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The evolving understanding of systemic mechanisms in organ-specific IgA 26 

nephropathy: a focus on gut-kidney crosstalk 27 

Abstract 28 

The interplay between multiple organs, known as inter-organ crosstalk, represents 29 

a complex and essential research domain in understanding the mechanisms and 30 

therapies for kidney diseases. The kidneys not only interact pathologically with many 31 

other organs but also communicate with other systems through various signaling 32 

pathways. It is of paramount importance to comprehend these mechanisms for the 33 

development of more efficient therapeutic strategies. Despite extensive research in IgA 34 

nephropathy (IgAN), the most common kidney disease, the elaboration mechanism of 35 

IgAN remains challenging. Numerous studies suggest that alterations in the intestinal 36 

microbiome and its metabolites are pivotal in the progression of IgAN, opening new 37 

avenues for understanding its mechanisms. Interestingly, certain presumed probiotics, 38 

such as Akkermansia muciniphila, have been implicated in the onset of IgAN, making 39 

the exploration of gut microbiota in the context of IgAN pathogenesis even more 40 

intriguing. In this review, we summarize the status of gut microbiology studies of IgAN 41 

and explore the possible mechanisms and intervention prospects. Future research and 42 

treatment directions may increasingly emphasize systemic, multi-organ combined 43 

interventions to decelerate the advancement of kidney disease and enhance the overall 44 

prognosis of patients. 45 
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Keywords: IgA nephropathy, Gut-kidney crosstalk, Gut microbiota, Microbial 47 

metabolites, Mucosal immunology. 48 

 49 

 50 

 51 

 52 

 53 

 54 



Graphic Abstract 55 

 56 

Infection and genetic susceptibility can lead to gut dysbiosis, resulting in the production 57 

of pathogenic IgA, which triggers IgAN and mediates specific organ crosstalk in the 58 

gut-kidney axis. Abbreviations: CKD: chronic kidney disease. Created with 59 

BioRender.com. 60 
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1. Introduction 87 

Chronic kidney disease (CKD) is defined by kidney damage or a reduced kidney 88 

filtration function with an estimated glomerular filtration rate (eGFR) below 60 89 

mL/(min·1.73m²) for more than three months [1]. CKD is a progressive disease with 90 

no cure, with an estimated global prevalence of 9.1% and 4.6% of deaths annually 91 

attributable to impaired kidney function [2]. It often appears together with other 92 

comorbidities, including cardiovascular, cerebrovascular and liver complications [3] 93 

and, if left untreated, progresses to end-stage kidney disease (ESKD). IgA nephropathy 94 

(IgAN) is the most common pattern of primary glomerular disease worldwide and a 95 

significant cause of CKD and kidney failure worldwide [4]. More recent data suggested 96 

that half of the patients would progress to ESKD within ten years after kidney biopsy, 97 

and nearly 100% of patients were at risk of progression to kidney failure within their 98 

expected lifetime [5]. It suggests an unclear understanding of the disease's pathogenic 99 

mechanisms, and the inadequacy of existing treatment strategies highlight the unmet 100 

clinical demands.  101 

IgAN is characterized by galactose-deficient IgA1 (Gd-IgA1) deposition in 102 

glomerular mesangium associated with mucosal immune disorders [6]. The classic 103 

manifestation of gross hematuria occurs concurrently with mucosal infection [7], thus 104 

suggesting aberrant mucosal immune responses and demonstrating the non-negligible 105 

importance of environmental factors in its development and progression.  106 

The microenvironment of the human body contains a microbial community, 107 

defined as the microbiome, which includes bacteria, fungi, viruses, etc [8]. The gut 108 

microbiota consists mainly of bacteria, particularly Firmicutes, Bacteroidetes, 109 

Actinobacteria, Proteobacteria and Verrucomicrobia [9]. The immune system and the 110 

gut microbial ecosystem have been increasingly acknowledged as inter-organ crosstalk 111 

central effectors in health and disease. The gut microbiota plays a significant role in 112 

various aspects of human health, including digestion, immune function, metabolism 113 

and mental well-being. Studies reveal links between dysbiosis in the gut microbiota and 114 

diseases that affect the gut and organs like the brain, liver and kidneys [10]. The 115 

crosstalk between the gut microbiota and distal organs is increasingly recognized, and 116 



host-microbiome interactions are being delineated.  117 

Under physiological conditions, intestinal absorption ensures the uptake of 118 

beneficial microbial metabolites, whereas the kidneys maintain homeostasis by 119 

excreting potentially toxic metabolic end-products. Conversely, kidney failure results 120 

in the accumulation of gut microbiota-derived metabolites. Discharging these 121 

substances in the gut changes the intestinal microenvironment. It contributes to 122 

intestinal dysbiosis that adversely affects the inflammatory, endocrine and neurological 123 

pathways involved in CKD onset and progression and may impair multiple organs. A 124 

deeper understanding of the gut-kidney axis is essential to intervene in the network of 125 

mechanisms that connect various organs. 126 

Elucidating the changes in gut microbes and their metabolites in CKD, particularly 127 

in conditions like IgAN, holds significant relevance for future interventions in multi-128 

organ networks. Evidence from clinical studies suggests that both composition of gut 129 

microbiota and functional potential were altered in IgAN. Experimental animal models 130 

indicate that exposure to commensal or pathogenic bacteria may produce excessive 131 

abnormally glycosylated IgA in mucosa-associated lymphoid tissue (MALT). This 132 

review aims to provide up-to-date information on the gut microbiota and metabolites to 133 

establish a link between alterations to microbial composition, bacterially-derived 134 

metabolites and the possible mechanisms that trigger the onset of IgAN—additionally, 135 

some novel insights related to translational research. 136 

 137 

2. Multi-Organ Crosstalk with Chronic Kidney Disease 138 

In the context of multi-organ interactions, inflammation and fibrosis represent 139 

prevalent pathological processes. By suppressing systemic inflammatory responses or 140 

selectively targeting inflammatory signaling pathways that affect multiple organs (such 141 

as NF-κB, TGF-β, etc.), protective effects can be exerted in patients with kidney disease, 142 

thereby slowing disease progression [11]. 143 

Metabolic disruption frequently emerges as a pivotal concern within the interplay 144 

of cardiac and renal functions. Mitigating the burden on the kidneys and other organs 145 

can be achieved through the regulation of metabolic pathways, including lipid 146 



metabolism, glucose metabolism, and oxidative stress. Notably, sodium–glucose co-147 

transporter 2 (SGLT2) inhibitors not only modulate renal glucose reabsorption but also 148 

demonstrate protective effects in the heart and liver [12]. The modulation of the gut-149 

kidney axis through probiotics, prebiotics, or fecal microbiota transplantation (FMT) 150 

can reduce the production of harmful metabolites and lower the risk of renal injury. 151 

