which approximate
the isosurface in the “cell” defined by the voxel and its
seven neighbors with higher indices [32]. A cell only
contributes to the isosurface if some of its eight cor-
ners are below and some are above the isovalue. Then
the cell is called an active cell or active voxel. The
Nvidia CUDA toolkit provides example code for an
efficient GPU-based marching cubes algorithm which
is optimized using pre-computed lookup tables [32].
Our marching cubes implementation is based on this
code, however, extensions were necessary to enable
image sizes that are not powers of two. Furthermore,
for smooth shading of the triangles, we compute a
normal vector for each vertex. Additionally, the
memory consumption was optimized: for each vertex,
16 bytes are used, i.e., 12 bytes for the position (3 x
float), 3 bytes for the normal (3 x char) and one byte
for the color index. In the worst case, 240 bytes, cor-
responding to 5 triangles, are required per active
voxel. During preprocessing, the active voxels are
determined, i.e., those that contribute to the isosur-
face. The relative amount of these voxels, called oc-
cupancy, is often below 5%, but can be much higher
under certain circumstances. By thresholding a noisy
region, an occupancy of 50% can easily occur, result-
ing in problematic memory requirements. Such a sit-
uation is likely to occur in reality, e.g., when an
isovalue is near the soft tissue brightness in a noisy CT
data set [49]. Particularly when interactively changing
the isovalue, this is almost guaranteed to happen at
some point. In our implementation, the memory
consumption per voxel amounts to 1 byte for the
segmentation map and 1 byte for the smoothed seg-
mentation mask, additional to the memory for the
triangles, which can be 240 bytes per voxel in the
worst case. The memory for the vertices could be
further reduced by storing shared vertices in a vertex
list, particularly because each vertex is used by at least
three triangles in closed isosurfaces. This would still
require memory for an additional index into the ver-
tex list (e.g., 4 bytes), compared to 16 bytes for the
entire vertex. It would also create a memory indirec-
tion during triangle rendering and cause scattered
memory accesses to look up the vertices. Sorting and
arranging the shared vertices is costly and would
further delay the preprocessing stage. Furthermore,
the memory consumption would still be prohibitively
high in worst-case situations. The sparse indices of the
active voxels are extracted using a parallel prefix sum

and stored on the GPU [45]. The triangles are gener-
ated using CUDA and rendered using OpenGL. The
entire preprocessing and rendering is performed on
the GPU, i.e., no vertices are transferred between CPU
and GPU memory.

To render segmentations using marching cubes,
the same staircase filter as for ray casting is applied.
Subsequently, the active voxel subset is determined as
for isosurface rendering. The triangles are generated
with colors corresponding to the associated class.

Underlay and Overlay Rendering
The segmentation rendering can be combined

with an isosurface rendering of an underlay and a
transparent overlay. The underlay rendering is com-
monly used to inspect the data set on which the seg-
mentation is based. It is useful to visualize bone
structures or the vasculature for CT data sets, for
example. Our implementation is very similar to the
segmentation rendering, except that the decompres-
sion, staircase filter and coloring steps are omitted.
The transparent overlay rendering is useful to visual-
ize and analyze multimodal data sets [3,12]. To com-
bine rendering of underlay, segmentation and trans-
parent overlay, a depth map is used and the underlay,
segmentation and overlay are rendered sequentially
[50]. For transparent overlay rendering, standard
volume rendering with front-to-back alpha blending
is used. No zero skipping optimization is imple-
mented, because, usually the overlay data sets are of
much lower resolution than the underlay and the
segmentation. This approach results in geometrically
correct renderings suitable for stereo vision.

Performance Measurements
Data Sets

For performance experiments, three high resolu-
tion CT data sets were selected which resemble typical
imaging studies. The data sets were acquired using
three differently scaled CT devices, for humans, mice,
and smaller probes. The segmentations of these data
sets are useful to illustrate the advantages and dis-
advantages of the two rendering methods. The prop-
erties of the data sets used in the experiments are
listed in Table 1.

Table 1: Properties of data sets.

