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Abstract 

Since the discovery of the Vascular Endothelial Growth Factor (VEGF) and its leading role in 
the angiogenic process, this has been seen as a promising molecule for promoting neovas-
cularization in the infarcted heart. However, even though several clinical trials were initiated, 
no therapeutic effects were observed, due in part to the short half life of this factor when 
administered directly to the tissue. In this context, drug delivery systems appear to offer a 
promising strategy to overcome limitations in clinical trials of VEGF.  

The aim of this paper is to review the principal drug delivery systems that have been de-
veloped to administer VEGF in cardiovascular disease. Studies published in the last 5 years are 
reviewed and the main features of these systems are explained. The tissue engineering 
concept is introduced as a therapeutic alternative that holds promise for the near future. 
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VEGF 

Discovery 

Vascular Endothelial Growth Factor (VEGF) was 
first isolated and purified from the medium condi-
tioned by bovine pituitary folliculo-stellate cells by 
Henzel and Ferrara [1]. The newly discovered hepa-
rin-binding factor induced proliferation of vascular 
endothelial cells (ECs), showing no effects on corneal 
ECs. This apparent target cell selectivity induced the 
authors to name it “at least provisionally” VEGF [1, 2].  

Some months later Ferrara et al [2] published a 
study in which they demonstrated that VEGF was a 
secreted protein. Interestingly, they screened cDNA 

and isolated clones encoding mature monomers of 
121, 165 and 189 amino acids. At the same time Keck 
et al published the purification of the Vascular Per-
meability Factor [3], identified 5 years before by Sen-
ger et al [4]. Surprisingly, this protein was identical to 
VEGF 189. 

Since that moment a considerable volume of re-
search has been carried out, and it is now known that 
the VEGF 121 isoform is the most diffusible [5]. Two 
mechanisms by which this protein is released into a 
soluble form, namely alternative splicing and prote-
olytic cleavage, have been described, in vivo 
pro-angiogenic activity has been tested, several tyro-
sine kinase VEGF receptors are now known, and an 
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increasing number of molecular studies on VEGF is 
being published [6].  

Biological aspects 

Research focusing on the VEGF family has led to 
the discovery of several members encoded by differ-
ent genes: VEGF-A or Vascular Permeability Factor 
(firstly discovered), B, C, D, E, F and PlGF (Platelet 
Growth Factor)[6, 7]. The most widely studied mem-
ber of the family as far as angiogenesis is concerned 
has been VEGF-A, which we will refer to as VEGF 
from now on. Different VEGF isoforms from alterna-
tive splicing have been described: VEGF121, 145, 165, 189 and 

206 (number indicates amino acid residues). VEGF121 is 
the freely diffusible form, VEGF145 remains bound to 
cell surface and extracellular matrix (ECM) and 
VEGF189 and VEGF206 are sequestered in the cell sur-
face and ECM [5, 7]. Regarding its different role in 
neovascularization, briefly, VEGF121 is a mitogenic 
agent and a chemo-attractant for endothelial cells 
(ECs) during angiogenesis and vasculogenesis. 
VEGF165 is a soluble heparin binding protein, and is 
thus less diffusible than VEGF121, but it exhibits higher 
mitogenic activity. On the other hand VEGF145 induc-
es EC proliferation and angiogenesis in vivo [5].  

From the beginning, researchers realized the 
clinical relevance of those factors implicated in the 
angiogenic process. In fact, the role of anti-angiogenic 
strategies to treat human cancer was proposed by 
Folkman in 1971, 18 years before VEGF was discov-
ered [8]. On the other hand, pro-angiogenic activity 
also appeared promising as an innovative therapeutic 
approach in ischemic disorders such as myocardial 
ischemia. As VEGF is a secreted protein with EC se-
lective activity it was proposed from the first moment 
as a promising means of regulating angiogenesis.  

VEGF in anti-angiogenic therapy 

Only 4 years were necessary to develop a suc-
cessful strategy against human cancer based on 
VEGF’s known involvement in vasculogenesis. The 
proof of this concept was carried out by Ferrara’s 
group [9]. They administered an anti-VEGF mono-
clonal antibody into nude mice that had been previ-
ously injected with different human tumor cell lines. 
The treatment was successful in inhibiting tumor 
growth. This effect was associated with a diminished 
vessel density in the treated tumors. Studies contin-
ued and in 1997 the first humanized anti-VEGF mon-
oclonal antibody was developed. Approved in 2004 
by the Food and Drug Administration (FDA) for its 
use in patients with previously untreated metastatic 
colorectal carcinoma, this antibody, named Bevaci-
zumab [10], is nowadays used in several diseases, 

namely breast cancer and macular degeneration, 
among others.  

Another strategy that has been explored is the 
use of small molecule VEGF receptor tyrosine kinase 
inhibitors. In 2005 Sorafenib received the FDA ap-
proval for its use in patients with advanced renal cell 
carcinoma [11]. In 2007 approval was extended for the 
treatment of patients with unresectable hepatocellular 
carcinoma. In the meantime, in 2006 another molecule 
with the same mechanism (Sunitinib malate) was ap-
proved for the treatment of advanced (metastatic) 
renal cell carcinoma and for the treatment of gastro-
intestinal stromal tumor after disease progression, or 
intolerance to the treatment of choice [12].  