Understanding the complex interplay of multiple organs in renal disease reveals a 152 

sophisticated network of interactions, underscoring the importance of elucidating these 153 

mechanisms for the advancement of more efficacious treatment strategies. Future 154 

research and therapeutic approaches may lean towards systemic, multi-organ 155 

coordinated interventions to decelerate renal disease progression and improve patient 156 

outcomes. Figure 1 illustrates the crosstalk between the renal dysfunction and the 157 

specific distal organs. 158 

 159 

2.1. Gut-Kidney Axis in CKD 160 

Changes in the gut microbiome are common in individuals with kidney disease, 161 

causing an increase in intestinal permeability. Consequently, bacterial metabolites from 162 

the gut, such as uremic toxins, are able to circulate through the bloodstream, exerting 163 

toxic effects on the kidneys. Conversely, impaired kidney function results in toxin 164 

buildup, further worsening intestinal dysfunction. 165 

The emergence of 16S rRNA and metagenomic sequencing highlights the gut 166 

microbiota as an integral part of the microenvironment influencing CKD progression. 167 

Zhang and colleagues [13] analyzed 980 samples from six studies conducted in three 168 

countries. A notable decrease in gut microbiota diversity was observed in individuals 169 

with CKD when compared to those who are healthy. Nine species, Ruminococcus 170 

gnavus, Ruminococcus bromii, Bacteroides fragilis, Alistipes onderdonkii, Bacteroides 171 

distasonis, Ruminococcus torques, Akkermansia muciniphila, Clostridium citroniae, 172 

and Bacteroides caccae, were found to be significantly enriched in CKD patients. In 173 

contrast, six species, including Blautia producta, Ruminococcus obeum, Coprococcus 174 

eutactus, Bacteroides plebeius, Prevotella copri, and Faecalibacterium prausnitzii, 175 

showed a marked reduction in CKD. Alterations in the gut microbiota of individuals 176 



with CKD may vary across different disease stages or be limited to a specific stage. Wu 177 

et al. [14] conducted shotgun metagenome sequencing on 92 fecal samples to 178 

investigate alterations in species abundance during the progression of CKD. A decrease 179 

in four species (Prevotella sp. 885, Weissella confuse, Roseburia faecis, and 180 

Bacteroides eggerthii) and an increase in three species (Alloscardovia omnicolens, 181 

Merdibacter massiliensis, and Clostridium glycyrrhizinilyticum) was associated with 182 

CKD progression. Additionally, certain species were altered only at specific stages, 183 

including Cetobacterium somerae and Candidatus Stoquefichus sp. KLE1796 in stage 184 

1 and 2 CKD, Fusobacterium mortiferum, Bariatricus massiliensis, and Bacteroides 185 

stercorirosoris in CKD stage 3, and Merdimonas faecis in CKD stage 4 and 5. The 186 

findings imply that alterations in gut microbiota among CKD patients may be dynamic 187 

and stage-dependent. In the following, we explore the pivotal gut bacterial species 188 

within the microbiota and outline their roles, whether protective or detrimental, in the 189 

onset, evolution, and advancement of CKD. 190 

CKD-Risk Bacterial Species 191 

The intestinal microbiota drives renal failure, at least in part via uraemic toxins. 192 

Wang et al. [15] found that ESKD-enriched species such as Eggerthella lenta, 193 

Fusobacterium nucleatum, and Alistipes shahii increased the production of uraemic 194 

toxins through aromatic amino acid degradation, secondary bile acids, and 195 

trimethylamine-N-oxide (TMAO) biosynthesis in the gut, resulting in higher levels of 196 

uraemic toxins and secondary bile acids in both faeces and blood of patients. 197 

Furthermore, rats subjected to gavage with E. lenta or F. nucleatum in a 5/6 198 

nephrectomy (5/6Nx) CKD rat model exhibited higher serum levels of uraemic toxins 199 

when contrasted with sham-fed rats. This elevation was linked to increased oxidative 200 

stress, glomerulosclerosis, renal fibrosis, and elevated serum concentrations of 201 

creatinine and urea. 202 

Dysbiosis in the intestinal microbiota has the potential to exacerbate complications 203 

of CKD. Hao et al. [16] analyzed fecal samples from CKD patients and rats with 204 

vascular calcification (VC) and revealed a notable elevation in P. copri compared to 205 

non-affected individuals. Oral administration of live P. copri aggravated CKD-related 206 



VC and osteogenic differentiation of vascular smooth muscle cells in vivo, 207 

accompanied by intestinal destruction, enhanced Toll-like receptor-4 (TLR4) 208 

expression, and elevated lipopolysaccharide levels in CKD rats. P. copri colonization 209 

alone did not induce aortic calcification in the absence of CKD, suggesting that the 210 

increased presence of P. copri could potentially contribute to vascular calcification 211 

associated with CKD. 212 

CKD-Protective Bacterial Species  213 

Faecalibacterium prausnitzii Faecalibacterium prausnitzii, a gram-positive anaerobic 214 

bacterium, exerts anti-inflammatory characteristics [17]. Zhang et al. [13] revealed that 215 

the reduction in F. prausnitzii levels serves as a distinct microbial signature 216 

differentiating CKD patients from healthy controls (HCs). Li et al. [18] illustrated that 217 

supplementing the CKD mouse model with F. prausnitzii significantly reduced renal 218 

dysfunction, inflammation, and uremic toxins in the serum. This beneficial outcome is 219 

likely due to the anti-inflammatory effects of F. prausnitzii and its promotion of renal 220 

function through the production of butyrate. 221 

Bacteroides, commensal gram-negative obligate anaerobes, play a vital role in 222 

colonizing the colon and constitute a significant portion of the gut microbiota. While 223 

some Bacteroides species can have beneficial effects in the gut, they may also exhibit 224 

opportunistic pathogenic behavior outside of the gastrointestinal tract [19]. B. fragilis 225 

has been discovered in the gastrointestinal tract, the oral cavity, the upper respiratory 226 

tract and the female cervical tract [20]. B. fragilis is classified into two main types based 227 

on the presence of a zinc-dependent metalloprotease known as the B. fragilis toxin. 228 

Strains that produce this toxin, enterotoxigenic B. fragilis, cleave E-cadherin, disrupting 229 

epithelial cell adhesion and inflammation [21]. Strains lacking this toxin are considered 230 

nontoxigenic B. fragilis and potential probiotics. Zhou et al. [22] showed that oral 231 

administration of live B. fragilis reduces renal fibrosis in unilateral ureteral obstruction 232 

model and adenine mouse models by lowering lipopolysaccharide levels and increasing 233 

1,5-anhydroglucitol. This mechanism alleviates renal fibrosis through the inhibition of 234 

oxidative stress and inflammation. Bacteroides plebeians, a bacterium residing in the 235 

human gut and commonly found in individuals with a seaweed-rich diet, harbors a 236 



polysaccharide utilization locus that selectively degrades porphyrin and agarose from 237 

red seaweeds [23]. Pei et al. [24] observed that administering B. plebeius orally 238 

effectively prevented muscle wasting in rats following 5/6Nx, acting through the 239 