Data set Dimensions

Voxel size
[µm³]

Voxels
[10^9]

Femur Head 1183 x 1127 x 1496 35 x 35 x 35 1.99
Human CT 1022 x 1022 x 1742 166 x 166 x 200 1.82
Mouse Kidney 1000 x 1000 x 1247 6.9 x 6.9 x 6.9 1.25

 Theranostics 2016, Vol. 6, Issue 3

http://www.thno.org

336

First, an excised human femur head was scanned
in a dual energy µCT for small animals (Tomoscope
DUO; CT Imaging, Erlangen, Germany). Tubes were
operated at 40 kV/1.0 mA and 65 kV/0.5 mA and
2880 projections were acquired over 6 minutes [47].

Second, a clinical CT angiography data set was
used [47]. The scan was performed using a clinical
dual energy CT (Somatom Definition, Siemens, Med-
ical Solutions, Forchheim, Germany) with tube set-
tings of 140 kV/55 mAs and 80 kV/230 mAs for the
two tubes after bolus injection of 20 ml of io-
dine-containing contrast media (Ultravist 300,
Bayer-Schering, Berlin, Germany). To generate a
larger size for the performance experiments the vol-
ume size was doubled in each dimension using linear
interpolation.

Third, an excised mouse kidney, prepared by

vascular casting [51], was scanned using ex vivo µCT
(SkyScan 1172, Bruker, Kontich, Belgium), acquiring
542 projections with 4000 x 2096 pixels. The recon-
structed data set (4000 x 4000 x 4990) was too large
(122 GB) for interactive processing with currently
available GPUs and therefore down-sampled by
4x4x4 binning.

The three segmented data sets are shown in
Figure 7, as seen from the camera position that was
used for the experiments. To assess the dependency of
the rendering time on the 3D size, the data sets were
successively down-sampled, and the rendering and
preprocessing time were measured. The
down-sampling of the segmentation was performed
by 2x2x2 binning using the maximum operator for
factors of 2 and using nearest neighbor interpolation
for the intermediate steps.

Figure 7: Frame time as function of volume size. The three exemplary data sets are increasingly difficult for ray casting and decreasingly difficult for marching cubes from
left to right. A) Head of human femur scanned in small animal µCT. B) Human CT angiography with carotid artery stenosis and calcified plaque. C) Mouse kidney scanned ex-vivo
using µCT. The top row shows slices through the CT data sets. Scale bars 10 mm (A), 50 mm (B), 2 mm (C). The middle row shows rendered segmentation images. Zoomed
parts, rendered by ray casting (left) and marching cubes (right) show that both methods result in nearly identical images. The last row shows frame rendering times plotted over
the volume diameter, i.e., the cube root of the number of voxels. Linear and cubic regression lines are shown for sphere casting and marching cubes, respectively. Sphere casting
excels for data sets with large numbers of triangles (A,B) but is slowed down by complex vessel structures (C).

 Theranostics 2016, Vol. 6, Issue 3

http://www.thno.org

337

Devices and Software
For the performance measurements, a PC (Dell

Precision Workstation T7500) equipped with two Intel
Xeon X5677 (3.47 GHz) quad-core processors, 96 GB of
DDR3 RAM (CAS latency 9, DRAM Frequency 665.1
MHz) and an Nvidia Geforce Titan (6 GB memory)
was used. The operating system was Windows 7
(64-bit). The CUDA Toolkit 5.5 including the Thrust
library was used to develop and compile the GPU
code. The C++ code was compiled with Visual Studio
2012 Ultimate (Update 4).

Segmentation Operations
To measure the effect of the GPU acceleration,

the time for compression, decompression, and dis-
tance map computation was measured using a paral-
lel CPU-based implementation. The speed up factors
between GPU and CPU implementations of compres-
sion, decompression, and distance map computation
were 16.7, 28.4, and 13.0, respectively, showing that
GPU-acceleration is highly beneficial for this interac-
tive tool. It should be noted, that up to 3 times more
powerful dual-socket CPUs are currently available,
which would reduce the relative improvement of the
GPU-acceleration.

GPU-based compression and decompression
achieved bandwidths of 23.3 GB/s and 54.5 GB/s,
respectively, which were measured for the clinical CT
data set. The compression factors were 24.3, 52.9 and
62.9 for the three data sets of Table 1. The transfer
speed between host memory and GPU memory was
5.2 GB/s using pinned memory [52].