VEGF in pro-angiogenic therapy 

To study the role of VEGF in the formation of 
new vasculature it is important to identify different 
processes in vessel formation [13]. Vasculogenesis 
takes place during mammalian embryo development. 
It consists of the formation of de novo vessels by dif-
ferentiation of angioblasts into ECs. Sprouting during 
angiogenesis is the subsequent process, which ensures 
the expansion of the vessel network. Arteriogenesis 
involves the covering of EC channels by pericytes or 
vascular smooth muscle cells. Besides these steps, 
other mechanisms can occur, such as intussusception 
of pre-existing vessels or recruitment of bone marrow 
derived cells and endothelial progenitor cells that are 
incorporated into the endothelial lining in a process 
known as postnatal vasculogenesis [14]. In all these 
processes, VEGF is present and plays a critical role 
[15].  

In the adult organism, quiescent vessels are con-
stituted by quiescent ECs and pericytes. These sup-
press EC proliferation and release cell survival signals 
like VEGF. When a hypoxic stimulus activates quies-
cent vessels, pericytes are detached from the vessel 
wall. Matrix metalloproteinases (MMPs) start prote-
olytic degradation and pericytes are released from the 
basement membrane; ECs lose their junctions, allow-
ing vessels to dilate. VEGF acts at this point by in-
creasing the permeability of the EC layer, and plasma 
protein flows out establishing an ECM scaffold. Fol-
lowing integrin signaling, ECs migrate onto this ECM 
surface. Angiogenic mediators of the ECM such as 
VEGF and fibroblast growth factor (FGF) are released 
by proteinases. These factors are implicated in the 
constitution of the ECM as an appropriate angiogenic 
environment. After these steps, a cell is selected to 
lead vessel enlargement. VEGF gradient, regulated by 
soluble and matrix bound isoforms, makes tip cells 
upregulate delta-like ligand 4 (DLL4) expression, ac-
tivating NOTCH in stalk cells, then downregulating 
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VEGF receptors. As a consequence, stalk cells are less 
responsive to VEGF, helping the tip cells to take the 
lead. Tip cells respond to stimuli and move towards 
the angiogenic signal. Stalk cells, on the other hand, 
elongate the stalk by division and establish the vessel 
lumen [14].  

The complexity of this vasculogenic process has 
not always been as clear as it is now, but the im-
portance of VEGF in the neovascularization process 
has been evident since it was first discovered. In the 
last two decades, research to find a VEGF-based 
therapy to treat tissues damaged due to hypoxia has 
concluded in various clinical trials. In the next section, 
an overview of the clinical trials performed in the 
context of cardiovascular repair will be discussed.  

Clinical trials with VEGF: results and conclu-

sions  

The results of small phase I trials using intra-
coronary and intravenous infusions of VEGF in pa-
tients with coronary artery disease were encouraging 
[16-18]. For example, Hendel et al.[17] conducted a 
study with 14 patients who underwent exercise and 
myocardial perfusion measurements before as well as 
30 and 60 days after VEGF administration. Although 
it was not designed to demonstrate VEGF efficacy, the 
study showed a significant improvement in exercise 
capacity without any safety issues. Also, the resting 
nuclear myocardial perfusion scans indicated a VEGF 
treatment effect. In another small study, a dose esca-
lation trial was designed to determine the safety and 
tolerability of intracoronary VEGF infusions in 15 
patients with underperfused myocardium. As a re-
sult, myocardial perfusion imaging was improved in 7 
out of 14 patients at 60 days and all 7 patients with 
follow-up angiograms had improvements in the col-
lateral density score. This study also established that 
VEGF can safely and tolerably be administered to 
humans by intracoronary infusion for up to 20 
minutes at 0.050 µg/kg/min [19]. In a study employ-
ing intravenous administration of VEGF in 28 pa-
tients, the authors reported evidence of improvement 
in rest myocardial perfusion and in collateral density 
[16]. In spite of the promising results of these small 
phase I trials, a randomized, double-blind, place-
bo-controlled phase II trial failed to show differences 
between the VEGF and placebo groups. The VIVA 
(Vascular endothelial growth factor in Ischemia for 
Vascular Angiogenesis) study compared two doses of 
VEGF to placebo in 178 patients with coronary artery 
disease. A single intracoronary infusion followed by 
three separate intravenous infusions was given. De-
spite the safety and tolerability, the administration 
regimes revealed that VEGF offered no improvement 

beyond placebo by day 60, although high-dose VEGF 
resulted in better improvement in angina and favora-
ble trends in exercise treadmill test time and angina 
frequency, by day 120 [20].  

The results of myocardial clinical trials using 
VEGF delivery have generally been disappointing 
and the studies have failed to consistently demon-
strate improvements in treated patients as compared 
with placebo. Many of these trials relied on an intra-
venous infusion or intracoronary delivery of the re-
combinant protein. It is noteworthy that VEGF is not 
effective when delivered intravenously [21]. There-
fore, these negative results have been attributed, at 
least partially, to the short-lived effect and high in-
stability of the protein when injected as a bolus. In-
travenous administration of VEGF is limited by its 
short in vivo half life (~30 min) and overall dose is 
limited by off-target site toxicity issues [18]. In the 
case of myocardial ischemia, the amount of VEGF 
localized in the ischemic region after systemic ad-
ministration is minimal and does not persist for more 
than 1 day [22]. Based on these issues, some unusual 
characteristics of the VIVA trial make interpretation of 
therapeutic efficacy of VEGF somewhat difficult; in 
particular, suboptimal dose or route of administration 
and uncontrolled delivery method of VEGF. Perhaps 
the most striking contribution of the VIVA trial was to 
consider that more preclinical data were needed with 
regard to the time course of angiogenesis and the op-
timal dose and route of administration to induce ef-
fective VEGF therapy in the myocardium. Also, given 
that the low recovery in the myocardium of the ad-
ministered VEGF might be another important cause of 
the missing clinical effect, local and sustained VEGF 
delivery by controlled release approaches in the heart 
tissue might be a better strategy to achieve higher 
efficacy in VEGF-based therapy for myocardial is-
chemia. Table 1 summarizes the main clinical trials 
using VEGF recombinant protein for cardiac repair. 