Mystn/ActRIIB/SMAD2 pathway. 240 

Lactobacillus johnsonii Lactobacillus johnsonii, a Gram-positive bacterium, is 241 

probiotic bacterial species with broad antimicrobial properties [25]. Miao et al. [26] 242 

found that oral L. johnsonii attenuated renal fibrosis by suppressing Aryl hydrocarbon 243 

receptor (AHR) signal via increasing serum indole-3-aldehyde.  244 

Akkermansia muciniphila Akkermansia muciniphila, a bacterium that degrades mucin, 245 

can inhabit the intestines of mammals like humans and mice by utilizing mucin as its 246 

sole nitrogen and carbon source [27]. Extensive research has been conducted on the 247 

probiotic properties of A. muciniphila, encompassing metabolic regulation, immune 248 

modulation, and safeguarding gut health [28]. The study conducted by Pei et al. 249 

unveiled that A. muciniphila possesses the ability to restore disrupted gut microbiota, 250 

reinforce the intestinal mucosal barrier, diminish inflammation, and alleviate interstitial 251 

fibrosis in rats with CKD [29]. However, the onset of IgAN was observed in mice 252 

modified to express human IgA1 and the human Fc alpha receptor I following 253 

colonization with A. muciniphila, as reported by Gleeson et al. [30].  254 

Apart from bacteria, alterations have been reported in the fecal virome, including 255 

phages, in patients with diabetic nephropathy (DN) [31]. A study involving 90 subjects 256 

with or without type 2 diabetes (T2D) and 42 HCs from China found changes in gut 257 

viral diversity are more prominent in T2D with nephropathy compared with T2D 258 

without DN. At the species level, 14 viral species were identified to be associated with 259 

DN, of which 85% belonged to phages. Of these, 12 species (e.g., Bacteroides phage 260 

and Anoxybacillus virus) were significantly decreased, whereas two species (Shigella 261 

phage and Xylella phage) were increased in DN. Moreover, six species were identified 262 

as differential markers only in T2D with nephropathy, including Erysipelothrix phage, 263 

Lactococcus phage, Faecalibacterium virus, Brevibacillus phage, Bacteroides phage, 264 

and crAssphage cr114_1. In addition, significant positive correlations of viral richness 265 

and bacterial diversity were observed in T2D and T2D with nephropathy. These results 266 



suggest that DN subjects have significant gut viral disturbances and the presence of 267 

virus-bacteria interactions. However, the causal relationship between the phage and 268 

bacteria is still unclear, and further studies on the underlying mechanisms are essential 269 

for identifying potential therapeutic targets in CKD including DN.  270 

The Epstein-Barr (EB) virus induces subclinical infection in a significant 271 

proportion of individuals. It has been established that when B cells are infected with 272 

this virus, they generate Gd-IgA1 [32]. Recent findings indicate a marked increase in 273 

EB virus-infected plasma cells/plasmablasts among IgAN patients, despite no variation 274 

in the distribution of each B-cell subset among CD19-positive cells in peripheral blood 275 

compared to individuals with other forms of nephritis and those who are healthy [33]. 276 

Large scale virome study has not yet been reported in IgAN. 277 

Fungal members of microbial communities on mucosal surfaces are part of our 278 

bodies' normal ecology. Using ITS ribosomal RNA gene sequencing, Hu et al. [34] 279 

observed that CKD had more Saccharomyces and lower levels of Candida, Bjerkandera, 280 

Rhodotorula, and Ganoderma than HCs. The influences of gut fungi on CKD were 281 

investigated using oral Candida albicans-administered 5/6Nx mice [35]. It was found 282 

that the Candida-5/6Nx mice mouse had a higher abundance of Proteobacteria, 283 

Helicobacter spp. and Allobaculum spp. and more severe gut leakage with higher serum 284 

glycaemia and increased serum cytokines than non-Candida-5/6Nx [35]. Dysbiosis of 285 

gut fungi may affect the function of caspase recruitment domain-containing protein 9 286 

(CARD9), a susceptibility gene for autoimmune glomerulonephritis including IgAN, 287 

thereby the activation of inflammatory immunity and interleukin-17A-producing T 288 

helper cell, contributing to the development of CKD [36]. Due to limited numbers of 289 

studies, the spectra of gut fungi in CKD remain unclear. 290 

 291 

2.2. Gut-Kidney and Brain axis 292 

The Brain-Gut-Kidney Axis represents a burgeoning field of research into the 293 

interplay among multiple organ systems. This axis elucidates the intricate physiological 294 

and pathological connections between the nervous system, gastrointestinal system, and 295 

kidneys, particularly highlighting the profound impact of their interactions on human 296 



health in chronic diseases and metabolic disorders [37]. The autonomic nervous 297 

system's sympathetic and parasympathetic branches regulate intestinal motility, 298 

secretion, and barrier function via the vagus and spinal nerves. Conversely, the gut 299 

microbiota and their metabolic byproducts can impact the function and behavior of the 300 

central nervous system [38]. The kidneys impact brain function by regulating blood 301 

pressure, eliminating metabolic waste, and preserving fluid balance. Simultaneously, 302 

the brain influences kidney function through neural and endocrine signaling pathways 303 

like the renin-angiotensin and sympathetic nervous systems. CKD frequently disrupts 304 

brain function due to toxin buildup, manifesting as cognitive impairment and disrupted 305 

sleep patterns [39]. 306 

As renal function deteriorates, detrimental metabolic byproducts, including 307 

uremic toxins, accumulate. These substances reach the brain via the bloodstream, 308 

causing neurological abnormalities [40]. Moreover, they disrupt gut microbiota balance. 309 

Inflammatory reactions and toxin generation in the gut worsen the condition and may 310 

also affect brain inflammation and cognitive function, perpetuating a detrimental cycle. 311 

Gut microbial products like Indoxyl sulfate (IS), obtained after the metabolism of amino 312 

acids, are harmful to the brain. Rats fed an adenine-rich diet with drinking water 313 

containing IS showed increased serum concentration of IS impairment of cognition and 314 

increased blood-brain barrier permeability [41]. IS also induces apoptosis of astrocytes 315 

via oxidative stress and protein kinase inhibition [42]. Moreover, blood-brain barrier 316 

damage in uremic patients may result from disrupting endothelial tight-junction 317 

proteins [43]. Some mendelian randomization (MR) analysis also revealed a causal link 318 

between kidney damage and alterations in cortical brain structure, supporting causal 319 

evidence of the kidney-brain axis [44].  320 

Alterations in the gut microbiota are closely associated with various neurological 321 

disorders, including Parkinson’s and Alzheimer’s diseases, which are often 322 

accompanied by renal impairment [45]. The degeneration of the nervous system can 323 

disrupt renal function by modulating the autonomic nervous system, resulting in 324 

electrolyte imbalance and subsequently kidney function. Additionally, 325 

neurodegeneration impacts gut function, leading to complications such as constipation 326 



and intestinal barrier dysfunction, which in turn affect the metabolic workload on the 327 

kidneys. Systemic inflammation can occur in the case of ESKD, leading to the 328 

translocation of bacteria and their products into systemic circulation, which help to 329 

activate the immune response. Systemic inflammation may activate resident 330 

macrophages called microglial cells in the central nervous system [46].  331 

 332 

2.3. Gut-kidney and Liver axis  333 

The liver and intestines are intricately linked through the portal vein system. 334 

