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Abstract 
Rationale: Pulmonary arterial hypertension (PAH) is a life-threatening disorder characterized 

by increased pulmonary blood pressures and regional inhomogeneities in flows, with 

diagnostic and treatment challenges arising from diverse underlying pathogenic mechanisms. 

Conventional in vitro models often obscure the mechanistic nuances of PAH by failing to 

replicate the dynamic mechanical environment of the diseased lung, limiting the identification 

of specific molecular patterns. To address this, we employed an in vitro shear stress model 

simulating physiological or pathological conditions to explore the transcriptional heterogeneity 

of human pulmonary microvascular endothelial cells (hPMECs) from PAH patients and healthy 

controls within their respective biomechanical context. 

 

Methods & Results: hPMECs from PAH patients and controls were exposed to static, low 

shear stress (LSS), and high shear stress (HSS) conditions, followed by bulk RNA-sequencing. 

While increasing shear stress resulted in a greater number of differentially expressed genes, 

traditional grouped analysis showed minimal overall transcriptional differences. Further, 

pathway enrichment analysis indicated common shear-induced responses in both groups, 

suggesting that standard analysis methods may mask meaningful disease-specific changes. 

 

Crucially, detailed dimensionality reduction analyses revealed pronounced inter-patient 

variability among PAH donors in response to increasing shear stress, facilitating the 

identification of 398 genes driving this transcriptional heterogeneity. Unsupervised clustering 

of these high-variability genes enabled the sub-classification of patients based on their unique 

transcriptomic profiles, each linked to specific combinations of PAH associated pathogenic 

pathways such as mesenchymal transition, inflammation, metabolism, extracellular matrix 

remodeling, and cell cycle/DNA damage signaling. Importantly, re-analysis of published 

peripheral blood mononuclear cell (PBMC) omics data from PAH patients confirmed the clinical 

feasibility to utilize these high-variability genes as a non-invasive, accessible approach for 

molecular patient stratification. 
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Conclusion: Our study uncovers patient-specific transcriptomic patterns in PAH, providing a 

novel molecular sub-classification strategy. These findings represent a significant step toward 

personalized molecular diagnostics in PAH and eventual therapeutic interventions for clinically 

well-defined PAH patients, with potential applications in clinically accessible cell populations 

such as PBMCs. 

 

Keywords: molecular profiling, transcriptomics, heterogeneity, shear stress, pulmonary 

arterial hypertension 
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Graphical Abstract 

 
Graphical abstract was partly generated using Servier Medical Art, provided by Servier, 

licensed under a CC BY 4.0 license. 
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Introduction 
Pulmonary arterial hypertension (PAH) is a life-threatening disorder characterized by 

increased pulmonary vascular resistance, elevated pulmonary arterial pressure, and 

ultimately, right ventricular failure [1]. Despite advancements in understanding the clinical 

manifestations of PAH, its underlying pathogenic mechanisms remain highly heterogeneous 

[2]. This heterogeneity has presented a major challenge for both diagnosis and treatment, 

since growing clinical trial cohorts and registries have failed to identify a common molecular 

denominator across patients [3-6]. As a result, PAH remains a lethal condition where 

generalized therapeutic options often fail to capture patient-specific disease mechanisms and 

even lead to serious adverse events in some [7-9]. This underscores the critical need for 

personalized diagnostic and therapeutic strategies. Thus, innovative personalized research 

approaches are crucial for overcoming the challenge of molecular heterogeneity and improving 

patient outcomes in PAH. 

 

Central to the complexity of PAH is the role of biomechanical forces, particularly blood flow-

induced shear stress resulting from the narrowing of the pulmonary vasculature [10]. While 

shear stress, the tangential force generated by blood flow, is necessary for normal endothelial 

cell function [11], supra-physiological shear stresses have long been implicated in PAH 

progression [12, 13]. Specifically, the shear-associated repetitive mechanical damage to the 

vascular wall and consequent emergence of pheno- and genotypically altered cells have been 

proposed to be a central contributor to the obliterative remodeling and formation of typical 

plexogenic lesions in PAH [14]. However, its precise role - whether as a disease inducer, 

maintenance factor, or exacerbator - remains unclear. Interestingly, despite its recognized 

importance, the molecular impact of both physiological and pathological shear stress on PAH 

lung endothelial cells is not fully understood. 

 

Conventional in vitro models for PAH typically rely on static culture systems, which fail to 

replicate the dynamic and spatially heterogenous biomechanical forces present in the 
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pulmonary vasculature of PAH patients. These models may obscure key transcriptional 

differences between healthy and diseased cells, limiting the discovery of specific molecular 

pathways. Our previous work identified a significant delay in the morphological adaptation of 

human pulmonary microvascular endothelial cells (hPMECs) from PAH patients to high shear 

stress [15]. These findings point to an underlying mechanotransduction defect in hPMECs that 

may contribute to the disease. However, the transcriptional changes in the shear exposed PAH 

hPMECs remained unclear. 

 

To address this, we utilized our in vitro shear stress model that simulates physiological and 

pathological shear stress conditions, allowing for the investigation of shear-induced 

transcriptional changes in hPMECs from PAH patients and healthy controls by bulk RNA-

sequencing. 

 

We hypothesized that increasing shear stress would unveil distinct patient-specific 

transcriptional signatures in hPMECs, reflective of individual molecular mechanisms 

contributing to PAH. These signatures hold potential for informing personalized molecular 

diagnostics, advancing the field toward more individualized therapeutic interventions.  
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Methods 

Primary cell isolation 
Control hPMECs (n=4: 3 male, 1 female) were isolated from pulmonary lobectomies for 

suspected or proven non-small cell lung carcinomas, while PAH hPMECs (n=4: 3 female, 1 

male) were isolated from peripheral microvascular tissue of patients with clinically well-

characterized Group 1 PAH (Table 1). Cell isolation was based on a previously-published 

protocol, and cells showed typical growth patterns that formed cobblestone monolayers and 

were positive for endothelial markers [15]. The tissue collection and cell isolation were 

approved by the institutional review board of the VU University Medical Center (VUmc, 

Amsterdam, the Netherlands, protocol-nr: 2012/306), and written, informed consent was 

obtained from all participants or their surrogates. 