DELIVERY SYSTEMS  

Protein delivery systems 

When administering drugs to an organism, the 
goal is to reach the appropriate dose at the site of ac-
tion for the necessary period of time, so that the drug 
acts in its optimal condition, with the minimum ad-
verse effects. Drug delivery systems (DDS) are de-
signed taking into account the specificities of the drug 
to be administered, the organism in which it is ad-
ministered and the disease being treated. Depending 
on these conditions, release profiles are designed and 
materials and device architecture are chosen. Even 
though the concept of drug delivery is relatively old, 
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its application to biomolecules, such as proteins, 
hormones, antibodies or genes, has been explored 
only in the last 15-20 years.  

 

Table 1. Clinical trials using VEGF recombinant proteins 

for cardiac repair. 

Route Trial n Outcomes Reference 

Intracoronary Phase 
I 

14 Some improvement in perfu-
sion in patients treated with 
low-dose VEGF; five of six 
patients had perfusion im-
provement at rest and stress 
at higher doses 

[17] 

Intracoronary Phase 
I 

15 Dose screening study; well 
tolerated up to 0.05 
mg/kg/min; myocardial 
perfusion imaging was im-
proved in 7 out of 14 patients 
at 60 days 

[18] 

Intravenous Phase 
I 

28 An increase in exercise ca-
pacity was reported without 
any safety issues 

[16] 

Intracoronary/ 
intravenous 

Phase 
II 

178 VIVA study; safe and well 
tolerated; no improvement 
beyond placebo in all meas-
urements by day 60. By day 
120, high-dose VEGF result-
ed in significant improve-
ment in angina; no im-
provements in myocardial 
perfusion 

[20] 

 
As scientists make progress in their under-

standing of the mechanisms of disease, there is in-
creasing awareness that protein delivery is a very 
attractive approach in many diseases. In our context, 
as clinical trials have highlighted, promoting angio-
genesis via growth factors (GFs) or cytokines de-
mands the use of a DDS that preserves their proper-
ties and prolongs their short half life [23]. Proteins are 
labile systems with primary, secondary, tertiary and 
quaternary structures. Primary structure relates to the 
amino acid sequence, whereas higher structures refer 
to protein fold. Chemical instability is due to modifi-
cation at the first level, such as deamidation, oxida-
tion, beta elimination, incorrect disulfide formation or 
racemization. Physical instability refers to secondary, 
tertiary and quaternary structure, with phenomena 
like denaturation, aggregation, precipitation and sur-
face adsorption. All these instability issues result in 
the short half life of VEGF when administered directly 
in the tissue. Incorporating VEGF in an adequate car-
rier serves to protect it until it is released from the 
device. However, incorporating VEGF, and any pro-
tein, in an adequate carrier poses unique difficulties 
due to physical and chemical instability. Temperature, 

pH, pressure, the presence of metal ions and dena-
turing agents like surfactants need to be tightly con-
trolled during the manufacturing process to avoid 
chemical instability.  

The first marketed protein included in a DDS 
was the luteinizing hormone releasing hormone 
(LHRH), which was commercialized by Astra Zeneca 
as Zoladex, with FDA approval in 1989 for the treat-
ment of prostate cancer. It was a 1.5 mm sized subcu-
taneous implant prepared with the copolymer pol-
ylactide-co-glycolide (PLGA). Nowadays other pro-
tein formulations have come on the market: long re-
lease octreotide (Octreotide® LAR®, Novartis Phar-
maceuticals), human growth hormone (Nutropin de-
pot®, Genentech), adenosin deaminase (Adagen®, 
Enzon), L-asparaginase (Oncaspar®, Enzon), Inter-
feron-α2 (Pegasys®, Roche) as examples. 

VEGF delivery systems in cardiac repair 

To achieve sustained presence of VEGF in the 
damaged tissue, both gene therapy and DDS have 
been designed. However, the aim of this review is 
focused on the second option. Updated information 
about gene therapy in this field can be found in the 
bibliography [24-27]. 

Studies published in the last five years related to 
VEGF delivery systems and cardiovascular diseases 
have been reviewed. Those corresponding to the last 
two years are summarized in Table 2. During this 
period of time, two systems have been the most 
widely employed: scaffolds and particulated con-
structs, represented in Figure 1. 

