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Abstract 

Model observers play an important role in the optimization and assessment of imaging devices. In 
this review paper, we first discuss the basic concepts of model observers, which include the 
mathematical foundations and psychophysical considerations in designing both optimal observers 
for optimizing imaging systems and anthropomorphic observers for modeling human observers. 
Second, we survey a few state-of-the-art computational techniques for estimating model observers 
and the principles of implementing these techniques. Finally, we review a few applications of model 
observers in medical imaging research. 
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Introduction 
Traditionally, medical image quality is defined 

in terms of measurable physical properties of the 
medical images, such as resolution, contrast, noise 
power spectrum, etc. State-of-the-art medical image 
quality assessment methods take a different philo-
sophical approach by defining the image quality in 
terms of how well the desired information for a given 
task of interest can be extracted from the images (1). 
Specifically, medical image quality is measured by the 
performance of an observer in conducting a task of 
clinical interest (1-3). Examples of clinically relevant 
tasks may include classification tasks, such as a task 
that requires classifying patients into normal vs. dis-
eased, or estimation tasks, such as a task that requires 
estimating the volume of a tumor. This is called a sta-
tistical, task-based assessment approach (3). The phi-
losophy of the task-based assessment is the corner 
stone of image science, in which mathematical and 
statistical theories are used to articulate and formulate 
the philosophy into symbolic languages – the equa-
tions (3). These theories and equations provide the 
foundations for the large body of research and appli-
cations in task-based medical image quality assess-
ment, an essential component of medical imaging 
practice.  

The four key elements of the task-based assess-
ment are: a task of interest, a specification of the pop-
ulation, an appropriate observer, and a fig-
ure-of-merit (FOM) (1-3). To perform a rigorous 
task-based assessment of image quality, these four 
elements must be carefully considered. For example, a 
diagnostic task using medical images is often mod-
eled as a binary classification task for classifying pa-
tients into diseased vs. normal. In this example, an 
ensemble of images from both normal and abnormal 
patients serves as the population. The images in the 
population should be read by an appropriate observer, 
either a mathematical model or a real human. Finally, 
an appropriate FOM is necessary to tell how well the 
observer performs. In a typical classification study, a 
receiver operating characteristics (ROC) curve is used 
to characterize the performance of an observer and 
the area under the ROC curve (AUC) value is used as 
the FOM. As a more practical example, the quality of 
mammographic images is assessed by measuring the 
average performance of radiologists in a tumor detec-
tion task. In this example, the data are images ob-
tained from a representative population of patients 
with and without breast tumors. The gold standard 
for tumor presence is usually provided by biopsy. A 
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sufficient number of radiologists will serve as the ob-
servers. In a well-controlled laboratory observer 
study, the clinical tumor detection task is simplified as 
one that requires the radiologists to classify images 
into having normal tissues or malignant tumors. A 
multi-reader multi-case (MRMC) ROC analysis is of-
ten used to compute the reader-averaged AUC value 
and its variance in order to make sure that the study 
result is generalizable (4-8).  

In this paper, our focus is on the third element of 
task-based image quality assessment: the observers. 
In particular, we review mathematical model observ-
ers in detail. Generally there are two lines of mod-
el-observer research. One is in medical imaging, as 
will be discussed in this paper. The other is in vision 
science, where the focus is to use model observers as 
tools to construct principled hypotheses for the pur-
pose of understanding (instead of predicting) the re-
sponses of the human visual systems (9-11), such as 
eye movement (12), crowding(13), illusion(14), etc. 
Many model-observer concepts in medical imaging 
originally came from vision-science research. There-
fore, although this paper will not cover the related 
topics in vision science, we encourage interested 
readers to explore that direction.  

In medical imaging, model observers are devel-
oped for two general purposes. The first purpose is 
hardware system optimization. For this purpose, it is 
desirable to have a model observer that extracts as 
much statistical information as possible from the im-
ages for a given task of interest. For signal detection, 
the Bayesian ideal observer (IO) or ideal linear ob-
server is often used (3). It has been applied to various 
modalities, aiming at investigating how system pa-
rameters affect signal detection in the presence of 
noise and other physical factors that degrade image 
quality (15-17). The second purpose is the evaluation 
and optimization of software systems, such as image 
reconstruction or processing methods. For this pur-
pose, it is desirable to study their effects on hu-
man-observer performance, because human observers 
are the end users of software systems. Hu-
man-observer studies, however, are resource de-
manding, especially when our goal is to study the 
effects of multiple treatments (e.g. multiple parame-
ters for reconstruction algorithms or acquisition pro-
tocols) on image quality. In addition, there is a signif-
icant amount of variability in human-observer per-
formance. For example, it is observed that different 
observers may have quite different performance de-
pending on their experience level. Even for the same 
observer, he/she may fail to give consistent ratings on 
the same images due to the existence of reader “jitter”. 
It is thus desirable to design model observers that 
predict human-observer performance in a consistent 

manner. Please refer to (18) for an example of the ef-
fects of reader variability.  

This paper will be organized as follows. In Sec-
tion I, we will discuss the foundations of model ob-
servers in binary classification tasks. Then, in Section 
II, the difficulties in implementing model observers 
and state-of-the-art computational techniques will be 
described. Finally in Section III, we will cover a few 
applications of model observers in medical imaging 
research. For the readers’ convenience, Table 1 pro-
vides a list of abbreviations used in this paper. 

 

Table 1. Table of Abbreviations. 