 

Cell culture and fluid flow techniques 

hPMECs were cultured in Endothelial Cell Medium with 5% FCS, 1% Penicillin-Streptomycin, 

1% Endothelial Cell Growth Supplement (ScienCell, #1001), and additional 1% Non-Essential 

Amino Acids (Gibco, #11140-035). All cells used were passage 3-5. Single-channel ibidi µ-

Slides I Luer 0.4 (ibidi, #80176) were seeded with 40,000 cells/cm2 and cells were allowed to 

attach overnight (four channels per donor). Each channel was then subjected to one of three 

fluid flow conditions for 24 hours: no flow (“Static”), 2.5 dyn/cm2 physiological low (“LSS”), or 

15 dyn/cm2 supra-physiological high unidirectional shear stress (“HSS”). Following this, the 

cells were immediately collected in QIAzol Lysis Reagent (Qiagen, #79306) for bulk RNA-seq 

analysis and quantitative real-time polymerase chain reaction (qPCR) validation. RNA was 

isolated with the miRNeasy Micro Kit (Qiagen, #217084). 

 

RNA purification 
Total RNA was purified with the MagMAX-96 for Microarrays Total RNA Isolation kit 

(ThermoFisher, AM1839) according to the manufacturer’s instructions, in which genomic DNA 
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was removed using MagMAXTurboDNase buffer and TURBO DNase. mRNA was purified from 

total RNA using Dynabeads mRNA purification kit (Invitrogen, #61006) according to the 

manufacturer’s instructions. 

 

Library preparation and RNA-sequencing 
ScriptSeq mRNA-Seq Library Preparation Kit (Epicentre, SS10906) was used to prepare 

strand-specific RNA-sequencing libraries. Twelve-cycle polymerase chain reaction was 

performed to amplify libraries. Sequencing was performed on Illumina HiSeq2000 by a 33-

cycle multiplexed, single-read run. Raw sequence data (BCL-files) were converted to FASTQ 

format via Illumina Casava 1.8.2. Reads were decoded based on their barcodes and read 

quality was evaluated using FastQC [16]. Reads were mapped to the human transcriptome 

(hg38) and reads mapping to sense strand exons were summed at the gene level using 

ArrayStudio (OmicSoft). 

 

RNA-seq data preparation and filtering 
Gene read counts were analyzed using the ExpressAnalyst platform [17]. Data filtering was 

implemented to exclude likely uninformative or erroneous data by removing unannotated 

genes, the bottom 4% low abundance genes, and the bottom 15% low variance genes, 

assessed over all measured samples. Disease group (control, PAH) served as the primary 

factor, with flow condition (Static, LSS, HSS) as the secondary factor. Patient pairing was not 

performed due to platform limitations (max. 2 factors).  

 

Differential expression and over-representation analysis 
For differential expression/over-representation analysis, gene read counts were processed 

utilizing the DESeq2 method [18] within the ExpressAnalyst platform [17] to determine 

differentially-expressed genes (DEGs) across all possible comparisons. Over-representation 
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analysis was subsequently conducted for each pairwise comparison’s DEGs against the full 

filtered dataset background using the KEGG database. 

 

Similarity analysis in reduced-dimensionality data 

For similarity analysis, gene read counts were normalized sample-wise as log2(counts per 

million [CPM]), then full filtered expression data was subjected to three-component canonical 

correlation analysis (CCA) on each control vs. PAH flow condition pair using the sklearn 1.1.1 

Python package (e.g., control Static expressions vs. PAH Static expressions). Similarity 

between control and PAH at defined flow conditions was assessed by the CCA correlation 

coefficient between the two data sets. A higher correlation coefficient indicates a stronger 

alignment of gene expression patterns, indicating greater similarity. 

 

Grouping and spatial metrics analysis in reduced-dimensionality 
data 

For condition grouping and spatial metrics analysis, gene read counts were normalized 

sample-wise as log2(CPM), then subjected to Principal Component Analysis (PCA) using the 

ExpressAnalyst platform [17], where we considered the first three components to plot each 

sample in 3-dimensional reduced space and visualize their distributions. Ellipsoids 

representing 95% confidence intervals were delineated around groups in the 3D PCA space 

for visualization and to characterize separation between groups and heterogeneity within 

groups.  

 

Gene variability analysis 
For gene variability analysis, gene read counts were normalized sample-wise as counts per 

million. The coefficient of variation (CV, Equation 1) was then calculated on the normalized 

data for each individual gene within each unique group, applying a small sample size bias 
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correction factor of (1+1/4n), where n is the sample size, σx is sample standard deviation, and 

x̄ is sample mean [19]. 

 

To elucidate the impact of supra-physiological shear stress on variability, ∆CV (CVHSS - CVStatic) 

was calculated for each gene per disease group. Only genes that had read counts >0 in all 

samples within the considered flow conditions were kept for further investigation. To identify 

highly variable genes in PAH responses to shear stress that are not highly variable in control 

shear responses, ∆∆CV between ∆CVControl and ∆CVPAH was calculated (Equation 2). Genes 

with a cut-off of >50% ∆∆CV were used for later inputs as “top variable genes” in PAH shear 

stress responses. 

 

Equation 1) CV (%) = (1 + 1/4n) * (σx/x̄) * 100 

Equation 2) ∆∆CV = ∆CVPAH,StaticàHSS - ∆CVControl,StaticàHSS 

 

Individual patient analysis 
For individual patient analysis, gene read counts were normalized sample-wise as log2(CPM). 