Scaffolds 

Most authors propose the use of scaffolds as de-
livery platforms. In general, the requirements that 
scaffolds must fulfill are several [28]: adequate 3D 
architecture with the desired shape, volume and me-
chanical strength; highly porous structure to allow 
tissue growth and diffusion of biomolecules; bio-
compability; appropriate degradation rate; and good 
interface adherence so that proteins attach in a desired 
way to the material. Particularly, basic physical re-
quirements for myocardial engineered constructs are 
robust yet flexible mechanical properties, contractile 
ability, and electrophysiological stability [28, 29]. The 
physical and biochemical effects of scaffolds in car-
diovascular differentiation have been reviewed else-
where [30]. Moreover, a scaffold designed for protein 
delivery needs to show high loading capacity, ho-
mogenous protein distribution, a protein binding af-
finity that allows adequate protein release and, im-
portantly, ability to maintain protein stability and 
bioactivity. 
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Figure 1. The main DDSs employed in recent years in the field of VEGF and cardiac repair are represented. In the particles (nano or 

microsized) VEGF can be included homogenously through the entire particle (A) or only in the core of the system (B), which affects the 

release profile. A wide variety of scaffolds has been designed. In a thermosensitive injectable hydrogel (C) at temperatures under 37 ºC the 

blend of the vehicle and the VEGF remains liquid, but when it is injected and reaches the body temperature the mixture solidifies and VEGF 

is entrapped within the gel matrix (D). By electrospinning fibrous scaffolds are built up (E) whereas porous scaffolds (F) can be formed by 

solvent casting and particulate leaching method. 

 

Table 2. Summary of VEGF delivery and cardiac repair in the last 2 years. 

DDS COMPOSITION ANGIO
GENIC 
FACTO

R/S 

PREPARATION 
METHOD 

ANGIOGNENIC 
EFFICACY 

ASSAY 

AUTHOR'S CONCLUSION REF. 

S
C

A
F

F
O

L
D

 

surface cross-
linked Heparin 

 
polycaprolactone  

VEGF Solvent casting and 
particulate leaching 
method 

Subcutaneous 
implant model in 
mice 

Modification of the scaffold with 
heparin improves VEGF efficacy 

[37] 

hollow-fiber 
membrane 

cellulose acetate VEGF & 
S1P 

Double injection 
extrusion/ precipi-
tation method 

Subcutaneous 
implant model in 
mice 

System capable of exploring sequen-
tial delivery of angiogenic factors.  
Sequential delivery of VEGF followed 
by S1P resulted in recruitment of 
more ECs and higher maturation 
index 

[43] 

biomimetic hy-
drogel (adhesion 
peptide se-
quence RGDS) 

PEG diacrylate  VEGF Photopolymeriza-
tion 

In vitro (HUVECs 
and hMECs) 

The system promotes EC prolifera-
tion, migration and viability mainte-
nance 

[44] 

patch with co-
valently immo-
bilized VEGF 

collagen VEGF Commercial scaffold Right ventricular  
free wall resection 
and replacement 
with the scaffold 

Collagen scaffold with covalently 
immobilized VEGF improved tissue 
formation 

[32] 

hydrogel with 
surface cross-
linked Heparin 

star-PEG VEGF & 
FGF-2 

Cross linking In vitro (HUVECs) 
and Chicken cho-
rioallantoin mem-
brane angiogéne-
sis assay 

Angiogenic activity superior to the 
administration of single factors 

[45, 
46] 

hydrogel alginate VEGF Cross linking Hindlimb ische-
mia in mice 

  [47] 

covalently im-
mobilized fac-
tors 

collagen VEGF & 
Ang-1 

Commercial scaffold Chicken 
chorioallantoin 
membrane 
angiogenesis assay 

Scaffolds with co-immobilized VEGF 
and Ang-1 further improved angio-
genesis as compared to inde-
pendently immobilized VEGF or 
Ang-1 

[31] 

composite  
scaffold 

Poly(ether)uretha
ne-polydimethylsi

VEGF & 
bFGF 

Spray-phase  
inversion method 

Subcutaneous 
implant and uni-

Incorporation of VEGF, bFGF and 
heparin in the composite scaffold 

[38] 



Theranostics 2012, 2(6) 

 

http://www.thno.org 

546 

loxane 
-fibrin 

lateral hind limb 
ischemia model in 
rat 

enhances angiogenesis 

temperature 
sensitive  in-
jectable hydro-
gel 

PVL-b-PEG-b-PVL VEGF Metal-free cationic  
method 

Myocardial infarc-
tion rat model 
(coronary artery 
ligation) 

The system preserved ventricular  
function by stabilizing the infarct and 
reducing angiogenesis 

[41] 

fibrous mem-
branes 

Dextran/PLGA VEGF Coaxial electrospin-
ning 

In vitro The system positively promotes cell 
proliferation  

[48] 

dual layered 
scaffold com-
bined with an 
osmotic release 
mechanism 

Poly(trimethylene 
carbonate) 

VEGF & 
HGF 

Cross linking In vitro (HAECs) System able to release combined GFs 
at similar rates, and at controllable 
sequences 

[49] 

P
A

R
T

IC
L

E
S

 

NPs Hyaluronic ac-
id/chitosan 

VEGF & 
PDGF-B
B 

Ionic gelification 
technique 

- NPs entrap efficiently both factors. 
PDGF-BB is released in a sustained 
manner over 1 week and VEGF 
within the first 24 hours. 