Acronyms Full name 
FOM figure-of-merit 
ROC receiver operating characteristics 
AUC area under ROC curve 
IO ideal observer 
SKE signal known exactly 
SKS signal know statistically 
BKE background known exactly 
BKS background known statistically 
PDF probability density function 
HO Hotelling observer 
SNR signal-to-noise ratio 
CIO channelized ideal observer 
CHO channelized Hotelling observer 
LR likelihood ratio  
MCMC Markov chain Monte Carlo  
LG Laguerre Gauss 
SV Singular vector 
PLS partial least square 
MRMC multi-reader multi-case 

 

Mathematical and Psychophysical Foun-
dations 

In the following, we briefly introduce the foun-
dations of various model observers. In particular, we 
focus on the rationales behind the design of each 
model observer.  

Imaging formation and binary classification 
tasks 

In imaging, the process of data acquisition is 
represented mathematically as (3) 

                              …(1) 

where is the object being imaged, denotes the 
imaging operator which represents the imaging sys-
tem, is the noise generated during the measure-
ment, and is the image vector. In nuclear-medicine 
imaging, for example, the object  may be the con-
tinuous three-dimensional radioactivity distribution 
in a patient. The imaging system describes the 
mapping from the continuous object to the discrete 
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image . For an  image, the image vector  is 
 in dimension, where . The random 

noise is Poisson in the example of nuclear medicine.  
In a binary classification task, there exist two 

possible hypotheses for a given image: , signal 
present (e.g. tumor present) or , signal absent (e.g. 
normal tissue). We mathematically formulate imaging 
under the two hypotheses as,  

                …(2) 

where denotes the background object and  the 
signal object. These objects could be either known 
exactly or statistically. A task in which the signal is 
known exactly is often referred to as a sig-
nal-known-exactly (SKE) task. Similarly, there are 
signal-known-statistically (SKS), background-known- 
exactly (BKE) and background-known-statistically 
(BKS) tasks. For mathematical convenience, in mod-
el-observer literature the noise-free background and 
signal images are often defined to be,  

                      …(3) 

respectively.  

The ideal observer 
In the context of binary classification tasks, the 

IO is defined as “the observer that utilizes all statisti-
cal information available regarding the task to max-
imize task performance as measured by Bayes risk or 
some other related measures of performance” (3). If 
the probability density functions (PDFs) of the raw 
data are known under both hypotheses, the IO is the 
one that uses the likelihood ratio (LR) of as the de-
cision variable,  

                    …(4) 

where is the PDF of the image vector 
under the ith hypothesis. For the population from 
which is drawn, the IO defined in (4) provides an 
upper bound against which all other observers (either 
model or human) can be compared. Specifically, this 
IO results in the highest ROC curve among all the 
other observers who use as the data.  

Due to its optimality, the IO is desirable for use 
in hardware system optimization. The immediate 
users of an imaging system are image processing 
software systems, the purpose of which is to change 
the representation of the images to help improve the 
human perception of the images (e.g., tomography 
reconstruction images enable radiologists to perceive 
tumors better compared to projection images). 

Therefore, to maximize the amount of statistical in-
formation that will be processed by a software system, 
it is desirable to optimize an imaging system based on 
the IO performance.  

Hotelling observer (HO) and ideal linear ob-
server 

From linear discriminant analysis we derive the 
Hotelling observer, which is the optimal linear ob-
server when SNR is used as the figure-of-merit 
(FOM). A linear observer applies a linear template to 
an image data vector to obtain the value of a scalar 
test statistic t. In other words, the linear observer uses 
the test statistic t as the decision variable. That is, 

                       …(5) 

where is the template of the linear observer, a vector 
with dimension equal to that of . To quantify the 
ability of the linear observer in classifying the two 
classes, the signal-to-noise ratio (SNR) is often used as 
a FOM,  

                …(6) 

where is the mean of the test statistics 

under each hypothesis and is the variance 
of the test statistics under each hypothesis. The HO is 
a linear observer that maximizes the in (6). To do 
so, the Hotelling template takes the form: 

                     …(7) 

where is the covariance matrix of the ran-
dom image vector under the ith hypothesis, and 
is the difference between the ensemble mean vectors 
under the two hypotheses.  

The HO is the same as the ideal linear observer 
when the image vector follows multivariate Gauss-
ian distributions with equal covariance matrices un-
der both hypotheses. Note that in this case, the ideal 
linear observer is the Bayesian ideal observer, and the 
log of the LR defined in (4) is a linear function of the 
data vector and is expressed as,  

                …(8) 

where is called the log LR, is the ensemble co-
variance matrix, which is equal between the two 
classes, and is a constant that is independent of , 
and thus does not affect the performance of this ob-
server. As a result, the test statistic, or decision varia-
ble, used by the ideal linear observer can be expressed 
as, 
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                       …(9) 

Substituting (9) into (6), one can show that the  
of the ideal linear observer is expressed as,  

                       …(10) 

In comparison, the of a HO is expressed as  

                         …(11) 

In HO studies, it is a common practice to use 
independent datasets to train and test the HO. As a 
result, the first  in (10) is calculated using the 
sample means in the training dataset and the second 

is calculated using the sample means in the testing 
dataset (19). 

Note that although the Hotelling observer and 
the ideal linear observer take similar forms, they are 
two different observers. The Hotelling observer is 
optimal with respect to the SNR and its template is 
calculated using the sample means and variance. The 
ideal linear observer is an ideal observer whose data 
follow multi-variate Gaussian distributions. It is op-
timal in terms of both the SNR and the AUC value. Its 
template is calculated using the population statistics. 
For example, in (7), the HO template is calculated 
using the difference of the sample means, and in (9), 
the ideal linear observer’s template is calculated using 
the difference of the population means.  