Z-scores were calculated to normalize each gene separately over the PAH samples, using the 

“top variable genes” log2CPM data from PAH hPMECs under HSS, chosen for its high inter-

patient variability. This process aimed to develop a relative PAH patient-to-patient signature 

based on inter-patient heterogeneity as a readout for dysregulation in at least one patient. Z-

scored “top variable genes” were subjected to unsupervised Partitioning Around Medoids 

(PAM) clustering to identify patient-specific gene clusters. These gene clusters were then used 

for over-representation analysis against the full filtered dataset background, utilizing the 

Reactome, KEGG, and MSigDB databases. Additionally, the average log2(fold change [FC]) 

for the “top variable genes” in each significantly enriched pathway was calculated individually 

for each PAH patient compared to the full control group. This analysis provided insights into 

how the relative PAH-PAH differences scale in an individual PAH patient relative to the control 

group. 
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qPCR validation of RNA-seq data 
Purified RNA from hPMECs was used to synthesize cDNA using iScript cDNA Synthesis Kit 

(Bio-Rad, #1708890). qPCR was performed with iQ SYBR Green Supermix (Bio-Rad, 

#1708880) and run in triplicate using the Bio-Rad CFX384 Real-Time PCR Detection System. 

Analysis of qPCR results was performed using relative expression for ∆∆CV calculation, and 

the ∆∆Ct method for determining fold changes. RPLP0 or RPL27 were used as established 

non-shear-responsive internal controls. Primer efficiencies and melt temperatures were tested 

on general cDNA prior to usage, and amplification specificity was ensured through post-

amplification melting curve analysis. Primer sequences are listed in Table S1. 

 

Selection and analysis of published PAH PBMC datasets for 
validation 
NCBI’s Gene Expression Omnibus (GEO) was queried for all publicly available RNA-seq or 

microarray data on PAH peripheral blood mononuclear cells (PBMCs), of which three 

microarray datasets were identified [20-22]. We selected the dataset with the largest cohort 

(n=41 control, n=30 iPAH) for further analysis and validation of our findings (GEO accession: 

GSE33463) [21]. As stated in the GEO dataset description, the dataset consists of scaled 

microarray expression values for all probes in each sample to a median of 256, followed by 

log2-transformation. For our analysis, we used the control and PAH patient data, and if a gene 

was represented by multiple probes, the probe with the highest expression value was chosen 

for further investigation. To align with our previous analysis of hPMECs, we then calculated 

the average log2FC in accordance to our previously identified “top variable genes”, comparing 

each PAH patient individually to the full control group. 
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Statistics 
P-values were calculated in using the hypergeometric test (one-tailed Fisher’s exact test) 

across all analyses except the DESeq2-based grouped analysis, where p-values were 

calculated with the Wald test. Correction for multiple hypotheses testing was consistently 

performed using the Benjamini-Hochberg method (False Discovery Rate procedure), and 

significance was established with an adjusted p-value ≤ 0.05 (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 

0.001). Additionally, pathway enrichments were deemed significant if there were at least three 

DEGs in the gene set. Figures were generated using GraphPad Prism 7.0a (GraphPad 

Software, Boston, Massachusetts) unless otherwise stated.  
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Results 
hPMECs derived from control donors and PAH patients were exposed to differing 

unidirectional fluid flow conditions (either “Static” 0 dyn/cm2, “LSS” 2.5 dyn/cm2, or “HSS” 15 

dyn/cm2) for 24 hours to model in vitro no-flow, physiological, and supra-physiological high 

fluid shear stress in line with previously published protocols [23, 24]. hPMECs were confirmed 

to have sensed varying degrees of shear stress through qPCR-measured expression changes 

in the shear-responsive transcriptional master regulator KLF2, changes in multiple shear-

sensitive genes in the RNA-seq dataset, and morphological adaptation (Figure S1). 

 

To discern how these mechano-environmental changes might impact PAH transcriptomic 

profiles in vitro, we followed a comprehensive analytical approach as detailed in Figure S2 and 

the Methods section. Overall, 26,479 genes were present in the dataset, reduced to 24,603 by 

removal of unmatched and unannotated genes, and finally condensed to the working dataset 

of 14,493 genes by filtering out low abundance and low variability genes (Figure S3). 

 

Despite a shear dependent increase in differential gene expression, 
no pathway enrichments were identified in PAH hPMECs 
PAH and control hPMECs gene expression profiles within each flow condition were compared 

(i.e., Static vs. Static, LSS vs. LSS, HSS vs. HSS) to explore if PAH and control hPMECs 

present a statistically differentiable profile under static conditions or after shear stress 

exposure, and whether HSS exacerbates pathway dysregulations in PAH hPMECs. 

Differential gene expression analysis identified 11 DEGs (7 unique) in the “Static” comparison, 

28 DEGs (14 unique) in the “LSS” comparison, and 50 DEGs (36 unique) in the “HSS” 

comparison (Figure 1A, Table S2). Despite the increase in DEGs with increasing shear stress, 

no significant pathway enrichments distinguishing PAH from control hPMECs were found 

across all conditions (Figure 1B). 
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Overall responses to fluid flow are conserved in PAH hPMECs 
despite transcriptional differences between flow conditions in PAH 
To investigate how hPMECs from PAH patients and controls respond to changing flow 

conditions, we then examined the following condition sets: PAH LSS vs. PAH Static, control 

LSS vs. control Static, PAH HSS vs. PAH Static, control HSS vs. control Static. We found that 

the number of non-overlapping DEGs between PAH and control flow responses increased 

substantially as the shear stress intensified. Specifically, there were 355 non-overlapping 

DEGs between PAH and controls at LSS vs. Static, which increased to 1203 in the HSS vs. 

Static comparison (Figure 2A). These results indicate that HSS amplifies the number of unique 

differences between control and PAH. 