[50] 

PLGA/heparin/fi
brin 

VEGF Spontaneous emul-
sion solvent diffu-
sion method 

Rabbit ischemic 
hind limb 

The system strongly increases the in 
vivo therapeutic angiogenic effects of 
VEGF 

[51] 

PLGA VEGF Modification of the 
double emulsion 
method 

Hindlimb ische-
mia in mice 

Feasibility of the system  
to produce a more viogorous revas-
cularization when compared with 
free VEGF administration 

[52] 

MPs PLGA VEGF Double emul-
sion/solvent evap-
oration method 

In vitro (HUVECs) The system allows VEGF encapsula-
tion and bioactive protein release up 
to 21 days 

[53] 

PLGA VEGF Double emul-
sion/solvent evap-
oration method 

Myocardial infarc-
tion rat model 
(coronary artery 
ligation) 

  [54] 

Collagen VEGF Cross linking In vitro (HUVECs) The system allows VEGF encapsula-
tion and bioactive protein release up 
to 4 weeks 

[55] 

P
A

R
T

IC
L

E
S

-S
C

A
F

F
O

L
D

 

MPs 
MPs-Scaffold 

PLGA 
(MPs)PLGA-N-me
thyl pyrrolidone 
(scaffold) 

VEGF MPs: spray dry 
Scaffold: gelification 

Murine model of 
peripheral angio-
genesis 

Both formulations provide a method 
to incite neovascularization from a 
single injection 

[56] 

NPs 
Scaffolds (hy-
drogel or poly-
meric) 
NPs-Scaffold 
(hydrogel or 
polymeric) 

NPs: Dex-
tran-sulfate/chitos
an 
Scaffold: Mat-
rigel® or PLGA 

VEGF NPs: complex for-
mation and coacer-
vation 
Scaffold: gas foam-
ing/particulate 
leaching method 
(Matrigel®: com-
mercially obtained) 

Subcutaneous 
injection 
(NPs-Matrigel®) 
NPs-PLGA scaf-
folds implanted 
into the intraperi-
oneal fat pad of 
mice 

Angiogenesis was clearly improved 
by VEGF encapsulation and further 
incorporation into implants, com-
pared to direct VEGF incorporation 
into implants 

[57] 

MPs-Scaffold  
co-administered 
with ECs 

Alginate MPs 
colla-
gen/fibronectin 
gel 

VEGF & 
MCP-1 

Cross linking Subcutaneous 
implant  model in 
mice 

Delivery of multiple therapeutic pro-
teins to enhance the efficacy of 
cell-based vascularization 

[58] 

O
T

H
E

R
 

Polymeric  
injectable carrier 

Poly(trimethylene 
carbonate) 

VEGF - Subcutaneous 
injection in rat 

The approach has potential for 
providing effective, local, bioactive 
growth factor delivery.  

[59] 

Collagen patch-
es 

Collagen VEGF Collagen binding 
domain is fused to 
VEGF 

Myocardial im-
plantation 

Patches improve left ventricular car-
diac function and increase the vascu-
lar density 

[60] 
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These devices can be constructed with natural or 
synthetic biomaterials. In the past the use of 
non-degradable constructs involved a second inter-
vention to extract these. Nowadays the use of biode-
gradable devices is almost presupposed. Components 
found in the ECM are preferably from within the 
range of natural materials: collagen, fibrinogen, hya-
luronic acid (HA), chitosan, alginate, etc. The use of 
these natural scaffolds has increased during recent 
years and companies have already put them on the 
market. In the last two years, Radisic et al have pub-
lished two papers in which they immobilize VEGF in 
a commercial ultrafoam [31, 32], demonstrating that 
the system has suitable mechanical properties for po-
tential use in repairing heart defects and that it im-
proves angiogenesis both in vitro [31] and in vivo, in a 
rat heart injury model [32]. Because of their natural 
origin, most of these components are biocompatible, 
bioactive and tend to show similar mechanical prop-
erties to the native tissue. However, synthetic materi-
als have been developed with optimal qualities for 
tissue regeneration. Elastomeric scaffolds such as poly 
(glycolic acid) (PGA) and poly (lactid acid) (PLA), as 
well as their copolymer PLGA, have been successfully 
applied [33-35]. Like natural materials, polyesters are 
biocompatible and biodegradable, and by controlling 
polymerization it is possible to modulate their me-
chanical properties. In fact, PLGA has already re-
ceived FDA approval for its use in drug delivery [36] 
Also polyanhydrides and other polyesters, such as 
polycaprolactone (PCL) [37], have been shown to be 
possible alternatives as VEGF carriers. In recent years, 
different materials have been combined to modulate 
the mechanical and biological properties of the scaf-
fold. To give an example, fibrin-based biomaterials 
have been found to stimulate and support the growth 
of new blood vessels, but their poor mechanical 
properties have encouraged researchers to combine 
them with synthetic materials. Losi et al [38] have ob-
tained composite scaffolds made of a synthetic layer 
of poly(ether)urethane- 
polydimethylsiloxane, contributing to mechanical 
resistance, and a fibrin layer that acts as a GF delivery 
carrier.  