Preprocessing for Rendering
The preprocessing time is the time required to

compute the data structures needed for frame ren-
dering. For these measurements it was assumed that
the segmentation is available in compressed form on
the GPU, i.e., the decompression was included into
the measurements. The preprocessing time depends
linearly (R²=0.99, P<0.001) on the number of voxels for
both sphere casting and marching cubes (Figure 8).
For marching cubes it was more heterogeneous be-
cause it depends on the number of triangles to be
generated. When splitting the preprocessing time into
parts (Figure 8), it can be seen that the distance map
and active voxel computation require the largest
parts, without dominating the preprocessing, how-
ever.

Frame Rate over Volume Diameter
For this experiment, the frame rate was meas-

ured as a function of 3D volume diameter (Figure 7).
We used a high 2D resolution to accommodate for
modern high resolution displays. Images were ren-

dered in full HD (1920x1080 pixels), i.e., including 2x2
super-sampling, around 8 million rays were cast for
each frame. Compared to naive ray casting, sphere
casting achieved a speed up of 15.0, 10.8, and 7.0 for
the three data sets at the highest volume diameter,
showing that a space leaping optimization is required
to achieve interactive frame rates.

Figure 8: Preprocessing time. The preprocessing time is proportional to the
number of voxels for sphere casting (A) and marching cubes (B). The time is lower
and more predictable for sphere casting. (C, D) Preprocessing time for ray casting and
marching cubes split into categories, for the human CT data set.

The theoretical frame rendering cost is linear in

the image diameter for ray casting and cubic for
marching cubes, with a much smaller constant factor
for marching cubes [53]. This behavior was confirmed
in the experiments; however, the performance of both
methods strongly depends on the image structure.
The three data sets are increasingly difficult for sphere
casting, resulting in decreasing frame rates of 62.7 Hz,
46.4 Hz, and 23.6 Hz. Sphere casting is particularly
affected by complex vessel structures which nega-
tively affect early ray termination and space-leaping.

For marching cubes, the opposite behavior was
observed, i.e., the three data sets were decreasingly
difficult. In large data sets with high occupancy, such
as the femur head with the complex trabecular bone
structures, marching cubes cannot maintain interac-
tive frame rates. Furthermore, marching cubes could
not process the three largest data sets of the femur
head pyramid because the buffer for the vertices was
prohibitively large (Table 2). In cases of low occu-
pancy, the marching cubes method excels on the other
hand. For the kidney example, due to the relatively
small number of vertices, marching cubes was faster
than sphere casting for all volume diameters.

 Theranostics 2016, Vol. 6, Issue 3

http://www.thno.org

338

Figure 9: Frame time as a function of 2D image size. A) For sphere casting the
frame time increases with the 2D size since the number of rays grows proportional
with the number of pixels. The measured effect is supra-linear, presumably because of
beneficial caching effects resulting from tightly packed rays. B) For marching cubes the
rendering time per frame hardly depends on the 2D size, except for very low
resolutions.

Table 2: Marching cubes properties of data sets.

Data set Occupancy
[%]

Triangles
[10^6]

VBO Size
[GB]

VBO Bytes
per Voxel

Femur Head 4.09 163.6 7.5 3.8
Human CT 1.43 52.2 2.3 1.3
Mouse Kidney 0.67 16.5 0.7 0.6

Frame Rate over 2D Resolution
The frame rendering time was also measured as

a function of the 2D resolution (Figure 9), i.e., the
number of pixels of the rendered image. For the femur
head, a down-sampled data set was used (the fourth
in the pyramid), because the larger data sets resulted
in prohibitive memory consumption.

For sphere casting a supra-linear effect can be
seen (Figure 9). Generally, the work-load should in-
crease linearly with the number of pixels, i.e., rays.
The supra-linear effect can be explained because the
GPU traces the rays for small blocks of pixels in par-
allel utilizing a SIMD-like architecture, i.e., 32 adjacent
rays are traced by a group of 32 threads, called a
warp. This architecture benefits from cases where rays
processed by the same warp traverse the volume at
nearby positions; the higher the 2D resolution and/or
the simpler the surface of the object inside of the 3D
volume the higher this benefit gets. When the rays are
coarse, i.e., for low resolutions, the computation is
bandwidth bound. For dense rays the computation
eventually becomes compute bound since many rays
share the cached 3D data.