 

Considering the increased non-overlapping DEGs due to HSS responses, we investigated 

whether there were also non-overlapping enriched pathways. For LSS vs. Static, 9 pathways 

were significantly changed in PAH and 16 in controls (6 overlapping). For HSS vs. Static, 13 

pathways were significantly changed in PAH and 41 in controls (13 overlapping). However, 

considering each pathway significant in control, PAH, or both, the significant DEGs in the 

pathway gene sets were consistently similar between control and PAH despite the minimal 

statistical overlap. This was supported by the very strong correlation in the number of 

significant DEGs in each pathway between control and PAH. Specifically, the correlation was 

very strong in LSS vs. Static (p < 0.001, Pearson r = 0.854, Mean Absolute Error [MAE] = 

2.526) and HSS vs. Static (p < 0.001, Pearson r = 0.986, MAE = 3.488), where each point is a 

pathway that is significantly changed in either PAH or control due to shear stress. Here, x is 

the number of significantly changed genes in that pathway for control, and y is the number of 

significantly changed genes in that same pathway for PAH (Figure 2B). These results indicate 

PAH responses remained consistent with control responses, and the lower number of 

significantly changed pathways in PAH HSS conditions is most likely due to the larger DEG 

set in PAH increasing the background noise and reducing statistical power.  
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For this reason, we more deeply investigated the pathways significantly changed in PAH by 

comparing the fold changes of DEGs associated with these pathways in both PAH and control 

hPMECs using density plots (Figure 2C, Table S3). This revealed the contour and magnitude 

of change in significantly changed PAH pathways closely parallels control hPMEC changes, 

with similar patterns in both groups. The same was observed in density plots of pathways 

significantly enriched only in control hPMEC flow responses, where PAH hPMEC contours and 

magnitudes of change closely mirrored controls despite lacking statistical significance (Figure 

S4). Despite the notable increase in DEG differences between control and PAH with elevated 

shear stress, these results indicate that overall functional responses to fluid flow are conserved 

in PAH hPMECs, suggesting that standard enrichment analysis methods may mask 

meaningful disease-specific changes. 

 

Dimensionality reduction reveals exacerbation of a distinct PAH 
phenotype with increasing shear stress, accompanied by increased 
inter-patient variability 
Given the considerable lack of DEG overlap in flow responses of PAH and control hPMECs, 

we aimed to understand why no significant pathway enrichment differences were found. We 

therefore investigated the molecular differences between PAH and control hPMECs more 

deeply, using Canonical Correlation Analysis (CCA) to assess the similarity between gene 

expression profiles under matching flow conditions (e.g., static control vs. static PAH). CCA 

correlation coefficients revealed that as shear stress increased, the gene expression profiles 

between control and PAH became progressively dissimilar (Figure S5).  

 

To further explore this divergence, we employed Principal Component Analysis (PCA), 

considering the first three components to visualize individual sample distributions in three-

dimensional space (Figure 3A). The 95% confidence ellipsoids for each condition revealed 

clear separations between different flow conditions for both groups, where the distance 

between flow conditions was generally similar for both PAH and control, mirroring our earlier 
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finding that overall shear responses were conserved in PAH hPMECs (Figure 3B). However, 

fluid flow considerably increased divergence between control and PAH, underpinning that flow 

amplifies transcriptomic differences in PAH hPMECs (Figure 3C). Considering the BMPR2 

mutation in PAH02, a known pre-disposition to the development of PAH, we further explored 

the flow responses of BMP and TGF-beta pathway genes (Figure S6). We found that HSS 

notably resulted in downregulation of the BMP pathway specifically in PAH02 compared to the 

other patient samples and controls, demonstrating that shear stress exacerbates underlying 

PAH signaling. 

 

Lastly, shifting the projection of the PCA 90˚ revealed PAH ellipsoids are substantially larger 

than their control counterparts, indicating much greater dispersion of the individual PAH 

hPMEC samples (Figure 3D). We therefore calculated the standard deviation from the centroid 

for each ellipsoid, finding that PAH patient to patient variability was consistently higher than 

control variability at all flow conditions, peaking at HSS (Figure 3E). 

 

Considering the lack of significant pathway enrichments from our earlier analyses, these 

findings show that while shear stress amplifies differences between PAH and controls, each 

individual PAH patient hPMEC sample may diverge from controls in a distinct way. Therefore, 

rather than seeking a single unifying pathological signature to explain this general divergence 

under high shear stress, it may be more insightful to investigate the drivers of inter-patient 

variability in HSS flow responses as indicators of patient-specific dysregulations. 

 

Gene variability analysis identifies the drivers of heterogeneity in 
PAH hPMECs due to increasing shear stress 
We thus aimed to determine which genes drove the identified PAH heterogeneity through 

inconsistent adaptations to HSS. Therefore, we calculated the coefficient of variation (CV) for 

each gene within defined flow conditions and disease groups (e.g., CV for VEGFA in static 

PAH hPMECs) (Equation 1). As expected, distribution of gene CV values skewed higher in 
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PAH HSS compared to other conditions, confirming the increased patient heterogeneity at 

HSS (Figure S7). 

 

Based on our results underscoring an exacerbated PAH phenotype with increasing shear 

stress, we focused on genes with the highest ∆∆CV score from this analysis - the genes that 

exhibited the greatest variability in how they changed from static to HSS in PAH only (Equation 

2). These 398 genes, termed “top variable genes”, were considered the strongest drivers of 

heterogeneity in PAH responses to HSS that did not vary in control responses to HSS. In other 

words, these genes demonstrated extreme variability in the PAH group exceeding normal 

biological variability in controls. Cut-off curation of these genes is visualized in Figure S8. 

 

Subsequently, we calculated z-scores for each of the “top variable genes” HSS log2CPM 

values across the four PAH patients, focusing on the HSS condition due to its greatest 

observed inter-patient heterogeneity (Figure 4A, Table S4). This z-score standardization 

emphasized considerable differences in the relative rankings of these genes between patients, 

further demonstrating the role of these genes in driving inter-patient heterogeneity. 