Nutrients, microbial metabolites, and toxins absorbed by the intestines enter the liver 335 

for processing via the portal vein. The interplay between the liver and kidneys is mainly 336 

mediated through systemic metabolism, toxin elimination, and hemodynamic 337 

mechanisms. Dysbiosis of gut microbiota and heightened intestinal permeability can 338 

cause bacterial metabolites (e.g., lipopolysaccharides, LPS) and toxins to enter the 339 

bloodstream, prompting an inflammatory reaction in the liver, potentially leading to 340 

liver fibrosis or cirrhosis and further compromising renal function via systemic 341 

inflammatory responses [47]. Simultaneously, impaired liver function, as seen in 342 

conditions like cirrhosis, can lead to intracellular water and sodium retention, 343 

subsequently activating the renin-angiotensin-aldosterone system in the kidneys, 344 

causing renal dysfunction such as reduced renal blood flow, ultimately culminating in 345 

hepato-renal syndrome [48]. In patients with mild to moderate CKD, lipid and 346 

lipoprotein metabolism alterations are evident, characterized by hypercholesterolemia 347 

and elevated low-density lipoprotein cholesterol levels, particularly notable in those 348 

with nephrotic proteinuria [49]. CKD induces changes in lipoprotein composition, 349 

partly attributable to the uremic milieu, which fosters a broader molecular diversity of 350 

lipoproteins and irreversible post-translational modifications due to compromised renal 351 

function [50]. 352 

The interaction within the gut-kidney-liver axis becomes particularly significant 353 

in the context of drug transporters. Functional changes in these transporters and drug-354 

metabolizing enzymes can be attributed to the inhibitory impact of uremic toxins and 355 

the influence of inflammatory cytokines [51]. Rosenthal et al. [52] identified that the 356 



chosen group of ATP-binding cassette transporters, solute carriers and drug-357 

metabolizing enzymes form the most substantial gut-liver-kidney cluster of inter-358 

connected genes among a random network of 690 genes. Uremic toxins are suggested 359 

to regulate the AHR. IS has been shown to regulate hepatic P-glycoprotein via AHR in 360 

rodent and cell models [53]. Clinical studies have also shown a correlation between 361 

high P-glycoprotein expression levels in CKD and elevated plasma IS levels. This could 362 

potentially impact the hepatic metabolism of drugs such as cyclosporine [54]. In 363 

patients with CKD, uremic toxins can also potentially inhibit and downregulate hepatic 364 

pharmacokinetic proteins, including organic anion-transporting polypeptide-1B, 365 

cytochrome P450 and UDP-glucuronosyltransferase [55]. The gut microbiome 366 

produces trimethylamine through choline metabolism, which is converted in the liver 367 

to TMAO by flavin-containing monooxygenases [56]. TMAO has been implicated in 368 

suppressing bile acid-mediated farnesoid X receptor signaling in the liver, potentially 369 

exacerbating liver steatosis [57]. Additionally, proinflammatory cytokines, such as 370 

interleukin (IL)-6, have been positively associated with CKD severity and are known 371 

to transcriptionally reduce the expression levels of P450 enzymes [58]. 372 

 373 

2.4. Gut-Kidney and Heart axis 374 

The prevalence of cardiovascular disease (CVD) is markedly higher among 375 

individuals with CKD compared with those without CKD [59]. Patho-physiologically, 376 

CKD and CVD patients are prone to gastrointestinal dysfunction and intestinal 377 

microecology disorder. Chronic inflammation and reactive oxygen species generation, 378 

often triggered by pathogenic bacteria or their endotoxins, are implicated in this gut-379 

kidney-heart axis [60]. The relationship between the heart and the intestines is 380 

demonstrated by the influence of cardiovascular diseases on the intestinal 381 

microenvironment, through alterations in blood flow dynamics and metabolism. 382 

Diminished cardiac function reduces blood perfusion, impacting intestinal oxygen 383 

delivery and leading to intestinal hypoxia and subsequent barrier compromise. This 384 

barrier dysfunction enables bacterial metabolites to enter the bloodstream, inciting 385 

systemic inflammation that, in turn, affects heart function, in a detrimental cycle [61]. 386 



Hypertension represents a key risk factor for renal diseases, with excessive 387 

activation of the sympathetic nervous system in the brain frequently identified as a 388 

causal factor [62]. Additionally, gut microbiota dysbiosis is considered a contributing 389 

factor in the development of hypertension. Metabolites from the gut microbiota, 390 

including short-chain fatty acids (SCFAs) and bile acids, indirectly regulate renal and 391 

blood pressure control by impacting vascular tone, inflammation, and immune 392 

responses [63]. 393 

Bacterial endotoxin, a LPS constituent of the external cell wall of most gram-394 

negative bacteria, is continuously produced in the gut and translocated into the systemic 395 

circulation across the intestinal barrier [64]. Observational studies have highlighted 396 

significant correlations between circulating bacterial DNA levels, serum C-reactive 397 

protein and IL-6 levels, and the risk of CVD events in patients with ESKD [65, 66]. 398 

Experimental studies suggest circulating bacterial DNA fragments can directly impact 399 

the cardiovascular system, notably by suppressing cardiac myocyte contraction [67]. 400 

TMAO concentrations have been related to atherosclerosis. Higher TMAO levels 401 

and pro-inflammatory cytokine expression are observed to accompany cardiac 402 

dysfunction in mouse models. Klebsiella pneumoniae enriched in CKD would 403 

contribute to developing uremic cardiomyopathy via the induction of heart-infiltrating 404 

IFNγ+ CD4+ T cell expansion [68]. Furthermore, the gut microbiota regulates vitamin 405 

D metabolism through fibroblast growth factor 23. The α-Klotho protein, the receptor 406 

for fibroblast growth factor 23, is mainly expressed in the kidney, parathyroid gland, 407 

and choroid plexus and is significantly reduced in CKD, a condition associated with 408 

profound cardiovascular dysfunction [69].The comprehension of this axis presents a 409 

renewed viewpoint on the prevention and treatment of heart and kidney ailments and 410 

the management of associated metabolic syndromes. 411 

 412 

3. Microbiota, Mucosal immunity and Gd-IgA1 413 

One of the main antibodies in the immune system, IgA, is primarily localized in 414 

the mucosal system, specifically within the intestinal tract. B cells in the gut secrete IgA 415 

to counteract pathogens and exogenous antigens in the intestinal milieu. The gut 416 



microbiota normally upholds the equilibrium of mucosal immunity, preventing the 417 

elicitation of abnormal immune reactions by the IgA antibodies produced [70]. 418 

Nevertheless, dysbiosis in the gut microbiota can disrupt this balance, leading to 419 

abnormal IgA production, formation of abnormal immune complexes, their systemic 420 

dissemination, and subsequent deposition in the renal glomeruli, culminating in IgAN. 421 

The modulation of mucosal immune responses and IgA production by the gut 422 

microbiota is crucial. Dysbiosis in the gut microbiota, particularly a decrease in 423 

probiotics and an increase in opportunistic pathogens, has been observed in patients 424 

with IgAN. These microbial imbalances may influence the development and 425 

advancement of IgAN through various mechanisms: 426 

(1) Dysregulation of mucosal immunity: dysbiosis in the gut microbiota can 427 

compromise intestinal barrier function, allowing bacteria and toxins to translocate 428 

across the intestinal wall, thereby activating the gut immune system and leading to 429 

excessive IgA production. 430 

(2) Disruption in intestinal homeostasis may impact the structure and function of 431 