In addition to the Hotelling observer and the 
ideal linear observer mentioned above, another inter-
esting linear observer is the ideal observer for data 
with Poisson statistics. In particular, in a BKE task, 
when the data statistics only depends on the Poisson 
noise, the data distributions under  and  hy-
potheses are expressed as:  

             …(12) 

and, 

           …(13) 

where and represents the mth pixel on the 
background or signal image, respectively. The log 
likelihood ratio is expressed as  

                 …(14) 

where symbol  represents Hadamard product and 

is the element wise inverse assuming 
.  

In this example, we see that the ideal observer of 
data with Poisson statistics is also a linear observer 
and it is optimal in terms of the AUC value. However, 
it is not optimal in terms of the SNR and thus its per-
formance is quite different from the HO. Note that 
when there are background variations, even if the 
quantum noise is Poisson, the data statistics is no 
longer Poisson. Thus the ideal observer is no longer 
linear.  

Channelized observers  
The addition of a channel mechanism was orig-

inally proposed to predict human-observer perfor-
mance by incorporating the frequency-domain chan-
nels that are thought to exist in the human visual 
systems (20). It was then found that the appropriate 
selection of channels can greatly reduce the dimen-
sionality of the HO or IO computation while still ap-
proximating the corresponding HO or IO perfor-
mance. In this section, we discuss the basic principles 
for applying channels, and the selection of channels 
will be discussed in the next section.  

The application of channels involves multiplying 
the images with a series of channel template images. 
Assume a total of L channel images and every channel 
image is in the format of a  dimensional vector, 
applying each channel vector to the image vector re-
sults in one scalar response, i.e., 

              …(15) 

where is ith channel and is the ith channel re-
sponse. Stacking the channel responses together re-
sults in a channelized data vector ,  

                …(16) 

A channelized ideal observer (CIO) or channel-
ized Hotelling observer (CHO) is one that uses the 
channelized data vector as the data instead of using 
the image vector . Thus the decision variable or test 
statistics of both the CIO or CHO can be computed by 
replacing with in (4) or (9), resulting in perform-
ing the computational task in a space of a much 
smaller dimension and thus requiring many fewer 
images for the statistical significance of observer per-
formance estimates.  

Channels 
Now the question is what types of channels are 

available and how to select channels for the given 
problem. We categorize channels into two groups: 
anthropomorphic and efficient. 

Anthropomorphic channels are used to incorpo-
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rate the characteristics of the human visual system 
into a model observer. One of the most widely used 
characteristics is the spatial-frequency-selective fea-
ture, which refers to the mechanisms or “channels” 
that cause the human visual system to be selectively 
sensitive to different limited ranges of spatial fre-
quencies (21). The design of spa-
tial-frequency-selective channels usually has three 
conditions: 1) zero response at zero frequency in the 
frequency domain; 2) sparse channels (only a handful 
of channels); and 3) overlapping bandwidths that are 
octavely spaced, i.e., the width of the Nth channel are 
twice those of the (N-1)th channel (22). In other 
words, one averages over more frequencies when 
sensing higher frequencies (e.g. the Nth channel). 
Note that satisfying these conditions does not neces-
sarily make channels anthropomorphic; psychophys-
ical studies are a must to validate these channels for 
the given tasks and image statistics. There are a 
number of channel models in the literature that have 
been shown to predict human-observer performance 
well, such as square channels (Figure 1) (20, 21, 23), 
difference-of-Gaussians channels (24), differ-
ence-of-Mesa filters (25) and Gabor channels (26).  

 

 
Fig 1. Four square frequency-domain channels and their spatial-domain 
counterparts shifted to a specific signal centroid location. They are called 
“square” because they are band-pass filters in the frequency domain and 
thus their profiles look square along the x or y axis. (Reproduction of Fig. 
8 in (27)) 

 
Efficient channels are another important concept 

to consider. Channels are called efficient if the result-
ing channelized observer approximates the perfor-
mance of the given unconstrained observer while re-
ducing the data dimension with as few channels as 
possible (3). 

Efficient channels are used to estimate the IO 
performance (either nonlinear or linear). To find a set 
of efficient channels for a model observer, one should 
consider the physics of the imaging system as well as 
the signal and background data statistics in the task. A 
practical principle for efficient channel design is to 
choose a finite number of functions from a large set of 
basis functions that are used to represent 
high-dimensional matrices, such as an ensemble of 
images (28), an imaging system matrix (29), or a Ho-
telling template (30).  

Using all functions of a complete basis, high di-
mensional matrices can be described exactly. Using 
only a limited number of the basis functions or an 
incomplete basis may result in dimension reduction at 
the expense of information loss. Thus, one might 
wonder whether the CIO or CHO with efficient 
channels results in a biased estimate of the uncon-
strained IO or HO performance. Witten et al. showed 
that when the background was modeled as identical-
ly-independently-distributed Gaussian noise, only 
one channel was enough to capture all the infor-
mation for signal detection. Witten et al. also showed 
that for detecting certain symmetric and asymmetric 
Gaussian signals in non-Gaussian backgrounds, many 
more channels (basis functions) were required for 
representing the background than the signal, and 
fewer signal-based channels did better than the back-
ground-based channels in approximating the uncon-
strained Bayesian ideal observer (29). This suggests 
that there is redundant information in the images for 
the purpose of signal detection and the redundancy is 
likely related to the complexity of the signal and 
background statistics. Careful selection of efficient 
channels may result in an unbiased estimate of the 
performance of the corresponding unconstrained IO 
or HO.  