 

This inter-patient heterogeneity is further emphasized when we perform an over-

representation analysis on these “top variable” genes, where, as expected, minimal significant 

pathway enrichments are identified (homologous recombination (p=0.047, 6 genes), cell cycle 

(p=0.047, 11 genes), and cytokine-cytokine receptor interactions (p=0.047, 12 genes), Figure 

4B, Table S5). The substantial differences in relative gene expressions between these patients 

suggest that individual gene regulation patterns need to be considered to capture patient-

specific signatures.  
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Unsupervised clustering on PAH top variable genes in response to 
shear stress reveals patient-specific disease signatures 
In order to separate individual patients and unveil their specific differential responses to HSS, 

unsupervised PAM clustering was applied to the z-scores of PAH HSS “top variable genes” 

calculated previously in Table S4 (Figure S9, Table S6). The resulting clusters revealed distinct 

upregulated gene profiles for each patient, with minimal similarity between patients (Figure 5A, 

Table S7). 

 

Using these clusters as gene sets, significant pathway enrichments were identified while 

ensuring minimal gene overlap between pathways (Figure S10). Cluster 1 showed 

Inflammatory Response (p=0.01648), Epithelial Mesenchymal Transition (p=0.00002173), and 

Extracellular Matrix Organization R-HSA-1474244 (p=0.04558) significantly enriched. Cluster 

2, Extracellular Matrix Organization R-HSA-1474244 (p=0.03022), Rho GTPase Signaling 

[incl. Rho GTPase Effectors R-HSA-195258 (p=3.72E-04), Rho GTPases Activate Formins R-

HSA-5663220 (p=8.09E-04), and Signaling by Rho GTPases R-HSA-194315 (p=0.032517)], 

and 70 significantly enriched pathways related to cell cycle and DNA repair [e.g., Cell Cycle 

(p=1.56E-05), Homologous Recombination (p=4.42E-05), G2-M Checkpoint (p=1.75E-19), 

and E2F Targets (p=4.08E-09)]. Cluster 3 Angiogenesis (p=0.02804), KRAS Signaling Up 

(p=0.01394), p53 Pathway (p=0.008256), Hypoxia (p=0.008256), and TNFα Signaling via NF-

κB (p=3.134E-06). Cluster 4 only showed enrichment in TNFα Signaling via NF-κB 

(p=0.02247). 

 

Utilizing these identified pathways to assess the magnitude of individual patient pathway 

dysregulation, we then calculated the average log2FC for genes contributing to each pathway’s 

significant enrichment, comparing individual patients vs. grouped controls (Figure 5B). 

Matching closely to the relative differences observed in Figure 5A, similar patterns emerge for 

individual patients against controls. From this, distinct defining upregulations were noted for 

individual patients: PAH01 upregulated Cluster 2 pathways, PAH02 upregulated Cluster 1 
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pathways, PAH03 upregulated Cluster 3 pathways, and PAH04 upregulated Cluster 4 

pathways.  

 

An alternative approach to identifying patient-specific signatures was conducted using the 

unclustered “top variable genes” in a gene set enrichment analysis (GSEA) [25] ranked by 

descending z-scores for each patient (Figure S11). While this approach identified many of the 

same patient-specific signatures and provides useful insights into pathway-level dysregulation, 

its focus on isolated individual patient ranked lists limits the ability to detect potential sub-

groups of patients with shared molecular profiles, thus demonstrating how clustering promotes 

a more nuanced understanding of the disease’s heterogeneity. 

 

In summary, through this variability analysis, we assessed healthy biological variability and 

identified genes from the PAH cohort that deviated from this baseline. Unsupervised clustering 

of these genes then facilitated the identification of patient-specific pathways (Figure 5C). 

 

To validate our measurements, we performed qPCR on matched hPMEC samples under 

identical shear conditions. Genes were selected from the identified clusters, with a focus on 

those representing key pathways that could, independently or in combination, uniquely identify 

patients, while also exhibiting substantial divergence in the log2FC across the four patients 

(BRCA2, F2RL1, RAD51, PDGFB, and TAGLN). Additionally, we included a negative non-

shear-responsive control (MRPL15) and an oppositely directed ∆∆CV gene (IL6). The ∆∆CV 

(Equation 1, Equation 2) of these genes were calculated and compared to RNA-seq data using 

Mean Absolute Error (MAE) and a Bland-Altman plot (Figure 5D). The MAE of 12.394 indicates 

a minor average ∆∆CV discrepancy between the two methods, and the Bland-Altman analysis 

confirmed a high level of agreement across a wide range of ∆∆CV values, supporting the 

reliability of our transcriptomics results in capturing true biological heterogeneity (Bias: -2.09; 

95% Limits of Agreement: [-35.9, 31.73]). Furthermore, control HSS vs. PAH HSS fold changes 
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showed low discrepancy (MAE) and strong linear correlation (Pearson r) between RNA-seq 

and qPCR, reinforcing the identified magnitudes of pathway dysregulations (Figure S12). 

 

Confirmation of hPMEC gene expression patterns in PBMCs 
supports translatability of findings to clinically accessible material 
Recognizing the systemic impact of altered hemodynamics in PAH, we extended our analysis 

to PBMCs. As PBMCs are exposed to the hemodynamically altered circulation of the PAH 

lung, we hypothesized that these circulating cells may also exhibit comparable transcriptional 

changes. By investigating PBMCs, we aimed not only to validate our findings in a larger cohort 

but also to provide a clinically accessible diagnostic approach to identifying patient-specific 

disease signatures. 