For marching cubes, the frame time appears to
be almost constant over the rendering resolution, ex-
cept for small resolutions which receive a penalty. The
OpenGL rendering consists of two phases, vertex
processing and fragment shading. The vertex pro-
cessing costs are independent of the image resolution
since it only depends on the given mesh which is
constant in this experiment. Only the fragment shad-
ing is directly dependent on the image resolution, but

this is not the bottleneck here as we only apply a
simple lighting model, and, for our data sets, the re-
sulting triangles cover only a small number of pixels
(often only one) even at high resolution which result
in a workload for the rasterizer that depends more on
the number of triangles than the number of pixels.
Small resolutions receive a penalty because the ren-
dering hardware has to always shade groups of two
by two fragments from the same triangle to be able to
compute derivations (e.g., for texture mapping) in-
dependent of the number of pixels covered by a tri-
angle. In case of one pixel sized triangles this results
in only a 25% fragment shader efficiency explaining
the observed penalty for low resolutions.

Discussion
We implemented and evaluated a

GPU-accelerated system for interactive segmentation
of volumetric data sets. A major challenge for an in-
teractive segmentation tool is to implement both
segmentation operations and rendering with low de-
lay while retaining high frame rates and image qual-
ity. While GPUs may be the solution for this with their
massive processing power, they require special atten-
tion with respect to code complexity, limited memory,
limited host-device bandwidth, and fine grained par-
allelism [54,55]. Tolerable worst-case memory con-
sumption is particularly relevant for a robustly ap-
plicable tool, because otherwise it could suddenly
crash when reaching a segmentation state with pro-
hibitive memory consumption.

We show that GPU-acceleration is useful for
several segmentation operations, in particular mor-
phological operations and a general undo/redo
mechanism. The latter is implemented by GPU-based
compression of the segmentation map in combination
with transfer and storage of the compressed data into
host memory. Compression and decompression op-
erate at 23.3 GB/s and 54.5 GB/s, respectively, while
compression factors above 20 are achieved for all
three example data sets. In our opinion, this is the
most reasonable way to implement undo/redo for our
application, because multiple states cannot be stored
on the GPU due to limited memory. Transfer of the
uncompressed data would lead to an increased delay
due to the transfer limitations and to excessive
memory consumption on the host memory. Delayed
transfer is not an option, because the GPU memory
should be released as fast as possible to be available
for GPU-based segmentation operations or rendering.
The compression algorithm is a compromise between
speed and compression ratio, and could be further
optimized using Huffman encoding, probably with-
out sacrificing much speed when using pre-computed
lookup-tables.

 Theranostics 2016, Vol. 6, Issue 3

http://www.thno.org

339

The entire segmentation rendering, including
preprocessing required after changing the segmenta-
tion state, is performed on the GPU. Most studies
about ray casting have focused on achieving a high
frame rate, while the preprocessing cost has not been
considered. The preprocessing time of our method is
scalable, i.e., linear with respect to the number of
voxels and independent of the number of regions.
Furthermore, memory requirements for rendering are
constant (per voxel) for sphere casting which is rele-
vant for a robustly applicable tool. To achieve inter-
active frame rates with ray casting, we found that a
space-leaping optimization is required. Therefore, we
chose a flat grid structure, a 3D distance map, which
provides a safe jumping distance with a few simple
operations, does not require recursion or tree tra-
versal, and can be efficiently computed on the GPU.