Other performance degrading models 
Ideal linear observers typically outperform hu-

mans (26). The same is true for non-linear IOs. To 
predict human-observer performance, a typical prac-
tice is to degrade the model performance empirically 
to track human performance or to match hu-
man-performance trends by incorporating the char-
acteristics of the human visual systems into the design 
of model observers. The channel mechanism is prob-
ably the most important performance degrading 
model (5, 20, 21, 23-26). In addition to channels, a few 
other models are frequently used in the literature, 
such as internal noise (31), excitatory nonlinearity, 
inhibitory linearity (26), and human-contrast sensitiv-
ity (32), etc.  

Next to the channel mechanism discussed in the 
previous section, internal noise is probably the second 
most widely used model for degrading mod-
el-observer performance to match human perfor-
mance. It is usually added to the test statistic as a 
summary of all the degrading factors. That is, 

            …(17) 

Comparing (17) to (15), is the internal noise. It 
is modeled as a random variable with zero-mean. 
Furthermore, it is generally assumed to be uncorre-
lated with the image. The choice for the internal noise 
component has been made empirically on the basis of 

t
CHOt n= +w v

n



 Theranostics 2013, Vol. 3, Issue 10 

 
http://www.thno.org 

779 

the absolute performance of one human observer or 
the average of multiple human observers (24).  

Performance measures 
The AUC,  and  are the three 

widely used performance FOMs, to be explained be-
low. There are two main approaches used for esti-
mating these performance FOMs. The first is to esti-
mate the test statistics of a finite set of sample images, 
calculate the AUC using parametric or 
non-parametric approaches, and convert the AUC 
estimate to the ,  

             …(18) 

where is the Gauss error function. The second one 
is to compute the  value directly from the sam-
ple mean and variance via Eq. (6), and then use (19) to 
calculate the AUC,  

              …(19) 

When the test statistics follow multivariate 
Gaussian distributions with equal variances, it can be 
proven using Eqs. (6) and (11) that the equals

. In addition, they are monotonically related 
to the AUC. As a result, all three FOMs are valid in 
performance evaluation. When the normality as-
sumption does not hold, the AUC and are not 
necessarily monotonically related. For example, in the 
previous section, we discussed the linear observer 
derived for data with Poisson statistics. Since the lin-
ear template in (14) is different from the Hotelling 
template, the linear observer in (14) is not the optimal 
observer with respect to SNR. However, since it is an 
ideal observer who uses log-LR as the decision varia-
ble, it is optimal with respect to AUC. Which FOM 
gives an “objective” performance ranking then? This 
is a challenge that needs to be addressed in a princi-
pled way. 

Advanced tasks 
In addition to the binary classification tasks 

mentioned above, there are other clinically relevant 
tasks of practical interest. These tasks include general 
classification tasks with more than two classes(33), 
estimation tasks (34, 35), localization tasks(36), and 
the combinations of the aforementioned tasks (37, 38).  

Human observers 
One important direction in model-observer re-

search is to model human-observer performance. 
Properties of human observers have been widely 
studied. It is known that there is a significant amount 
of intra-observer and inter-observer variability in 

human-observer performance. In a recent study, He et 
al. (39) proposed a principled model attempting to 
address the mechanism of human-observer behavior. 
In particular, they presented evidence from the radi-
ology literature to show that a human observer can be 
modeled as if he is an IO who uses information that 
exits the perception/cognitive systems. They termed 
this IO the equivalent IO (EIO). Different human ob-
servers have different amount of exiting data and thus 
different EIO performance. To measure the LR dis-
tributions of these EIOs, rationality must be enforced 
(39).  

Advanced Model Observer Computa-
tional Techniques 

Due to large data dimensionality found in med-
ical imaging applications, significant computational 
difficulties arise in computing model observers. Bar-
rett et al. called this problem the HO computation 
megalopinakophobia (40), i.e., fear of large matrices. 
For example, the image vector of a image is 

in dimension, and the dimension of its covar-
iance matrix is . Thus the computation of 
the HO involves inverting a matrix. In 
addition to megalopinakophobia, the difficulty of 
computing an IO also comes from the often unknown 
PDFs of the image data. Even for phantoms defined 
by a set of parameters with known statistical distri-
butions, the actual image statistics cannot be easily 
deduced from the sample images drawn from the 
distributions, nor can it be easily derived analytically.  

Despite the significant computational difficul-
ties, the IO and HO computations are feasible for 
images obtained from parameterized phantoms or 
even real clinical images. There are two general types 
of techniques, Markov chain Monte Carlo (MCMC) 
and efficient channels. In the following subsections, 
these two types of techniques will be introduced first. 
The variance estimation and generalizability of model 
observers will then be discussed.  