 

Analysis of the published PBMC microarray dataset (GEO accession: GSE33463 [21]) focused 

on the same clusters and pathways identified in our PAH patient hPMECs. We found that the 

same expression trends and inter-patient cluster differences were consistently reproduced in 

the PAH PBMCs compared to controls, although the magnitude of pathway dysregulations and 

divergence between patients was less pronounced (Figure 6). Nevertheless, the capacity to 

discern individual patients/patient sub-groups was retained, especially through clusters 1, 3, 

and 4. This consistency in patient-specific variations confirms that the shear stress-induced 

gene expression patterns in PAH hPMECs are effectively reflected in PAH PBMCs, 

emphasizing the applicability of our identified clusters and the capacity of our methodology to 

uncover individual patient and patient sub-group pathogenotypes.  
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Discussion 
This study advances our understanding of the diverse molecular mechanisms underlying PAH 

by focusing on two key contributions. First, we integrated bulk transcriptomic sequencing of 

PAH and control hPMECs with exposure to shear stress in vitro, as a novel contribution to the 

field. Second, we developed a transcriptomic analytical strategy to uncover patient-specific 

mechanisms in PAH, providing deeper insights into the heterogeneity of this disease. 

Endothelial dysfunction is a key factor in PAH pathogenesis, with evidence demonstrating that 

endothelial cells from PAH patients exhibit abnormal responses to hemodynamic forces, 

disrupting vascular homeostasis [26-29]. We aimed to investigate this dysfunction 

transcriptionally to address the diagnostic and therapeutic challenges in PAH, where large-

scale clinical trials have struggled to identify consistent molecular denominators across 

patients [3-6]. Our findings show that considering patients as a homogeneous group obscures 

key molecular insights, as grouped analyses fail to capture the patient-specific complexity of 

PAH. This aligns with studies recognizing the molecular and phenotypic diversity in PAH [30, 

31], and highlights the variability in disease progression and treatment responses reported in 

clinical registries [32-35]. 

 

A central insight from our study is that HSS, modeling the pathological mechanical forces in 

PAH, reveals patient-specific molecular differences in hPMECs. Shear stress is known to 

modulate endothelial function and gene regulation, particularly in processes such as 

inflammation, angiogenesis, and extracellular matrix remodeling [11, 36]. For instance, laminar 

shear stress promotes an anti-inflammatory endothelial phenotype, while disturbed flow leads 

to endothelial dysfunction and inflammation as seen in atherosclerosis [37]. Our findings 

extend this by showing that individual patient hPMEC responses to supra-physiological shear 

stress vary significantly in PAH, contributing to the patient-specific molecular heterogeneity 

observed in the disease. 
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Through our analysis, we identified patient-specific gene expression patterns, and patient-

differentiating genes such as RAD51, BRCA2, TAGLN, PDGFB, and F2RL1. These genes 

were part of larger identified gene subsets affecting key PAH-associated pathways such as 

cell cycle and DNA repair, mesenchymal transition, inflammatory response, extracellular 

matrix organization, and TNFα signaling. Notably, each patient exhibited distinct and often 

divergent combinations of these pathways, reinforcing the need for personalized approaches 

and individualized patient stratification. Previous research has highlighted the relevance of 

these pathways in PAH, particularly their role in endothelial dysfunction, vascular remodeling, 

and inflammation [28, 38-40] 

 

BRCA2 and RAD51, genes part of the larger dysregulated pathways of cell cycle regulation 

and DNA repair, emerged as key patient-defining markers. RAD51 [41], and more broadly, 

DNA repair pathways have been linked to PAH, contributing to dysregulated cellular 

senescence, proliferation, and apoptosis resistance [42, 43]. Elevated TAGLN, an early marker 

of mesenchymal transition, may indicate a sub-group of patients prone to exacerbated vascular 

remodeling and stiffness [44]. PDGFB, involved in vascular smooth muscle cell proliferation 

and ECM remodeling, may identify patients predisposed to aggressive medial hypertrophy, 

aligning with evidence that excessive PDGF signaling drives pathological vascular remodeling 

in PAH [45]. Its connection to hypoxia, a known driver of PAH, further highlights the value of 

stratifying patients based on PDGF signaling, which has already been targeted therapeutically 

in PAH with imatinib [46]. Less explored in PAH, F2RL1 (PAR2) is linked to vascular smooth 

muscle relaxation [47], immune-mediated damage [48], and TNFα signaling [49], suggesting 

patients with altered F2RL1 expression may experience heightened immune responses and 

dysregulated vascular tone. Rivaroxaban has also previously been shown to downregulate 

F2RL1 and associated pathways (ERK, JNK, NF-κB), thereby attenuating right ventricular 

remodeling in a PAH Sugen-Hypoxia rat model, indicating roles of F2RL1 in vascular 

remodeling by various mechanisms, fibrosis, and endothelial dysfunction in PAH [50, 51]. 
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The validation of our findings in PBMCs enhances their translational relevance. PBMCs are 

recognized as non-invasive biomarkers in cardiovascular diseases, including PAH, where they 

can reflect systemic inflammation and endothelial dysfunction [52, 53]. The identification of 

similar gene expression patterns in PBMCs, particularly in genes involved in pathways such 

as KRAS signaling, p53 pathway, TNFα signaling, and hypoxia response, underscores the 

utility of our approach for PBMC-based molecular diagnostics in PAH. Prior studies have also 

demonstrated the ability to identify PAH patients based on PBMC gene expression profiles 

with high certainty, supporting their potential for patient stratification based on molecular risk 

profiles and gene patterns [21, 22, 54]. 

 

Our findings hold important implications for improving PAH patient selection for treatment by 

identifying molecular profiles that classify patients based on activity of transcriptomic patterns. 

The molecular heterogeneity we observed may help explain the variability in treatment 

responses seen in PAH, where therapies like endothelin receptor antagonists and 

phosphodiesterase type 5 inhibitors have produced inconsistent outcomes [55, 56]. 