A general comparison between direct and indi-
rect volume rendering may not be appropriate.
However, for our use case of segmentation rendering,
the resulting images are visually indistinguishable
and a comparison does make sense. We show that the
preprocessing time is more predictable for sphere
casting and faster than for marching cubes. More
importantly, the GPU memory consumption is con-
stant (2.125 bytes per voxel) for sphere casting, while
for marching cubes, the memory requirements can
become prohibitively large in cases of high noise or
heterogeneous structures. Such a situation is not un-
likely in practice, since it occurs when thresholding a
noisy image, which could be created through a sharp
CT reconstruction kernel. For cases with moderate
amounts of triangles, marching cubes is preferable,
resulting in less memory consumption and higher
frame rates. Therefore, a beneficial combination
would be to use marching cubes for low numbers of
triangles and otherwise switch to sphere casting.

Limitations and Outlook
Currently, the GPU memory size limits the size

of data sets that can be processed and visualized with
our tool. GPUs with 12 GB memory are available and
GPUs with 4 GB are available for less than $100.
Commodity PCs are easily upgraded with pow-
er-saving single-slot GPUs. In our implementation
only a compressed segmentation state is kept on the
GPU memory, from which the data structures for
rendering and segmentation operations are rebuilt on
demand. Data sets larger than the GPU memory could
be rendered using a compressed format [56]. A tree
structure would actually solve this implicitly [57].
Rendering at lower resolutions could reduce the
memory constraints and increase the frame rate, e.g.,
during interactive rendering. However, to fully sup-
port data sets larger than the GPU memory, all seg-

mentation operations would have to be adjusted to
operate on a compressed storage format. GPUs inte-
grated into the CPU chip with direct access to the po-
tentially larger CPU memory could also mediate the
memory limitations. The speed of the preprocessing
could be improved by using a faster approximate
method instead of the accurate distance map [58] or
using a distance map based on a different metric
[59,60]. The staircase filter is essential to provide a
smooth and natural visualization of the binary seg-
mentation map. A possible alternative is to use the
image intensities of the underlying image as proposed
in [61], however, this does not work well for regions
that are not aligned to intensity gradients. The ray
casting could be optimized further by starting with
coarse fat rays which are split into fine rays once a
sufficient narrowness is reached, which can be de-
termined from the distance map values. Another
promising approach is to compact alive threads, cor-
responding to rays, to avoid idle GPU threads of ter-
minated rays [62]. Transparent rendering of isosur-
faces is currently not supported but could be imple-
mented by casting rays through the objects using a
bidirectional distance map [63] or by two-level vol-
ume rendering [64]. It would come at the expense of
increased computational cost and the combination
with a transparent overlay is not trivial [65]. Our cur-
rent implementation supports up to 254
non-overlapping classes, which can be extended at the
expense of memory consumption by using 16 bit, 32
bit, or 64 bit indices for the segmentation map. To
support overlapping regions, only the last step in the
segmentation rendering, i.e., the coloring, needs to be
adjusted; however, the concept of non-overlapping
regions, i.e., partitions, was found to be beneficial for
many applications due to its simplicity [1]. A prag-
matic compromise might be to use multiple segmen-
tation maps and provide binary operations to com-
bine these. Nevertheless, the implemented segmenta-
tion operations are sufficient to solve many tasks
arising in daily medical image analysis and we plan to
implement more operations during future projects.

Abbreviations
FMT: Fluorescence-mediated Tomography; µCT:

Micro-Computed Tomography; rBV: relative Blood
Volume; GPU: Graphics Processing Unit; CPU: Cen-
tral Processing Unit; VBO: Vertex Buffer Object.

Acknowledgments
The authors gratefully acknowledge financial

support by Philips Research, Aachen, Germany, the
German Federal State of North Rhine Westphalia
(EFRE/ForSaTum), the RWTH Aachen University

 Theranostics 2016, Vol. 6, Issue 3

http://www.thno.org

340

(START-152/12), and the European Research Council
(Starting Grant 309495 - NeoNaNo).

Competing Interests
Felix Gremse is founder and owner of Grem-

se-IT, a startup company that offers software and ser-
vices for medical image analysis in cooperation with
Philips and the Department for Experimental Molec-
ular Imaging of the RWTH Aachen University.

References
1. Baatz M, Zimmermann J, Blackmore CG. Automated analysis and detailed

quantification of biomedical images using Definiens Cognition Network
Technology. Comb Chem High Throughput Screen. 2009;12(9):908–16.