Computing an ideal observer using a Markov 
Chain Monte Carlo technique 

Kupinski et al. proposed an MCMC technique to 
evaluate the non-linear IO test statistics for 
non-Gaussian images generated using a parameter-
ized lumpy object model (41). In other words, 
Kupinski’s MCMC allows LR computation in a BKS 
scenario. In particular, they formulated the LR in (4) 
as an expectation of the LR for the given known 
background (i.e., BKE case) over the posterior distri-
bution of the background image , i.e.,  

              …(20) 

SNR t SNR AUC

SNR AUC

12 (2 1)AUCSNR AUC−= −erf

erf
SNR t

1 1
2 2 ( )
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where is the BKE LR and  is 
the posterior distribution of given  under . 
Eqn. (20) can be estimated using the following Monte 
Carlo estimator,  

                …(21) 

where is the jth sample from ,  is 
used as a burn-in iteration to remove the unstable 
samples from the estimation, and J is the total number 
of samples used to estimate . Thus the difficulty 
in evaluating (21) resides in sampling from 

. Kupinski et al. proposed a Metropo-
lis-Hastings MCMC algorithm that made this sam-
pling possible. The basic idea is to first sample from 
the parameter space of the given background phan-
tom b, create an ensemble of background phantoms, 
simulate the imaging process to obtain candidate 
background images from those phantoms, and then 
apply the Metropolis-Hastings algorithm to each 
candidate background image to decide whether to 
accept it as a sample from the posterior distribution. 
The accepted  samples form a Markov chain for 
use in the estimation of LR given in (21). This process 
results in a good-sized set of accepted background 
images, which are sampled from the posterior distri-
bution.  

Park et al. added to this MCMC technique by 
providing a means to handle signal variability such as 
signal location and shape. In particular, Park formu-
lated the LR in (20) as an expectation of the BKE LR 
over the posterior distribution of the image back-
ground as well as the distribution of the signal pa-
rameters. Park’s formulation assumed independence 
between the signal and the background. A corre-
sponding MCMC technique was developed (42).  

Choosing efficient channels  
 To make the IO computation faster and more 

practical, Park et al. continued this line of research (28, 
29). To further accelerate the computational speed and 
still approximate the IO or HO performance, Park et 
al. investigated the methods of choosing efficient 
channels for the CIO and CHO. For their investigation 
of efficient-channel methods, Park et al. developed 
another MCMC, which is an extension of the Kupinksi 
MCMC (43). In the Kupinski MCMC (40), a symmetric 
proposal density which enabled the use of Metropo-
lis-Hastings MCMC technique, was developed to 
add/remove the original lump locations from the 
given lumpy background phantom b to/from the new 
background phantom, and also to randomly change 
each of the chosen original lump locations (i.e., if 
randomly chosen to be added to the new background) 

from the given lumpy background phantom via sam-
pling from a Gaussian distribution with a fixed width. 
The Gaussian width was chosen so that the ac-
ceptance rate of the newly sampled lumpy back-
ground images was reasonable. The Park MCMC 
used this proposal density for generating lumpy 
background phantoms for forming its own Markov 
chain. However, the Park MCMC used an acceptance 
probability formula in the channelized data space in 
order to enable the calculation of the CIO rather than 
the IO, whereas the Kupinski MCMC used its ac-
ceptance probability formula in the image space. This 
way, the resulting Markov chain from the Park 
MCMC consisted of background images that were 
different from the Kupinski MCMC. The Park MCMC 
technique was instrumental in the subsequent inves-
tigation of a number of efficient-channel generating 
methods, which are described below.  

We describe three sets of the most promising ef-
ficient channels as well as the importance of tuning 
channels properly. Examples of these channels are 
shown in Figure 2.  

Laguerre-Gauss channels  
Laguerre-Gauss (LG) functions make up an or-

thonormal basis for rotationally symmetric 
square-integrable functions (22). For an imaging sys-
tem whose Hotelling template is rotationally sym-
metric, LG channels form a basis for the Hotelling 
template and hence are efficient for the Hotelling ob-
server. Now the question is: what kind of image data 
will result in a rotationally symmetric HO template? 
The answer can be found in (30), from which we give 
a brief statement here: “The correlation structure of 
the background has no preferred orientation; thus it is 
rotationally symmetric. The signal is a smooth and 
rotationally symmetric function in a known location, 
and the measurement function of the imaging system 
is position independent and also rotationally sym-
metric. We infer from these characteristics of the sig-
nal, background, and imaging system that the tem-
plate of the ideal linear observer will be a discretized 
version of a smooth and rotationally symmetric func-
tion located in the same place as the signal.”  

Singular vectors (SV) channels 
Park et al. investigated the use of singular vec-

tors (SVs) of a linear pin-hole imaging system as effi-
cient channels for the IO using non-Gaussian lumpy 
backgrounds and a Gaussian signal (29). They found 
that SV channels were more efficient than LG chan-
nels in terms of approximating both the nonlinear and 
linear IOs. However, since the SVs are only a basis for 
the imaging system, and contain no statistical infor-
mation regarding the signal to be detected, a large 

BKE ( | )Λ g b 0( | , )pr Hb g
b g 0H

0

( )1
BKE

ˆ ( ) ( | )
J

j
J

j J=
Λ = Λ∑g g b

( )jb 0( | , )pr Hb g 0J

( )Λ g

0( | , )pr Hb g

( )jb



 Theranostics 2013, Vol. 3, Issue 10 

 
http://www.thno.org 

781 

number of SV channels are needed to approximate the 
IO performance compared to the LG channels as well 
as the other approach for choosing efficient channels 
described below (28).  

 

 
Fig 2. Images of various channels. On top: examples of first 25 La-
guerre-Gauss channels. Middle: examples of first 25 singular vector 
channels. Bottom: examples of first 25 PLS channels. Please refer to (28) 
for details of the system and image parameters for the generation of these 
channels. (reproduction of Fig. 2 in (28).) 

 
An alternative to using the SVs of an imaging 

system as efficient channels is to use the SVs of the 
data covariance matrix computed from background 

images (44, 45). A main bottleneck of this approach 
when applied to realistic applications would be the 
number of sample images required to calculate a good 
estimate of data covariance, assuming one can over-
come megalopinakophobia. 