Understanding patient-specific molecular signatures could therefore assist in guiding 

therapeutic decisions and improve outcomes. This personalized approach aligns with 

advances in oncology, where molecular stratification of patients has increasingly been 

emphasized for clinical trial design and drug development [57]. 

 

While our study offers important insights into PAH’s molecular heterogeneity, several 

questions remain to be further explored. A key limitation is that our approach may not capture 

gene patterns broadly shared across the cohort, focusing instead on signatures that distinguish 

individual patients from the norm. Incorporating more clinically well-defined and diverse 

samples, including healthy controls, could refine PAH signatures and better capture underlying 

pathological patterns. Specifically, due to the small sample size, we were unable to consider 

sex differences in our analysis. However, as the female sex has historically been considered 

a risk factor, our sample set was selected to match the clinical situation of ~75% female 
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patients [32]. Additionally, while PBMCs were used to validate gene patterns, they were not 

derived from the same patients as the hPMECs. This makes it unclear to what extent PBMC 

gene variability reflects endothelial variability in the same individuals. Therefore, future 

prospective studies correlating PBMC and hPMEC data from the same patients could provide 

deeper insight into how circulating cells mirror tissue resident endothelial gene expression. 

Additionally, the published data set does not include information on clinical phenotype, 

treatment regimen, or drug efficacy, making correlations with the patient signatures not 

possible. 

 

Moreover, our study does not investigate the long-term evolution of the shear-induced 

transcriptomic responses observed in PAH. Longitudinal studies that track gene expression 

changes in both endothelial cells and PBMCs would therefore offer important insights into how 

patient-specific signatures could influence or forecast disease progression and treatment 

outcomes. Further exploring the relationship between shear stress responses and clinical 

metrics, such as hemodynamic measurements and treatment regimens, may also provide a 

more nuanced understanding of PAH prognosis. Therefore, integrating findings from our 

analysis pipeline with clinical metrics could enhance predictions of patient-specific disease 

progression and response to therapy, potentially improving patient management strategies 

and long-term outcomes.  
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Conclusions 
Our study characterizes the transcriptomic landscape of hPMECs in PAH under varying shear 

stress conditions, leveraging shear stress as both a hallmark of PAH pathophysiology and a 

key regulator of endothelial function and vascular homeostasis [11]. Our analysis captured the 

complexity and variability of hPMEC responses to supra-physiological shear stress, revealing 

distinct molecular profiles for individual patients. These patient signatures were translatable to 

clinically accessible PBMCs, further enabling patient stratification based on the identified 

heterogeneity. By exploring molecular variability in PAH, our study advances patient molecular 

sub-classification and highlights the importance of personalized molecular insights, 

establishing a foundation for improved management and individualized therapeutic treatments 

in this clinically well-defined yet molecularly heterogeneous disease.  
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Tables 

Table 1: Control donor and PAH patient characteristics. 
Control group hPMECs 

ID Assays Diagnosis FVC FEV1 Dyspnea Sex Age Ethnicity Source Echo/CT 

CTR01 RNAseq, 
qPCR 

NSCLC, 
squamous 
cell 
carcinoma 

2.75 
(100%) 

1.17 
(50%) No F 61 Caucasian Lob 

No 
dilation of 
RV, RA, 
or LV 

CTR02 RNAseq, 
qPCR 

NSCLC, 
squamous 
cell 
carcinoma 

3.11 
(100%) 

2.31 
(98%) No M 79 Caucasian Lob 

No 
dilation of 
RV, RA, 
or LV 

CTR03 RNAseq, 
qPCR 

NSCLC, 
adeno-
carcinoma 

- - No F 55 Caucasian Lob 

No 
dilation of 
RV, RA, 
or LV 

CTR04 RNAseq, 
qPCR 

Tumoral 
obstruction - - Yes M 42 Caucasian Lob 

Enlarged 
RV, small 
LV, 
enlarged 
RA 

PAH patient hPMECs 

ID Assays Diagnosis mPAP PVR CI Sex Age Ethnicity Source Treatment 

PAH01 RNAseq, 
qPCR iPAH 102 1375 3.4 M 21 Caucasian Ltx 

PDE5-I, 
ERA, 
PGI2 

PAH02 RNAseq, 
qPCR 

hPAH 
(BMPR2) 68 - 1.6 F 40 Caucasian Ltx 

PDE5-I, 
ERA, 
PGI2 

PAH03 RNAseq, 
qPCR iPAH 54 - 2.1 F 54 Caucasian Obd 

PDE5-I, 
ERA, 
PGI2 

PAH04 RNAseq, 
qPCR iPAH 43 620 2.1 F 42 Caucasian Ltx PDE5-I, 

PGI2 

hPMEC = human pulmonary microvascular endothelial cells; NSCLC = non-small-cell-lung carcinoma; FVC = 
forced vital capacity (L); FEV1 = first second of forced expiration (L); RV = right ventricle; RA = right atrium; 
LV = left ventricle; iPAH = idiopathic pulmonary arterial hypertension; hPAH = hereditary pulmonary arterial 
hypertension; mPAP = mean pulmonary artery pressure (mmHg); PVR = pulmonary vascular resistance 
(WU); CI = cardiac index (l/min/m²); PDE5-I = phosphodiesterase type 5 inhibitor; PGI2 = prostacyclin; ERA = 
endothelin receptor antagonist; Lob = lobectomy; Obd = autopsy; Ltx = lung transplantation.  
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Figures 

 

Figure 1: Minimal significant differences are found in PAH hPMECs within each flow 

condition by grouped analysis. (A) Grouped comparison of control and PAH hPMECs within 

distinct flow conditions. Under static conditions, 11 genes were differentially expressed (7 

unique to static). Under low shear stress conditions, 28 genes were differentially expressed 

(14 unique to LSS). Under high shear stress conditions, 50 genes were differentially expressed 