2. Gil JY, Kimmel R. Efficient dilation, erosion, opening, and closing algorithms.
IEEE Trans Pattern Anal Mach Intell. 2002;24(12):1606–17.

3. Kunjachan S, Gremse F, Theek B, et al. Noninvasive optical imaging of nano-
medicine biodistribution. ACS Nano. 2013;7(1):252–62.

4. Ruskó L, Bekes G, Fidrich M. Automatic segmentation of the liver from multi-
and single-phase contrast-enhanced CT images. Med Image Anal.
2009;13(6):871–82.

5. García-Lorenzo D, Francis S, Narayanan S, et al. Review of automatic seg-
mentation methods of multiple sclerosis white matter lesions on conventional
magnetic resonance imaging. Med Image Anal. 2013;17(1):1–18.

6. Baiker M, Milles J, Dijkstra J, et al. Atlas-based whole-body segmentation of
mice from low-contrast Micro-CT data. Med Image Anal. 2010;14(6):723–37.

7. Shi L, Liu W, Zhang H, et al. A survey of GPU-based medical image compu-
ting techniques. Quant Imaging Med Surg. 2012;2(3):188–206.

8. Hadwiger M, Laura F, Rezk-Salama C, et al. Interactive volume exploration for
feature detection and quantification in industrial CT data. IEEE Trans Vis
Comput Graph. 2008;14(6):1507–14.

9. Diepenbrock S, Praßi J, Lindemann F, et al. Interactive Visualization Tech-
niques for Neurosurgery Planning. Proc Eurographics. 2011.

10. Oeltze S, Doleisch H, Hauser H, et al. Interactive visual analysis of perfusion
data. IEEE Trans Vis Comput Graph. 2007;13(6):1392–9.

11. Smelyanskiy M, Holmes D, Chhugani J, et al. Mapping high-fidelity volume
rendering for medical imaging to CPU, GPU and many-core architectures.
IEEE Trans Vis Comput Graph. 2009;15(6):1563–70.

12. Gremse F, Theek B, Kunjachan S, et al. Absorption reconstruction improves
biodistribution assessment of fluorescent nanoprobes using hybrid fluores-
cence-mediated tomography. Theranostics. 2014;4(10):960–71.

13. Kunjachan S, Pola R, Gremse F, et al. Passive versus active tumor targeting
using RGD- and NGR-modified polymeric nanomedicines. Nano Lett.
2014;14(2):972–81.

14. Gremse F, Doleschel D, Zafarnia S, et al. Hybrid µCT-FMT imaging and image
analysis. J Vis Exp. 2015(100):e52770.

15. Doleschel D, Rix A, Arns S, et al. Erythropoietin improves the accumulation
and therapeutic effects of carboplatin by enhancing tumor vascularization and
perfusion. Theranostics. 2015;5(8):905–18.

16. Mertens ME, Frese J, Bölükbas DA, et al. FMN-coated fluorescent USPIO for
cell labeling and non-invasive MR imaging in tissue engineering. Theranostics.
2014;4(10):1002–13.

17. Gremse F, Krone O, Thamm M, et al. Performance of lead-free versus
lead-based hunting ammunition in ballistic soap. PLoS ONE.
2014;9(7):e102015.

18. Ehling J, Bartneck M, Wei X, et al. CCL2-dependent infiltrating macrophages
promote angiogenesis in progressive liver fibrosis. Gut. 2014;63(12):1960–71.

19. Duttenhoefer F, Mertens ME, Vizkelety J, et al. Magnetic resonance imaging in
zirconia-based dental implantology. Clin Oral Implants Res.
2015;26(10):1195–202.

20. Theek B, Gremse F, Kunjachan S, et al. Characterizing EPR-mediated passive
drug targeting using contrast-enhanced functional ultrasound imaging. J
Control Release. 2014;182:83–9.

21. Schober A, Nazari-Jahantigh M, Wei Y, et al. MicroRNA-126-5p promotes
endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat
Med. 2014;20(4):368–76.

22. Assmann A, Zwirnmann K, Heidelberg F, et al. The degeneration of biological
cardiovascular prostheses under pro-calcific metabolic conditions in a small
animal model. Biomaterials. 2014;35(26):7416–28.