Partial least squares (PLS) channels 
Note that the CIO with LG or SV channels are 

only applicable to rotationally symmetric signals or 
known imaging system matrices, respectively, and are 
only validated with respect to lumpy backgrounds. To 
overcome these difficulties and arrive at channels that 
may be applicable to real-life situations, Witten et al. 
[27] investigated a method using partial least squares 
(PLS) to compute efficient channels directly from the 
images. The PLS approach seeks to find a set of basis 
functions of the images that maximize the covariance 
between the data and the truth. Witten et al. found 
that PLS channels are more efficient than LG and SV 
channels in terms of both the number of channels and 
the ability to approximate performance. 

Tuning channels 
We use LG channels as an example. For LG 

channels to be efficient for the HO, it is important to 
tune the parameters of LG channels (the Gaussian 
width and the number of LG channels to be used). In 
our experience, the Gaussian width should be large 
enough to cover at least the signal spread and the 
optimal number of LG channels changes depending 
on the background and signal statistics. For example, 
the detection of a SKE Gaussian signal in white noise 
backgrounds can be done with one LG channel of the 
same width as that of the signal (i.e., the signal itself). 
If the background statistics change to have some spa-
tial correlation, the number of LG channels has to 
increase to incorporate the background statistics in-
formation that affect the detection of the given signal 
(28). 

CHO performance estimates and generality of 
model observers 

Various statistical/computational methods have 
been developed to refine CHO methodologies. Here 
we give two examples. Wunderlich et. al (46-49) ex-
plored the potential to improve the estimation accu-
racy of CHO SNR2 by incorporating prior knowledge 
of the mean images into the estimation procedure. 
Uniformly minimum variance unbiased estimators of 
SNR2 were then proposed and shown to result in sig-
nificantly lower bias and mean-square error than tra-
ditional estimators (48).  

Generalizability of an observer, IO, HO or CHO, 
might be a desired feature for observer design. Be-
cause model observers are computed based on a sur-
rogate population of images, exploration of the gen-
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eralizability of a model observer might help to answer 
how model-observer performance results can be gen-
eralized to a more realistic population. Brankov’s 
study explored the generalizability of a CHO which 
was implemented using a machine learning technique 
(50). Instead of using the sample mean and covariance 
matrices to compute the CHO template as in (7), 
Brankov trained the observer using supporting vector 
machine (SVM) to give scores that matched the hu-
man-observer scores given the same images. They 
found that the use of SVM enables good generaliza-
tion over unseen data. In particular, Brankov trained 
the proposed observer and a traditional CHO trained 
using the same set of training images. He then applied 
the two observers to a set of testing images with dif-
ferent statistical properties from those of the training 
images (e.g. the testing images were reconstructed 
using different algorithms). Brankov showed that the 
proposed approach predicted human-observer per-
formance on this set of testing images better than the 
traditional CHO. 

Applications in Medical Imaging 
We briefly survey a few applications of model 

observers in medical imaging research. Most of the 
following discussions will be focused on detection 
tasks or classification tasks. Please refer to Section II.A 
for a mathematical treatment of these tasks.  

The ideal observer  
Despite its robust theoretical foundations, the 

applications of the IO face two major challenges: 
computational burden and surrogate popula-
tion/system selection. We have described the com-
putational burden in Section III. The surrogate selec-
tion challenge refers to the fact that the IO is com-
puted based on a representative population of images 
and a mathematical representation of an imaging 
system. The chosen image population and system 
representation are usually different from the ones 
used in reality. Since the exact PDFs of clinical images 
and the exact knowledge or modeling of clinical im-
aging systems are often not known or infeasible, how 
can we select their surrogates to obtain an IO whose 
performance is generalizable to the real imag-
es/systems? We do not have a principled answer for 
this question other than making the surrogates as re-
alistic as computationally possible. This is a challenge 
that needs to be addressed by the image quality 
community in both theoretical and empirical man-
ners. Here we briefly introduce a few studies in this 
endeavor.  

The first example is the application of a rigorous 
mathematical model of real image backgrounds and 
noise. Abbey et al. applied the MCMC IO technique to 

the evaluation of breast CT imaging systems for breast 
cancer screening by formulating a binary object model 
that mimicked the attenuation coefficients of breast 
tissues (17). Two observations were made to facilitate 
the development of this object model. First they ob-
served that tissue types in the breast parenchyma 
were essentially binary when ignoring skin, calcifica-
tions, etc. Second, the attenuation of cancerous tissue 
was relatively similar to that of glandular tissue. 
Then, Abbey et al. started with a parameterized object 
based on a Gaussian mixture using the sample mean 
and covariance of breast CT data for generating the 
distributions of adipose and glandular tissue textures. 
Then they binarized the parameterized objects based 
on the two assumptions described above. Both the 
parametric and resulting binary object models al-
lowed the application of the MCMC IO technique for 
estimating classification task performance.  

The second example used a realistically simu-
lated database. He et al. applied the MCMC IO tech-
nique to compute the IO in a more realistic setting of a 
SPECT imaging system and a cardiac torso phantom 
(15). He et al. created a database for organ-only pro-
jection images using a discretely parameterized 
phantom. Thus instead of simulating the whole im-
aging process to sample from , they 
simply computed the image vector as a weighted 
summation of the organ-only images from the data-
base. Despite the significant computational burden, 
this approach made it possible to estimate the IO 
performance using realistically simulated imaging 
systems and realistic object models. The readers may 
refer to (15) for a flow chart of implementing the 
MCMC IO technique. 