A B
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(36 unique to HSS). (B) Top 5 enriched pathways in each comparison based on over-

representation analysis. No significant pathway enrichments were identified. 
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Figure 2: Overall responses to fluid flow are conserved in PAH hPMECs despite 

transcriptional differences between flow conditions. (A) Quantification of DEGs for LSS 

vs. Static and HSS vs. Static in both PAH and control groups, with overlaps noted. The number 

of non-overlapping DEGs between PAH and controls increased from 355 non-overlapping 

DEGs at LSS vs. Static, to 1203 non-overlapping DEGs at HSS vs. Static. (B) KEGG pathway 

enrichment analysis for both disease condition groups in LSS vs. Static and HSS vs. Static. In 

Overlapping significantly-changed PAH pathways: 6/9 Overlapping significantly-changed PAH pathways: 13/13
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LSS vs. Static, 9 pathways were significantly changed for PAH and 16 for control (6 

overlapping). In HSS vs. Static, 13 pathways were significantly changed for PAH and 41 for 

control (13 overlapping). Including all significantly changed pathways in either control or PAH, 

the correlation in the number of DEGs per pathway between control and PAH was very strong 

in both LSS vs. Static and HSS vs. Static, indicating minimal differences between PAH and 

control flow responses. (C) Density plots for each significantly enriched pathway in PAH flow 

responses, where the curve represents the expression change profile in terms of log2FC of 

each DEG in the pathway (marked as ticks on pathway x-axes). Mean pathway log2FC are 

marked with a vertical line. Figure generated using the ggridges 0.5.6 R package. 
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Figure 3: Dimensionality reduction reveals exacerbation of a distinct PAH phenotype 

with increasing shear stress, accompanied by increased inter-patient variability. (A) 

Principal component analysis (PCA) was performed on the full filtered transcriptome, 

considering the first three components to reduce each sample into a point in 3D space. 95% 

confidence ellipsoids were fit to the samples in each condition group, emphasizing group 

differences. Figure generated using the matplotlib 3.5.2 Python package. (B) Euclidean 

distance between the centroids of each flow condition ellipsoid quantifies overall transcriptional 
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shifts due to flow. Minimal differences between control and PAH were observed. (C) Euclidean 

distance between the centroids of control and PAH within each flow condition quantifies PAH 

phenotype emergence. Fluid flow was found to drive separation between control and PAH 

overall expression profiles. (D) Shifting the projection of the PCA 90˚ emphasizes ellipsoid 

size, correlating directly to inter-sample variability. (E) Intra-ellipsoid variability, measured as 

standard deviation from the centroid for each ellipsoid, was higher for all PAH vs. control 

comparisons, peaking in PAH HSS. 
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Figure 4: Gene variability analysis reveals the main drivers of heterogeneity in PAH 

hPMECs unveiled by increasing shear stress. (A) Comparing the “top variable genes” in 
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terms of log2CPM-based HSS z-scores, the expression of the genes between patients is seen 

to be highly variable as expected. For example, VCAM1 is comparatively highly expressed in 

PAH01, relatively near the mean in PAH02 and PAH03, and comparatively lowly expressed in 

PAH04. Meanwhile TAGLN is comparatively highly expressed in PAH02, relatively near the 

mean in PAH01 and PAH04, and comparatively lowly expressed in PAH03. The top 50 ∆∆CV 

genes are shown on the right, further demonstrating the shifting distribution of these genes 

between patients. Figure generated using the ComplexHeatmap 2.14.0 R package. (B) Over-

representation pathway enrichment analysis of the top 398 variable genes in PAH due to HSS 

identified few significantly enriched pathways: homologous recombination (p=0.047, 6 genes), 

cell cycle (p=0.047, 11 genes), and cytokine-cytokine receptor interaction (p=0.047, 12 genes). 
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Figure 5: Unsupervised clustering on PAH “top variable genes” in response to shear 

stress reveals patient-specific disease signatures. (A) Unsupervised PAM clustering on 

PAH log2CPM-based z-scores for “top variable genes”. Clear patient-specific signatures were 

observed, with each cluster correlating strongly to one individual patient. Figure generated 

using the ComplexHeatmap 2.14.0 R package. (B) Pathway enrichment analysis for each 
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cluster gene set identified cluster-specific significantly enriched pathways. Bubble size 

indicates the magnitude of average log2FC of the “top variable genes” in each pathway, 

quantified as individual patient vs. grouped control. PAH hPMECs displayed patient-specific 

and exacerbated PAH signaling under HSS not seen under Static conditions or in grouped 

analyses. Figure generated using the ggplot2 3.5.1 R package. (C) Individual PAH patient 

pathological signatures were able to be extracted from transcriptional heterogeneity of 

hPMECs in response to HSS, stratifying patients on a molecular basis. (D) Key cluster-defining 

genes were validated via qPCR using hPMECs from the same patients with the same stimuli, 

showing a minimal MAE (12.394) between qPCR and RNA-seq ∆∆CV. Bland-Altman analysis 

demonstrated a lack of systemic biases or patterns in the differences between methods, 

pointing to the identified variability as biological heterogeneity (Bias: -2.09; 95% Limits of 

Agreement: [-35.9, 31.73]). 
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Figure 6: Validation of hPMEC gene expression patterns in PBMCs supports 

translatability of findings to clinically accessible material for patient sub-stratification. 

Using a publicly-available PAH PBMC microarray dataset (GEO accession: GSE33463) [21], 

patient-specific fold changes of the previously-identified cluster pathways, utilizing the same 

“top variable genes” from our earlier analysis, were calculated. Intra-cluster expression trends 

remained consistent, while inter-patient differences were still evident and could be used to 

identify individual patients or patient sub-groups. Clusters 1, 3, and 4 demonstrated the 

greatest capacity to retain PAH patient stratification in PBMCs. Figure generated using the 

ggplot2 3.5.1 R package. 