Numerous preparation methods have been re-
ported for manufacturing 3D porous scaffolds, 
namely fiber bonding, emulsion freeze drying, solvent 
casting/particulate leaching [37], high pressure pro-
cessing, gas foaming/particulate leaching, thermally 
induced phase separation, electrospinning [39] and 
rapid prototyping (reviewed in [40]). Recently, in-
jectable biomaterials that form scaffold in situ have 
been used. These can be administered parenterally, 
but also locally, with the advantage that the scaffold 

acquires the shape of the tissue defect and surgery is 
avoided. Recently, Wu et al [41], prepared a 
VEGF-conjugated injectable hydrogel that was in-
tramyocardially injected into Sprague Dawley rat in-
farcted hearts, preserving ventricular function after 
myocardial ischemia by stabilizing the infarct and 
inducing angiogenesis. The gel was composed of a 
temperature sensitive aliphatic polyester (poly 
(δ-valerolactone)-block-ply (ethylene gly-
col)-block-poly (δ-valerolactone)). This polymer is 
called thermosensitive since it dissolves in water at 
room temperature, but gels at 37 ºC (see Fig. 1C). This 
property makes this kind of material especially inter-
esting.  

The route of administration to reach the infarct-
ed heart still remains challenging (see Figure 2) [42]. 
When implanting a scaffold in the heart, surgery is 
necessary, with the consequent inconvenience and 
risks for the patient. The scaffold in that case needs to 
be placed covering the infarcted zone, or surrounding 
it, so that GFs are released towards the cells acting in 
the repair process and are responsive to VEGF (Fig. 
1A). If an injectable gel is used, surgery may be 
avoided, since it can be directly injected into the heart 
without surgical intervention (Fig. 1C). 

To optimize scaffold effectiveness, it can be sur-
face modified. Collagen and gelatin are known to 
modulate adhesive properties. The attachment of a 
cell adhesive peptide on the surface improves lig-
and-receptor interaction, as well as cell adhesion. In a 
recent article, Porter et al [44] propose the preparation 
of a biomimetic hydrogel by including an adhesion 
peptide sequence derived from fibronectin (RGDS), in 
a VEGF covalently incorporated PEG hydrogel, to 
enhance cell adhesion. However, in this study only in 
vitro assays were performed. Hyaluronic acid (HA) is 
a substance present in the ECM that interacts with 
CD4 receptor, promoting wound healing, making its 
use attractive. Heparin modification has also been 
extensively studied for the release of GFs. Heparin is a 
highly sulfated glycosaminoglycan in the ECM, and is 
known for its specific interactions with various angi-
ogenic GFs [61, 62]. A wide variety of scaffolds in-
cluding nanofibers, prepared from collagen, fibrin, 
chitosan, alginate, PLA and PLGA, have been immo-
bilized with heparin to achieve sustained release of 
GFs [40, 63]. Based on this, Zieris et al [37, 45] prepared 
a biohybrid hydrogel with star-shaped PEG and car-
bodiimide/N-hydroxysulfosuccinimiede-activated 
heparin, obtaining appropriate VEGF binding and 
release, with good in vitro results (included in Table 
2). On the other hand, Singh et al [37] demonstrated an 
enhanced VEGF angiogenic effect, in a subcutaneous 
implant model, when a PCL scaffold was surface 
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modified with heparin. 
 
 

 

Figure 2. Depending on the VEGF carrier different routes of 

administration can be chosen. Solid scaffolds need to be attached 

to the heart, frequently covering the infarcted area (A). Particles 

can be injected in the desired zone intracoronarily using a catheter 

(B) or by direct injection (C). Injectable scaffolds can also be 

implanted using this route. 

 

Nano/Microparticles 

Among the particulated delivery systems MPs 
(>1 µm and < 1,000 µm sized) and NPs (< 1 µm sized) 
have been used for VEGF delivery. Microsized parti-
cles are not readily internalized by the cells, but they 
have the potential to provide sustained release kinet-
ics after implantation. In addition, MP diffusion from 
the implantation site is infrequent, which avoids un-
desired effects in other tissues. Thus, MPs provide 
control over the release rate and dose, yielding de-
sirable concentrations for a period of time [64]. On the 
other hand, NPs can penetrate through capillaries into 
the cell machinery. Therefore, the pro-angiogenic po-
tential of GFs in NPs or MPs in the tissue is not nec-
essary equivalent. In relation to drug distribution 
within the particle, we can distinguish between 
nano/microcapsules and nano/microspheres (see Fig. 
1A and 1B). A clear advantage of these DDS, when 
compared with scaffolds, is the route of administra-
tion. As it has been mentioned before, most of the 
scaffolds need to be implanted through a surgical 
intervention. In the case of the particles, they can be 
injected directly into the myocardium without sur-
gery. Frequently, several injections are performed 
around the infarcted area, in the confluence of the 
healthy and the damaged tissue (see Fig. 2C). Another 
non-invasive route for these DDS is the intracoronary 
route via a catheter (see Fig. 2B). 