23. Schürmann C, Rezende F, Kruse C, et al. The NADPH oxidase Nox4 has
anti-atherosclerotic functions. European Heart Journal. 2015:ehv460.

24. Mertens ME, Koch S, Schuster P, et al. USPIO-labeled textile materials for
non-invasive MR imaging of tissue-engineered vascular grafts. Biomaterials.
2015;39:155–63.

25. Li X, Zhu M, Penfold ME, et al. Activation of CXCR7 Limits Atherosclerosis
and Improves Hyperlipidemia by Increasing Cholesterol Uptake in Adipose
Tissue. Circulation. 2013;129:1244–53.

26. Szenasi S, Vamossy Z, Kozlovszky M. GPGPU-based data parallel region
growing algorithm for cell nuclei detection. Proc IEEE Computational Intelli-
gence and Informatics (CINTI). 2011:493–9.

27. Maurer CR, Qi R, Raghavan V. A Linear Time Algorithm for Computing Exact
Euclidean Distance Transforms of Binary Images in Arbitrary Dimensions.
IEEE Trans Pattern Anal Mach Intell. 2003;25(2):265–70.

28. Cao T-T, Tang K, Mohamed A, et al. Parallel Banding Algorithm to compute
exact distance transform with the GPU. Proc ACM SIGGRAPH symposium on
Interactive 3D Graphics and Games. 2010:83–90.

29. Preim B, Botha CP. Visual Computing for Medicine: Theory, Algorithms, and
Applications. 2nd ed. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc.; 2013.

30. Lorensen WE, Cline HE. Marching cubes: A high resolution 3D surface con-
struction algorithm. Comput Graph (ACM). 1987;21(4):163–9.

31. Wyvill G, McPheeters C, Wyvill B. Data structure for soft objects. Vis Comput.
1986;2(4):227–34.

32. Newman TS, Yi H. A survey of the marching cubes algorithm. Comput
Graph-UK. 2006;30(5):854–79.

33. Martin S, Shen H-W, McCormick P. Load-balanced isosurfacing on multi-GPU
clusters. Proc Eurographics Parallel Graphics and Visualization. 2010:91–100.

34. Kruger J, Westermann R. Acceleration techniques for GPU-based volume
rendering. Proc IEEE Visualization. 2003:287–92.

35. Bullitt E, Aylward SR. Volume rendering of segmented image objects. IEEE
Trans Med Imaging. 2002;21(8):998–1002.

36. Hadwiger M, Sigg C, Scharsach H, et al. Real-Time Ray-Casting and Ad-
vanced Shading of Discrete Isosurfaces. Comput Graph Forum.
2005;24:303–12.

37. Sherbondy A, Houston M, Napel S. Fast volume segmentation with simulta-
neous visualization using programmable graphics hardware. Proc IEEE Visu-
alization. 2003:171–6.

38. Havran V, Herzog R, Seidel H-P. On the Fast Construction of Spatial Hierar-
chies for Ray Tracing. Proc IEEE Symposium on Interactive Ray Tracing.
2006:71–80.

39. Zhou K, Hou Q, Wang R, et al. Real-time KD-tree construction on graphics
hardware. ACM Trans Graph. 2008;27(5):126.

40. Foley T, Sugerman J. KD-tree acceleration structures for a GPU raytracer. Proc
ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics hardware.
2005:15–22.

41. Cosenza B. A Survey on Exploiting Grids for Ray Tracing. Proc Eurographics
Italian Chapter Conference. 2008:89–96.

42. Zuiderveld KJ, Koning AHJ, Viergever MA. Acceleration of ray-casting using
3-D distance transforms. Proc SPIE 1808, Visualization in Biomedical Compu-
ting. 1992:324–35.

43. Frey S, Ertl T. Accelerating Raycasting Utilizing Volume Segmentation of
Industrial CT Data. Proc Theory and Practice of Computer Graphics.
2009:33–40.

44. Hart JC. Sphere Tracing: A Geometric Method for the Antialiased Ray Tracing
of Implicit Surfaces. Vis Comput. 1994;12:527–45.