The third example is a direct derivation of an IO 
using a relatively simple object model. Graff and 
Myers (16) derived an IO for reconstructed MR im-
ages. This IO was firstly derived using reconstructed 
images for a single object in a SKE/BKE task where 
the noise was shown to follow non-central Chi dis-
tributions. Then the SKE/BKE IO was integrated over 
a population of objects to obtain an IO for a SKS task.  

The above examples demonstrate the feasibility 
of IO optimization techniques. To make an actual 
impact, as with all other system design or optimiza-
tion techniques, evaluation studies are a must. An 
essential evaluation study is to compare the technique 
of interest to an existing one. Case in point, compari-
son studies between systems optimized with the IO 
techniques and systems optimized with traditional 
techniques are needed. The comparisons should be 
done in terms of final human-observer performance, 
assuming the software systems are properly opti-
mized. These comparison studies will provide crucial 
experimental evidence supporting the two-step opti-
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mization: the IO for hardware optimization and the 
human observers for software optimization. In addi-
tion, these comparison studies may also shine light on 
the challenge of surrogate selection.  

Efficient channels for the IO and the HO es-
timation 

The IO or HO computed with efficient channels 
are promising due to 1) their significantly reduced 
computational burden, 2) their potential for providing 
an unbiased estimate of the IO or HO performance, 
and 3) their potential applicability to clinical images. 
Most research on efficient channels has been done 
theoretically or using simulated images. Recently, 
Zhang et al. [33] investigated the feasibility of using 
PLS as a method of estimating efficient channels for 
digital breast tomosynthesis in computing the HO. 
Their preliminary results show the potential of PLS 
channels in extracting relevant statistical information 
for a binary detection task from more realistic simu-
lated or clinical images.  

The ideal linear observer or Hotelling observer 
for system optimization 

The concept of the ideal linear observer or HO 
has been applied to task-based system optimization of 
several different modalities, such as ultrasound (51), 
MRI (16), SPECT scintimammography (52), CT imag-
ing (53), and fluorescence-enhanced optical imaging 
systems (54). The basic idea is to linearize the IO, 
which can be done by 1) designing a modality specific 
object model, 2) deriving the system matrix, and 3) 
treating the system as a Gaussian stochastic process. 
For example, Graff and Myers formulated the IO for 
MR imaging (16). The “object” in MR imaging is the 
magnetic spins inside the physical object, and it is 
modeled as a function of the proton density, 
spin-lattice relaxation rate, and two spin-spin relaxa-
tion rates. The system model, or imaging process, is 
modeled as the Fourier transform of the product of 
spatio-temporal distribution of the spins and coil sen-
sitivity. The noise in MR imaging is thermally gener-
ated and is modeled as zero-mean, equal variance 
normal distributions.  

Simulation-based channelized Hotelling ob-
server (CHO) studies  

There is a large body of simulation-based CHO 
studies in nuclear medicine imaging. Such a study 
usually starts with realistically simulated images with 
signals (e.g. tumors) at known locations. Frequen-
cy-domain channels are then converted to those of the 
spatial domain and shifted such that the centers are 
aligned with the centroid of the signal on each image 
(Figure 1). Applying the spatial-domain channels us-

ing the formulas in (15) and (16) results in a channel-
ized data vector v for each image. The vectors from a 
reasonably sized subset of the ensemble images are 
used for training of the CHO, i.e. computing a CHO 
template based on (7). The CHO template is then ap-
plied to the remaining set of the ensemble images for 
testing of the CHO, i.e., performance evaluation.  

Gifford et al. studied the effects of a scat-
ter-subtraction strategy on lesion detection in Hepatic 
SPECT imaging (55); Frey et al. studied the effects of 
various compensation methods on defect detection in 
myocardial perfusion SPECT imaging (56); Zeng et al. 
investigated a collimator design method using a 
channelized Hotelling trace on reconstructed images 
rather than projection images (57); Bal et al. used a 
CHO-based principle for automatic diagnosis of Par-
kinsonian disorders (58); Nuyts et al. investigated the 
performance of MAP reconstruction for hot lesion 
detection in whole-body PET/CT (59). 

Direct computations of HOs from recon-
structed images 

Simulation-based CHO and HO studies are rela-
tively resource demanding. Analytical approaches 
have been investigated to compute the HO or CHO 
from reconstructed images directly. The key is to find 
an analytical expression (even if it is only an ap-
proximation) for the CHO or HO SNR given different 
reconstruction algorithms and system settings. The 
core issue is to figure out ways to compute the mean 
and covariance matrices of the data. The computation 
of covariance matrices is particularly challenging. 
There are two directions in this endeavor. The first 
direction is for linear reconstruction algorithms such 
as filtered back projection (FBP). Wunderlich et. al. 
presented a method to compute the covariance ma-
trices for images reconstructed using FBP for direct 
reconstruction from fan-beam data. In this work, 
Wunderlich et. al assumed Poisson noise model and a 
BKE task(46). For iterative algorithms, the computa-
tional difficulties reside in the non-linearity in most 
reconstruction algorithms as well as the 
non-stationary noise in most reconstructed images. 
The key to handle these difficulties is to make practi-
cal approximations on linearity of the reconstruction 
algorithm and local shift-invariance on the recon-
structed images. Linearity approximation can be ac-
complished by using the 1st order Taylor expansion of 
a reconstructed image as a function of the projection 
image about the point of the mean projection image 
(60-64). Under the linearity assumption, a local im-
pulse response function at each voxel can be derived, 
based on which a local covariance matrix can be 
computed (60, 65, 66). Further examples of computing 
covariance matrices for iterative algorithms can be 
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found in (67, 68).  