To prepare these DDSs, numerous strategies 
have been employed, among others, solvent extrac-
tion/evaporation, spray drying and phase separation 
method [65]. Spray drying is associated with low 
process efficacy and protein denaturing due to dehy-
dration [66]. The phase separation method is medi-
ated by a solvent and coacervating agent that can re-
act with the protein and disrupt the secondary struc-
ture. Moreover, this is a process that is not well suited 
to producing particles in the low micrometer size 
range [67]. The solvent extraction/evaporation 
method is thus thought to be, to date, the most ap-
propriate. Two different modifications of this proce-
dure are the single emulsion and the double emulsion 
solvent evaporation method. In the first one, since 
proteins are hydrophobic molecules, low encapsula-
tion efficiency (EE) values are obtained. EE is an im-
portant feature and can be defined as the capability of 
immobilizing most of the protein added during the 
process. In the single emulsion case, protein is incor-
porated in the external phase of the emulsion (o/w), 
whereas in the double emulsion the protein is local-
ized in the internal aqueous phase (w/o/w), dimin-
ishing the loss of the molecule. Nevertheless, this 
method presents some drawbacks, such as the need to 
reach high temperatures or to employ mechanical 
forces that can damage the protein. Systems to avoid 
elevated temperatures and stirring during the emul-
sion preparation have now been designed. An exam-
ple is the Total Recirculation One Machine System® 
(TROMS) [68]. In the TROMS, the inner aqueous 
phase of the emulsion is injected into the organic 
phase. This blend is forced to circulate through a 
closed circuit with a specified inner diameter for a 
period of time. Once the first emulsion is formed, it is 
injected into the external aqueous phase leading, after 
a period of time in circulation, to the constitution of 
the double emulsion without inflicting too much 
stress on the protein so that bioactivity is preserved. 
Employing TROMS we have been able to encapsulate 
VEGF and other proteins in PLGA microparticles with 
EE values over 80% while maintaining protein bioac-
tivity during the formulation process [54, 69]. On the 
other hand, the formation of aqueous/organic solvent 
interfaces is the main disadvantage of this method. 
Also, when using PLGA copolymer, hydrophobic 
interactions between the protein and PLGA are re-
sponsible for protein aggregation and denaturing. To 
minimize these effects, addition of human serum al-
bumin (HSA) or surfactants such as poly ethylene 
glycol (PEG), helps to protect the protein by prevent-
ing hydrophobic contacts [70]. Another important 
factor to take into account is pH modification. When 
PLGA degrades, pH decreases due to the presence of 
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glycolic and lactic acid [71], and this is associated with 
a loss of bioactivity as a consequence of protein ag-
gregation and chemical degradation. It may also be 
possible that PLGA degradation products and pro-
teins react, leading, for example, to protein acetylation 
[71]. Therefore approaches to reduce acid-induced 
damage have been discussed, such as incorporating 
Mg(OH)2 in the formulation [72]. 

PLGA particles with VEGF have been studied 
extensively for ischemia tissue repair [52-54] and they 
appear to be a promising strategy. Guldberg et al [52] 
demonstrated a vigorous revascularization response 
when treating a hindlimb ischemia model in mice 
with VEGF-NPs, which was greater than the response 
obtained after 5 μg VEGF, 2.5 μg VEGF, and saline 
treatment. VEGF-MPs were also prepared by Baysal et 
al [53] to face therapeutic angiogenesis. In this study, 
MPs succeeded in promoting HUVEC proliferation 
and migration. Our group developed VEGF loaded 
PLGA MPs which, when intramyocardially injected in 

an infarcted heart rat model, improved vasculogene-
sis and tissue remodeling [54].  

Particles included in scaffolds 

More sophisticated systems can be prepared by 
incorporating protein loaded particles into scaffolds. 
These kinds of system present some features that can 
be of interest in some situations. Firstly, the release 
profile is modified (Fig. 3). In short, the burst effect is 
maintained while the sustained release of the protein 
is prolonged [64]. However, possibilities are unlim-
ited, since the GF can be included both in the particles 
and in the scaffold, or just inside the particles. Also, 
GFs can be covalently immobilized in the carriers or 
non-covalently, leading to different delivery. Moreo-
ver, the scaffold architecture can modulate different 
release profiles, depending on whether it is a multi-
layered system or a core-shell system. All these alter-
natives, and others, have been recently reviewed by 
Chen et al [64]. 

 
 
 

 

Figure 3. Simplification of how VEGF release profile can be modified when included in particles or in particles embedded in scaffolds.  

 
An elegant construct has been described by 

Chung et al [51]. They compare the angiogenesis po-
tential of VEGF when included in a fibrin gel or when 
included in a heparin-functionalized nanoparticle 
incorporated in the same fibrin gel. In the first case, 
almost 100% of VEGF was released within the first 3 
days, whereas sustained release of the protein was 
observed for more than 30 days in the second ap-
proach, resulting in an enhanced angiogenic effect. 
Recently, des Rieux et al [57] investigated whether 
angiogenesis is enhanced when administering VEGF 
that is freely incorporated in two types of matrices 
(Matrigel® or PLGA) or when VEGF is previously 
encapsulated in dextran-chitosan nanoparticles. The 
results lead these authors to conclude that a more 
interesting approach could be to fill the PLGA scaf-
fold pores with the hydrogel, both systems being 
loaded with VEGF nanoparticles, and thus combine 
three carrier systems.  