IgA, leading to the formation of pathologically significant IgA immune complexes that 432 

enter the bloodstream and deposit in the kidneys. 433 

(3) Enhanced inflammatory signals: dysbiosis in the gut microbiota can lead to 434 

increased release of pro-inflammatory cytokines by intestinal epithelial cells, triggering 435 

systemic immune responses and exacerbating renal inflammation. 436 

A critical factor in the pathogenesis of IgAN is the dysregulation of the 437 

glycosylation of IgA molecules, particularly affecting the highly glycosylated IgA1 438 

subclass characterized by the presence of galactose-deficient O-glycans in the hinge 439 

region of IgA1. Glycosylation is a post-translational modification that enhances 440 

antibodies' conformational diversity, affecting immunoglobulins' structure, form and 441 

effector functions [71]. The precise source and stimuli for producing pathogenic IgA 442 

are unknown. A widely accepted hypothesis for the pathogenesis of IgAN is a multi-hit 443 

model. In this model, Gd-IgA1 is present in circulation at elevated levels in patients 444 

with IgAN (hit1). This immunoglobulin is recognized by unique circulating anti-glycan 445 

autoantibodies (hit 2). This process results in the formation of pathogenic immune 446 



complexes (hit 3). Finally, the immune complexes are deposited in the glomerular 447 

mesangium and induce renal damage (hit 4). Since Gd-IgA1 is a critical molecule in its 448 

pathogenesis, elucidation of the formation of Gd-IgA1, such as nasal-associated 449 

lymphoid tissue (NALT) and gut-associated lymphoid tissues (GALT), is crucial to 450 

understanding disease processes. The production of Gd-IgA1 in a multi-hit model is 451 

summarized in Figure 2. It is hypothesized that genetic predisposition to mucosal 452 

infection and concomitant IL-6 production can lead to aberrant glycosylation by 453 

modifying the glycosylation machinery [72, 73]. 454 

The genome-wide association studies (GWAS) of IgAN have shown that Gd-IgA1 455 

levels are highly heritable (estimated at 54%-80%) [74]. Two quantitative trait GWAS 456 

for Gd-IgA1 levels have identified two genome-wide significant loci, 457 

in C1GALT1 and C1GALT1C1, influence Gd-IgA1 level in the population, which 458 

independently associates with risk of progressive IgAN [75, 76]. Our study discovered 459 

that a novel locus, GALNT12, exhibits genetic interactions with C1GALT1 in Gd-IgA1 460 

levels and disease risk [77]. Recent studies indicated that C1galt1 deficiency in mice 461 

results in changes in the intestinal microbiota and impaired mucus barrier function, 462 

enabling rapid breach of the mucus layer by bacteria [78, 79]. Our previous study 463 

showed that the risk genotypes of LYZL1 affecting the gut microbiome and 464 

susceptibility to IgAN, were associated with higher serum levels of Gd-IgA1 [80]. 465 

Whether altered galactosylation processes result from immunometabolic signals 466 

emanating from gut microbiota remains unknown. A metagenomics-based analysis 467 

study from intestinal microbiota showed that α-galactosidase and α-N-acetyl-468 

galactosaminidase secreted by Flavonifractor plautii may contribute to the production 469 

of Gd-IgA1 in IgAN [81]. There were also studies showed that decreases in the levels 470 

of normal bacteria, such as members of the genera Prevotella and Bifidobacterium, 471 

were related to increased levels of Gd-IgA1 [82] and increases in the levels of 472 

Bacteroides and Parabacteroides were positively correlated with serum Gd-IgA1 473 

levels in IgAN [83].  474 

In mucosa-associated lymphoid tissue, including NALT and GALT, the mucosal 475 

immune response can induce Gd-IgA1 production by peripheral B cells. The interaction 476 



of mucosally derived antigens with B cells includes activation through T-cell-dependent 477 

or T-cell-independent pathways. The latter involves the interaction between B cells, 478 

dendritic cells and the TLRs pathway. Persistent activation and overactivation of TLRs 479 

might induce the overproduction of Gd-IgA1 and autoantibodies. TLR9, the A 480 

proliferation-inducing ligand and IL-6-mediated pathways were suggested to be 481 

involved in synthesizing Gd-IgA1 [72]. Studies showed that the mechanisms of the IL-482 

6-enhanced aberrant glycosylation of IgA1 involved dysregulated expression and 483 

activity of glycosyltransferases, including upregulation of ST6GalNAc-II, 484 

downregulation of C1GalT1 [84] and overexpression of GalNAc-T14 [73]. This 485 

process is potentially triggered through the Jak2/STAT3 signal pathway [85]. 486 

Additionally, signaling of the IL-6 family cytokines leukemia inhibitory factor (LIF) in 487 

the cells from IgAN patients might involve abnormal activation of the STAT1 pathway, 488 

contributing to the production of Gd-IgA1 [86]. 489 

 490 

4. Microbiota in IgAN: evidence from clinical and experimental studies 491 

4.1. Community composition of gut microbiota in IgAN: evidence from population 492 

association studies 493 

Over the past few decades, advancements in next-generation sequencing 494 

technology have played a crucial role in elucidating the intricate connection between 495 

the microbiome and various diseases. A high systemic antibody response, including a 496 

greater rate of a more pronounced IgA and IgG anti-Helicobacter pylori antibody 497 

response to mucosal infection caused by Helicobacter pylori in patients with IgAN, has 498 

been reported since year 2006 [87]. Our previous study showed that Helicobacter pylori 499 

infection was associated with elevated Gd-IgA1 in IgAN [88]. A wealth of evidence 500 

supports the notion that IgAN is frequently accompanied by dysbiosis of the gut 501 

microbiota (Figure 3). Most of these studies were cross-sectional, except for one, and 502 

the majority took 16S rDNA sequencing for gut microbiome analysis. The findings of 503 

recent research on gut dysbiosis in individuals with IgAN are outlined in Table 1. 504 

Twenty-four studies have been systemically reviewed and summarized. The 505 

studies included in the analysis were exclusively from Asia and Europe, with nineteen 506 



originating from China, one from Korea, one from Malaysia, two from France, and one 507 

from Italy. 508 

The studies identified significant microbial variations, particularly observed at the 509 

genus level. Nonetheless, only a minor subset of gut microbiota consistently yielded 510 

congruent results across the diverse studies. Thirteen studies reported that proportion 511 

of Escherichia-shigella showed significantly higher levels in IgAN than in HCs [82, 83, 512 

89-99]. No study has yet reported that the level of Escherichia-Shigella decreased in 513 

IgAN. In these studies, many findings confirmed that a high abundance of Escherichia-514 