45. Bell N, Hoberock J. Thrust: Productivity-Oriented Library for CUDA. Astro-
physics Source Code Library. 2012;1:12014.

46. Jones MW, Bærentzen JA, Sramek M. 3D distance fields: A survey of tech-
niques and applications. IEEE Trans Vis Comput Graph. 2006;12:581–99.

47. Gremse F, Grouls C, Palmowski M, et al. Virtual elastic sphere processing
enables reproducible quantification of vessel stenosis at CT and MR angi-
ography. Radiology. 2011;260(3):709–17.

48. Coeurjolly D, Vacavant A. Separable Distance Transformation and Its Appli-
cations. In: Brimkov VE, Barneva RP, editors. Digital Geometry Algorithms.
Dordrecht, Netherlands: Springer; 2012:189–214.

49. Dyken C, Ziegler G, Theobalt C, et al. High-speed Marching Cubes using
HistoPyramids. Comput Graph Forum. 2008;27(8):2028–39.

50. Tietjen C, Isenberg T, Preim B. Combining silhouettes, surface, and volume
rendering for surgery education and planning. Proc EUROGRAPHICS/IEEE
Symposium on Visualization. 2005:303–10.

51. Ehling J, Bábíčková J, Gremse F, et al. Quantitative Micro-Computed Tomog-
raphy Imaging of Vascular Dysfunction in Progressive Kidney Diseases. J Am
Soc Nephrol. 2015:[Epub ahead of print].

52. NVIDIA Corporation. CUDA C Programming Guide. 2015.
53. Parker S, Shirley P, Livnat Y, et al. Interactive ray tracing for isosurface ren-

dering. Proc IEEE Visualization. 1998:233–8.
54. Garland M, Kirk DB. Understanding throughput-oriented architectures.

Commun ACM. 2010;53(11):58.
55. Gregg C, Hazelwood K. Where is the data? Why you cannot debate CPU vs.

GPU performance without the answer. Proc IEEE International Symposium on
Performance Analysis of Systems and Software. 2011:134–44.

56. Schneider J, Westermann R. Compression domain volume rendering. Proc
IEEE Visualization. 2003:293–300.

57. Crassin C, Neyret F, Lefebvre S, et al. GigaVoxels: ray-guided streaming for
efficient and detailed voxel rendering. Proc ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games. 2009:15–22.

58. Schneider J, Kraus M, Westermann R. GPU-Based Euclidean Distance Trans-
forms and Their Application to Volume Rendering. In: Ranchordas A, Pereira
JM, Araújo HJ, et al., editors. Computer Vision, Imaging and Computer
Graphics Theory and Applications. Heidelberg, Germany: Springer;
2010:215–28.

 Theranostics 2016, Vol. 6, Issue 3

http://www.thno.org

341

59. Cohen D, Sheffer Z. Proximity clouds - an acceleration technique for 3D grid
traversal. Vis Comput. 1994;11(1):27–38.

60. Sramek M, Kaufman A. Fast Ray-Tracing of Rectilinear Volume Data Using
Distance Transforms. IEEE Trans Vis Comput Graph. 2000;6(3):236–52.

61. Tiede U, Schiemann T, Hohne KH. High quality rendering of attributed
volume data. Proc IEEE Visualization. 1998:255–62.

62. Wald I. Active thread compaction for GPU path tracing. Proc ACM
SIGGRAPH Symposium on High Performance Graphics. 2011:51–8.

63. Lim S, Shin B-S. Bidirectional Distancemap for Efficient Volume Ray Casting.
In: Levi A, Savaş E, Yenigün H, et al., editors. Computer and Information
Sciences – ISCIS 2006. Springer Berlin Heidelberg; 2006:334–42.

64. Hadwiger M, Berger C, Hauser H. High-quality two-level volume rendering
of segmented data sets on consumer graphics hardware. Proc IEEE Visualiza-
tion. 2003:301–8.

65. Lux C, Fröhlich B. GPU-Based Ray Casting of Multiple Multi-resolution
Volume Datasets. In: Bebis G, Boyle R, Parvin B, et al., editors. Advances in
Visual Computing. Springer Berlin Heidelberg; 2009:104–16.