Combination of VEGF with other biomolecules 

When trying to regenerate heart tissue, the com-
bination of several factors (pro-angiogenic, cardio-
protective and chemoattracting) could be a good 
strategy [73]. As described above, a hypoxic stimulus 
in the heart activates not only VEGF and 
neo-vascularization, but complex and tightly spa-
tio-temporally coordinated pathways, involving dif-
ferent cells and inter-regulated factors. DDSs appear 
in this context not only as the way to prolong the short 
half life of all these biomolecules, but also as a suitable 
platform to mimic the optimum environment for the 
tissue to regenerate, by delivering various GFs in a 
different but controlled manner. Work in this field has 
increased in recent years. VEGF has been incorpo-
rated into carriers together with other factors; the next 
step is to prepare systems that allow a dual or se-
quential delivery of factors with a tight dose control 
[46]. Recently Chapanian and Amsden [49] have been 
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able to create a system for the combined and sequen-
tial delivery of VEGF and hepatocyte growth factor. 
The construct is composed of trimethylene carbonate 
based elastomers and is combined with an osmotic 
mechanism to release acid-sensitive GFs, preserving 
its bioavility. Another approach is the combination of 
VEGF with Angiopoietin-1, another GF implicated in 
vascular stabilization and remodeling [31]. These 
were covalently immobilized in collagen scaffolds and 
a chicken chorioallantoic membrane angiogenesis 
assay was performed to test the system. The results 
led these authors to conclude that scaffolds with 
co-immobilized VEGF and Ang1 further improved 
angiogenesis, as compared to independently immobi-
lized VEGF or Ang1. Also, covalent immobilization of 
growth factors on the scaffolds yielded better results 
compared to simple addition of soluble growth fac-
tors to scaffolds (Table 2). Other factors combined 
with VEGF have been FGF-2 in PEG based hydrogels 
[45, 46], PDGF-BB in alginate hydrogels [74] and in 
HA/chitosan NPs [50], bFGF in a composite scaffold 
[38] and sphingosine 1-phosphate [43]. The work of 
Hao et al [74] is particularly worth mentioning. While 
the majority of the studies have just proved the ability 
of the system to incorporate GFs and to deliver them, 
in this case the system was applied to a myocardial 
infarction rat model, with the formation of more ma-
ture vessels and improvement of cardiac function 
when compared to delivery of single factors [17, 74]. 
Despite these results, it is still necessary to answer the 
question as to which the appropriate VEGF 
co-factor/s are and what the ideal release profile for 
each one is.  

Application of Drug delivery systems in the 

ischemic heart 

To sum up, it is possible to conclude that each 
delivery system has its own advantages and limita-
tions. As mentioned before, the administration route 
is a key point to take into account. Several methods of 
delivery are used (Figure 2.) depending on the pa-
thology of the patient. In the case of chronic myocar-
dial ischemia, direct intramyocardial injection is pre-
ferred, since it allows delivery in the ischemic tissue 
with an occluded artery [75]. Direct intramyocardial 
injection can be trans-epicardial, trans-endocardial, 
and less frequently, trans-venous. The first is usually 
performed during open heart surgery, and due to the 
high risk, is not performed as a standalone procedure. 
Another context is an acute myocardial infarction, in 
which intracoronary injection is the most frequent 
method [76].  

On balance, solid scaffolds present the disad-
vantage of needing to be implanted in the heart, 

making surgery mandatory. Solid scaffolds would 
therefore not be an adequate DDS to treat acute my-
ocardial ischemia, or for chronic myocardial ischemia 
when the patient requires open heart surgery.  

The administration route is not the only feature 
to be taken into account when choosing a DDS. For 
instance, scaffolds have the drawback of the admin-
istration route but they show the benefit of covering 
the total area of the infarct. In consequence, if they are 
built with materials able to reproduce the extracellu-
lar matrix, they can help the heart to overcome the 
consequences of the negative remodeling [77]. Fur-
thermore, if the aim is to administer more than one 
factor with different release profiles, the scaffold 
elaboration process becomes more complicated, as it 
is necessary to include in it, for instance, particles that 
modify the release rate of one or more of the active 
molecules. 

On the other hand, use of particles makes all the 
administration routes possible. It is also easier to 
combine different particles containing several factors, 
theoretically providing a more orchestrated signaling 
environment to the damage tissue.  

In relation to the possibility of preparing an en-
gineered construct including factors, DDS and cells, 
both scaffold and MPs are potentially useful, whereas 
the reduced area of NPs does not provide enough 
space to attach cells to their surface. Sustained release 
of the factors is also difficult to achieve when admin-
istering NPs, not to mention their greater likelihood of 
being removed from the tissue by phagocytic uptake.  

Most of the published studies using VEGF 
loaded in DDSs carried out limited in vivo studies, and 
just a few of them have applied VEGF-DDS in the 
ischemic heart. Thus, it is still too soon to conclude 
which DDS is the most suitable to apply in cardiac 
repair. 

Therefore, as all DDS present advantages and 
disadvantages, combining them to prepare more so-
phisticated constructs could make it possible to ex-
ploit the benefits of each one in order to give the op-
timal signals to the cardiac tissue that needs to re-
generate. 

FUTURE DIRECTIONS: THE TISSUE 
ENGINEERING TRIAD 

As the same time as the number of papers in 
which GFs and DDSs are combined has increased, 
numerous researchers have focused on cell therapy to 
treat cardiac injury[42]. Just as DDSs appear in the 
first case as a suitable approach for prolonging the 
permanence of GFs in the tissue, the cell engraftment 
approach may well be extended by including cells in 
scaffolds. So far, these scaffolds have progressed to 
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mimic the cell’s natural environment as far as possi-
ble, aiding in its survival and development. In this 
sense, the incorporation of factors in the scaffold helps 
not only to modulate cell life, but also acts in the tissue 
and improves its recovery. The combination of engi-
neered platforms, cells and GFs has been named the 
tissue engineering triad, and seems to be a promising 
tool in the field of cardiac repair. A considerable re-
search effort is now needed to establish the “winning 
combination”. 
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