Shigella generally correlates with elevated Gd-IgA1 levels. Zhao et al. [92] found seven 515 

microbial OTUs as optimal bacterial markers for distinguishing patients with IgAN 516 

from HCs, with Escherichia-Shigella contributing the most. Gao et al. [98] reported 517 

similar findings, who also observed a heightened IgA1 antibody response to 518 

Escherichia-Shigella and their main bacterial antigen stx2 in IgAN patients. Nine 519 

studies found that the relative abundance of the Bacteroides genus is higher in patients 520 

with IgAN compared to HCs [80-82, 94, 95, 98-101]. Eight studies have reported that 521 

the relative abundance of the Prevotella genus is significantly reduced in IgAN [30, 80-522 

82, 94, 98, 101, 102]. Higher eGFR was associated with a greater abundance of 523 

Prevotella by Peters et al. [103].  524 

The consistency of these studies underscores the potential critical involvement of 525 

Escherichia-Shigella, Bacteroides, and Prevotella in IgAN development. Yet, 526 

alterations in microbial family and genus proportions may not sufficiently capture 527 

microbiota changes, necessitating future investigations focusing on specific species or 528 

strains. 529 

Although findings on other gut bacteria, such as Akkermansia, have been 530 

inconsistent across studies, their potential role in the progression of IgAN should not 531 

be underestimated. Gleeson et al. [30] demonstrated that A. muciniphila plays a pivotal 532 

role in the pathophysiology of IgAN. In mice that expressed human IgA1 and Fcα 533 

receptor I (α1KI-CD89tg mice), the quantity of deglycosylated IgA1 correlated with 534 

the relative abundance of A. muciniphila in the intestinal lumen. Further analyses 535 

revealed that IgA1 undergoes deglycosylation upon direct interaction with live bacteria 536 



in the intestinal lumen. This deglycosylation process promotes the translocation of IgA1 537 

from the intestinal lumen to the circulation through retro-transcytosis. Moreover, 538 

human IgA1 incubated with A. muciniphila was identified by autoantibodies in the sera 539 

of IgAN patients. In α1KI-CD89Tg mice treated with broad-spectrum antibiotics to 540 

eliminate gut microbiota, reintroduction of A. muciniphila (but not Escherichia coli) 541 

resulted in exacerbated IgAN manifestations. It concluded that mucin-degrading 542 

bacteria are directly responsible for producing the deglycosylated IgA1 autoantigen in 543 

IgAN. In the future, various avenues must be investigated to unlock the therapeutic 544 

possibilities. These avenues include methods to boost the synthesis of α-defensins, 545 

which impede the proliferation of A. muciniphila on the mucosal surface, tactics to 546 

combat mucin-degrading bacteria and their enzymes that strip IgA1 of its glycans, and 547 

dietary interventions to alter the gut microbiota in individuals with IgAN.  548 

Apart from susceptibility association, specific bacterial species displayed unique 549 

abundance patterns in IgAN non-progressors and progressors, underscoring the 550 

significance of gut microbiota in disease progression. De et al. [96] found that a higher 551 

proportion of Bifidobacterium had higher levels in non-progressor patients than in 552 

progressor. The abundance of Prevotella increased in progressor patients compared to 553 

non-progressor. The non-progressor patients with IgAN had a higher abundance of 554 

Bacteroides coprocola, B.fragilis, Bacteroides vulgatus, and a higher proportion of 555 

Bacteroides finegoldii, Bacteroides intestinalis, B. plebeius and Bacteroides salyersiae 556 

were richer in progressor patients with IgAN. However, due to sample size limitations 557 

and disease heterogeneity, care interpretation of the data and larger follow-up 558 

replications may be needed. 559 

As mentioned above, despite the predominant focus of existing research on 560 

cataloging bacterial taxa, it is crucial to acknowledge the existence of other 561 

microorganisms, such as bacteriophages, in the gut. Studies have highlighted the 562 

significance of bacteriophages in influencing microbiota stability, with implications for 563 

altering microbiota composition, increasing intestinal permeability, and inciting 564 

persistent inflammation [104]. The potential role of other neglected components of gut 565 

microbiota, also deserves further study for comprehensive understanding of aetiology 566 



and pathology of IgAN.  567 

 568 

4.2 Functional potential of gut microbiome in IgAN: clinical association clues 569 

Several human studies have employed “omics” techniques and thus added new 570 

perspectives on functional attributes of the gut microbiome in IgAN. The results of 571 

recent studies about fecal and serum metabolite in IgAN patients are listed in Table 1. 572 

The systemic changes in endogenous metabolites from IgAN mainly influenced fatty 573 

acid, amino acid, and nucleotide metabolism. For instance, compared to HCs, the levels 574 

of intestinal SCFAs, fatty acid, 3-indolepropionic acid in IgAN [102, 105, 106]. The 575 

richness of species within the gut microbiome is closely associated with metabolic 576 

diversity. Notably, Streptococcaceae showed a positive correlation with both fecal and 577 

serum bilirubin levels. The increase in fecal metabolites, such as phenylalanine and 578 

bilirubin, correlates directly with their respective levels in the serum [102]. It was 579 

shown that a marked increase of total FAA was found in the fecal samples of IgAN 580 

patients, and serum samples of IgAN patients also had a rise of some FAA (e.g., Asp, 581 

Glu and Tyr) [107].  582 

Studies also have identified differences in metabolite profiles between non-583 

progressor and progressor IgAN patients. For example, some metabolites (Acetone, 584 

Glycerol, Glycine, Threonine, Valine) increased in non-progressor patients with IgAN. 585 

In contrast, some metabolites (Formate, Betaine, N, N-Dimethylglycine) increased in 586 

progressor patients with IgAN [108]. Some studies reported relevant correlations 587 

between metabolite alterations and IgAN clinical features. For example, high levels of 588 

Gd-IgA1 were associated with lower levels of 3-indolepropionic acid [106]. Enriched 589 

catechol, azelaic acid, mandelic acid, and l-tryptophan were positively correlated 590 

with  serum creatinine, uric acid, and 24 total urinary proteins and negatively 591 

correlated with eGFR [91]. Despite being cross-sectional, the studies are still somewhat 592 

scarce, warranting more strong evidence from well-designed studies. The levels of 593 

metabolites are subject to great fluctuations and across different time and assays due to 594 

the interplay between microbiota, diet, environment, and medications. 595 

 596 



4.3. Microbiota in IgAN: supporting evidence from model animals 597 

A study [109] involving B cell activation factor of the TNF family (BAFF) 598 

overexpressing transgenic mice demonstrated that these mice develop IgA-driven 599 

nephritis contingent on commensal flora. This finding suggests that elevated levels of 600 

BAFF alone are insufficient to induce IgA-associated renal injury. However, through 601 

interactions with commensal flora, they contribute to an IgAN-like pathology. Some 602 

other studies also emphasized the pivotal role of gut microbiota in generating mucosal-603 

derived nephrotoxic IgA1, promoting occurrence or progression of IgAN [110]. This 604 

was particularly evident in FMT experiments in α1KI-CD89Tg mice models [111]. 605 