Frequency-domain HOs  
The frequency-domain HO computation tech-

nique is also an analytical approach and there is in-
creasing interest in its application to x-ray imaging. 
Siewerdsen et al. applied the frequency-domain HO 
to the assessment of various CT imaging systems, 
such as dual-energy CT imaging, tomosynthesis and 
cone-beam CT (69-72). In this approach, assuming the 
system noise was stationary, cascaded system analysis 
was used to compute various Fourier-domain system 
property metrics, such as the modulation transfer 
function (MTF), noise power spectrum (NPS), and 
noise equivalent quanta (NEQ), from which the SNR 
was calculated analytically. Some of the theoretical 
studies were then validated by human-observer 
studies demonstrating that the detectability derived 
this way correlated well with the performance of 
human observers (68).  

Extensions of the CHO models 
In addition to the traditional CHOs, advanced 

CHO models are investigated in recent literature. 
With the rapid growth of volumetric imaging, several 
authors have investigated multi-dimensional CHOs. 
Park et al. (73) developed a 3D projection (3Dp) HO 
and applied it to digital breast tomosynthesis. The key 
was to stack the ROIs of different angular projections 
to obtain concatenated vectors. The CHO was then 
computed from the concatenated vectors to incorpo-
rate spatial correlation between the angular projec-
tions. Several authors have investigated volumetric 
CHOs using 3D channels (74, 75). For example, Ki-
nahan et al. used a set of 3D channels that are 
3-dimensional extensions of the 2D channels shown in 
Figure 1. Specifically, each 3D channel formed a 
spherical shell in the 3D frequency domain (75). Chen 
et al. investigated a different principle for 3D CHO 
design. A 2D CHO was first computed for each slice 
and each view, the resulting test statistics from dif-
ferent slices and views were then integrated together 
to obtain the final test statistics (76). Platiša et al. dis-
cussed a principled 3-step approach for building an 
anthropomorphic observer (77): 1) start with the con-
cept of an IO, 2) compare the IO performance to that 
of a human on a classification task; and 3) add con-
straints to the model to better predict human perfor-
mance. They then designed multi-slice CHO models 
for the task of detecting 3D signals in 3D images as 
Step 1 (77). As part of Step 2, the performance of hu-
man observers in reading multi-slice images was re-
cently presented (78).  

Another interesting CHO extension is the LROC 
model observer (36, 79). It uses an affine local ob-

server, e.g. a CHO, to compute a response at each 
location, and then the maximum of these responses is 
used as the global observer. This LROC model ob-
server is used in the optimization of reconstruction 
algorithms in emission tomography (36, 79).  

In light of the fast development of CHO models, 
we would like to draw the readers’ attention to some 
fundamental issues. The CHO test statistics are often 
normally distributed due to the fact that each chan-
nelized data vector is a weighted summation of a 
large number of random variables, as seen in (15). 
When the test statistics are normally distributed with 
unequal variances, the resulting ROC curve may have 
a “hook”, which is considered unrealistic for human 
observers in the radiology literature (80). When the 
CHO test statistics have equal variances, the resulting 
ROC curve is not only convex but also symmetric. 
However, in a recent study, Samuelson observed that 
many ROC curves generated by radiologists using 
medical images follow a power-law shape, which is 
visibly non-symmetric (81). Based on these observa-
tions, in order to further refine the existing CHO 
models and also develop advanced CHO models, 
comparisons between the ROC curves of CHOs and 
those of human observers will also be beneficial in 
addition to comparing a CHO to human observers in 
terms of the AUC or SNR values. 

Furthermore, in reading volumetric images, 
human observers integrate information obtained from 
multiple slices to make a decision. In addition, in tasks 
that involve search, human observers are uncertain 
about the locations of the signals. These phenomena 
may be related to two well-studied concepts in vision 
research: summation and uncertainty (82). We en-
courage interested readers to explore that direction 
for further development of anthropomorphic model 
observers.  

Conclusions 
In this paper, we reviewed the foundations, 

computational techniques, and applications of model 
observers in medical imaging research. Mod-
el-observer research has become an indispensable tool 
in the evaluation and optimization of imaging hard-
ware and software systems in nuclear medicine, ul-
trasound imaging, x-ray imaging, and now MR im-
aging.  

Model observers have strong theoretical foun-
dations. The foundations of the optimal observers (IO 
and HO) are in statistical decision theory and linear 
discriminant analysis. The optimal observers are often 
used for system optimization. The anthropomorphic 
observers are designed to predict human-observer 
performance. The concept of anthropomorphic chan-
nels, which is probably the most important element in 
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the development of anthropomorphic model observ-
ers, came from vision science. We believe that more 
should be borrowed from vision science for the future 
development of such observers.  

The computation of model observers, especially 
the optimal ones, is mathematically difficult. We re-
viewed two types of techniques for addressing the 
computational difficulties: the MCMC and effi-
cient-channel generating techniques. We believe that 
the efficient-channel approach has the potential to be 
used for more realistic image populations while sig-
nificantly lowering the computational burden.  

Finally, we reviewed a few applications of model 
observers in medical imaging research. These include 
the computation of the IO and HO for system opti-
mization, efficient channels, frequency-domain HO 
computation in x-ray imaging, simulation-based CHO 
studies in nuclear medicine, direct HO and CHO 
computation for evaluating reconstructed images, and 
advanced CHO models for volumetric imaging.  
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