Microbiota from patients with severe disease stages notably contributed to the IgAN 606 

phenotype in mice. It was further discovered that mice colonized by A. muciniphila 607 

developed an exacerbated IgAN phenotype in the α1KI-CD89Tg mouse model [30]. 608 

Alterations in gut microbiota composition were observed in IgAN mice, with decreased 609 

levels of Bifidobacterium and Lactobacillus and increased percentages of Helicobacter 610 

and Alloprevotella [101]. While rifaximin decreased IgAN symptoms in α1KI-CD89Tg 611 

mice, it remains unclear whether these results stem from modulation of the intestinal 612 

microbiota or other effects of rifaximin on the gut [112]. 613 

The initiation of IgAN in germ-free ddY mice also offered valuable perspectives 614 

[113]. These mice did not present IgAN symptoms in a germ-free milieu but 615 

experienced heightened kidney damage featuring mesangial IgA accumulation upon 616 

transition to a specific pathogen-free environment. This observation underscores the 617 

significance of the NALT over the GALT in stimulating nephritic IgA synthesis in these 618 

specific mouse models. However, we may note that the absorption of 619 

oligodeoxynucleotides is generally sluggish, and its degradation may be a pertinent 620 

issue. Furthermore, indigenous gut bacteria in ddY mice were found to be responsive 621 

to specific dietary components, including Bacteroides acidifaciens and Bacteroides 622 

caecimuris (responsive to casein and beef tallow) and Faecalibaculum rodentium and 623 

Allobaculum stercoricanis (responsive to casein and egg powder) [114, 115]. The data 624 

summarized in Table 2 underscores the significance of microbiota composition in 625 

shaping the nephritogenic phenotype.  626 



 627 

5. Potential mechanisms of gut microbiota in IgAN 628 

Due to its multifactorial etiology of IgAN, a precise investigation of the 629 

pathogenesis is extremely difficult. It is essential to note that IgAN is a heterogeneous 630 

condition, with secondary forms potentially linked to viral hepatitis, IBD, and other 631 

conditions. Primary IgAN, on the other hand, shows associations with numerous 632 

genetic variants. Extrapolating data from animal models to patients also remains 633 

challenging due to differences in immune responses, especially on IgA glycosylation. 634 

However, judged to be promising, plenty of studies have outlined potential mechanisms 635 

through which gut microbiota may contribute to IgAN, influenced by factors such as 636 

diet and genetic predispositions shared with gastrointestinal disorders. As research 637 

deepens, we focus here on the potential mechanisms linking gut microbiota and IgAN, 638 

which can be updated into five perspectives in detail: 639 

(1) Genetic susceptibility: host specific genetic backgrounds may increase the 640 

sensitivity of intestinal bacteria to IgAN, serving as a primary trigger for the 641 

development of IgAN. 642 

(2) Epigenetic mediation: epigenetic modifications may serve as crucial mediators 643 

between the gut microbiota and IgA production. 644 

(3) Impaired gut barrier: dysregulation of mucin-degrading bacteria disrupts the 645 

gut barrier, leading to abnormal glycosylation of IgA. 646 

(4) Molecular mimicry and microbial metabolites: gut dysbiosis results in an 647 

imbalance of microbe-associated metabolites, impacting lymphocyte differentiation 648 

and cytokine production. 649 

(5) B cell activation: intestinal dysbiosis can lead to aberrant activation and 650 

differentiation of IgA-producing B cells in the gut. 651 

5.1. Gut microbiota: Host genetic susceptibility background 652 

Recent advances in understanding the etiological role of gut microbiota in IgAN 653 

have been significantly driven by insights garnered from GWAS. Common genetic 654 

factors were found through phenome-wide association studies between IgAN, IBD and 655 

bacterial infections. This leads to the hypothesis of a significant association between 656 



the gut microbiota's impact on immune system regulation and IgAN. Our previous 657 

study specifically focuses on the genetic aspects of the host gut microbiota [80]. Out of 658 

136 identified variations associated with gut microbiota, 9 were found to be linked to 659 

IgAN. Single nucleotide polymorphisms (SNPs) in genes LYZL1, SIPA1L3, TTLL2, 660 

PLTP, and AL365503.1 were correlated with clinical parameters of IgAN. A SNP in 661 

AL392086.3 was associated with poor prognosis. Specific SNPs in LYZL1 were 662 

inversely correlated with the abundance of Bacteroides, while SNPs in SIPA1L3 and 663 

AL392086.3 were negatively associated with the abundance of Proteobacteria. SNPs 664 

in TTLL2 were negatively linked to the abundance of Anaerostipes, whereas PLTP 665 

SNPs showed a positive correlation with Veillonellaceae abundance. Conversely, SNPs 666 

in AL365503.1 and RAD21-AS1 were positively related to the abundance of 667 

Corynebacterium. By involving two confirmation cohorts, we observed a decreased 668 

tendency for Dialister and an increased tendency for Erysipelotrichaceae in IgAN. The 669 

reduced abundance of Dialister consistently correlated with elevated serum levels of 670 

Gd-IgA1. These findings offer initial support for the notion that host genetics influence 671 

the gut microbiota in IgAN, suggesting a novel avenue for future research on 672 

pathogenesis. 673 

By MR studies, it identified a likely causal relationship between gut microbiota-674 

particularly specific bacterial taxa-and IgAN. Both Class Actinobacteria and Genus 675 

Actinobacteria are considered pathogenic factors in IgAN, while Genus Enterorhabdus, 676 

Family Prevotellaceae, and Family Peptococcaceae show protective effects against 677 

IgAN, with no indication of reverse causality [116, 117]. This suggests that gut 678 

microbiota dysbiosis may be a significant factor in triggering or exacerbating the 679 

development and progression of IgAN. However, most of the national biobanks 680 

currently lack records of ICD codes for IgAN, or due to its low prevalence of IgAN 681 

within those biobanks, only few GWAS loci can be identified and validated in these 682 

databases, raising concerns about statistical power and result reliability from MR. 683 

The genetics of the gut microbiome is still a field in its infancy, with only a few 684 

genetic loci have been consistently confirmed across multiple studies. However, we 685 

posit that discovering further host genetic factors affecting the gut microbiome, even 686 



those with minor impacts, will offer crucial understandings into intricate host-687 

microbiome connections and could guide the development of therapies and 688 

individualized treatments. Future advancement in understanding the complex  689 

interactions by application of systems genetics (multi-omic) methodologies to both the 690 

human genome and the gut microbiome is necessary.  691 

 692 

5.2. Gut microbiota: Epigenetics effects 693 

Epigenetics acts as a bridge between genotype and phenotype. Numerous studies 694 

have identified changes in DNA methylation, histone modifications, and non-coding 695 

RNAs that are closely linked to abnormal glycosylation of IgA1 and the production of 696 

Gd-IgA1 in IgAN. For instance, TRDMT1-driven 5mC RNA modification in B cells 697 

disrupts activation-induced cytidine deaminase activity and IgA class switch 698 

recombination (CSR), resulting in an exacerbated IgAN phenotype [118]. Additionally, 699 

miR-374b, a miRNA targeting phosphatase and COSMC, promotes B-cell proliferation 700 

and aberrant IgA1 glycosylation when overexpressed [119]. Unlike genetic mutations, 701 

epigenetic alterations are reversible and responsive to environmental factors. Sallustio 702 

et al. [120] suggested that elevated IL-6 levels in IgAN patients were induced by an 703 

epigenetic mechanism modulated by viral and bacterial RNA, which impacted the 704 

VTRNA2–1/PKR/CREB/IL-6 pathway. 705 

The intricate interplay between epigenetics and the gut microbiota establishes a 706 

dynamic system, each highly responsive to environmental and dietary influences. The 707 

metabolites produced by gut microbiota act as cofactor and substrate for various 708 

enzyme reactions [121]. Bacterial metabolites, such as SCFAs, have been shown to 709 

affect epigenetic markers like DNA methylation and histone acetylation directly [122]. 710 

Epigenetic modifications, particularly miRNAs, can regulate the expression of genes 711 

that maintain intestinal barrier function, thereby influencing the types of bacteria that 712 

colonize the gut and impacting immune responses [123]. The expression of miR-21-5p 713 

in intestinal epithelial cells may lead to changes in intestinal permeability [124]. 714 

Casado-Bedmar et al. [125] identified that, in addition to impairing intestinal barrier 715 

function, the luminal increase of let-7b and miR-21 promotes the secretion of 716 



proinflammatory cytokines (TNF, IL-6, and IL-1β) by macrophages, enhances 717 

myeloperoxidase and antimicrobial peptide production, and ultimately contributes to 718 

intestinal dysbiosis by using an in vitro microbiota modeling system. Interestingly, miR 719 

let-7b, miR-21, and miRNA-21-5p have been shown to be involved in the production 720 

of IgA1 O-glycosylation in IgAN [126, 127]. Furthermore, miRNAs seem to act as 721 

mediators between IgA CSR and the gut microbiota. Research by Casali et al. [128] has 722 

shown that in miR-146a-deficient mice, there are elevated IgA levels, an increased 723 

frequency of IgA+ B cells across various tissues, and notable IgA deposition in the 724 

kidneys. The loss of miR-146a enhances the recruitment of Smad2, Smad3, and Smad4 725 

to the Igα locus Iα promoter, a key step in initiating germline Iα-Cα transcription and 726 

CSR to IgA. Additionally, miR-146a-deficient chimeric mice exhibit significant 727 

alterations in gut microbiota composition, with marked increases in Akkermansia. 728 

Although studies specifically exploring the interaction between gut microbiota and 729 

epigenetics in the context of IgAN remain limited, current mechanistic insights strongly 730 

suggest that this interaction could be integral to IgAN development and progression. 731 

Investigating the gut-kidney axis through the examination of RNA methylation's impact 732 

on mucosal immunity in GALT, along with its interplay with the microbiome, may offer 733 

enhanced understanding of disease onset and advancement. 734 

 735 

5.3. Gut microbiota: Dysregulation of glycosylation by bacteria.  736 

The intestinal barrier, a mucus, epithelial, and immune layer composite, is integral 737 

to gut integrity. Its mucus component, rich in O-glycosylated mucins, segregates 738 

epithelial cells from luminal contents, including bacteria and antigens [129]. Mucus 739 

contains a large amount of O-glycosylation, which makes up more than 80% of the 740 

mass of a mucin. O-glycan consists mainly of N-acetyl-galactosamine, N-acetyl-741 

glucosamine, fucose, galactose, mannose and sialic acid, are all essential for barrier 742 

function [130]. 743 

Mucin2 (MUC2) is the main component of the intestinal mucus. Gut microbiota 744 

and metabolites influence the intestinal mucus barrier by modulating MUC2 synthesis, 745 

secretion, glycosylation, and other post-translational modifications [129]. Within the 746 



luminal mucus layer, mainly constituted of elongated MUC2, commensal bacteria 747 

flourish by adhering to and metabolizing MUC2 glycans, with the assistance of glycan-748 

degrading enzymes under normal physiological conditions. The expression of NHE3 is 749 

regulated by SCFAs, thereby facilitating the development of a dense inner mucus layer 750 

that lies adjacent to epithelial cells[131]. Additionally, activating AHR by indole 751 

derivatives stimulates tight junction protein expression and mucin production [132]. 752 

Studies conducted earlier have proposed that the group of mucin-degrading bacteria is 753 

mainly composed of A. muciniphila, Bacteroides thetaiotaomicron, B. fragilis, 754 

Bifidobacterium bifidum, R. gnavus, and R. torques [133]. This list is likely to expand, 755 

as 23 representative gut microbes have been shown to utilize porcine intestinal mucin 756 

as their sole carbon source for growth [134]. The proliferation of mucus-degrading 757 

bacteria can exacerbate the degradation of MUC2, thereby triggering intestinal 758 

inflammation [135]. R. gnavus, known for its abundance of genes encoding 759 

carbohydrate-active enzymes, has been observed to modify mucin O-glycosylation 760 

patterns in individuals with IBD, a discovery that could have implications for IgAN 761 

[136].  762 

In IgAN, alternations in the intestinal barrier, specifically increased permeability, 763 

have been recorded [137]. The glycosylation pattern of IgA1 in IgAN, mainly core-1, 764 

might be influenced by variations in enzymes such as β-galactosyltransferase and 765 

cosmc [138]. Analysis of serum IgA tryptic glycopeptides has identified various N-766 

glycosylation structural characteristics, including differences in galactosylation, 767 

sialylation, bisection, fucosylation, and N-glycan complexity, which are associated with 768 

IgAN and renal function [139]. These findings highlight a potential role of mucin 769 

dysregulation in IgAN pathogenesis, where aberrant glycosylation and increased 770 

mucosal permeability may promote pathogenic IgA production. Further investigation 771 

into the mechanisms by which these bacteria alter mucin structure and function could 772 

provide valuable insights into their role in the development of IgAN. 773 

5.4. Gut microbiota：Molecular Mimicry and Microbial Metabolites 774 

Molecular Mimicry  775 

Certain bacterial antigens may possess amino acid sequences or molecular 776 



structures that resemble self-antigens, such as major histocompatibility complex 777 

molecules. This similarity can lead to the over-activation of auto-reactive immune cells, 778 

which may mistakenly target and attack human tissues, contributing to autoimmune 779 

responses [140]. This mechanism, known as “molecular mimicry”, is thought to play a 780 

role in various autoimmune diseases, including Guillain-Barre syndrome [141] and 781 

systemic lupus erythematosus [142]. Some human leukocyte antigen polymorphisms 782 

are recognized as risk factors for IgAN and may predispose individuals to antibody 783 

responses against specific environmental pathogens or contribute to a loss of immune 784 

tolerance [143]. Several environmental microbes, including those with polysaccharides 785 

displaying the GalNAc motif on their cell surface, can prime B cells to produce IgA 786 

and IgG antibodies targeting these structures. Such antibodies could cross-react with 787 

the hinge region of Gd-IgA1. Infection by EB virus, respiratory syncytial virus, herpes 788 

simplex virus, and streptococci may induce the production of such antibodies [144]. 789 

Nihei et al [145] showed that certain oral bacteria can elicit immune responses that 790 

produce IgA capable of cross-reacting with mesangial cells, thereby initiating the 791 

development of IgAN. Moreover, in the grouped ddY spontaneous IgAN mouse model, 792 

IgA+ plasmablasts accumulate in the kidneys, where they produce IgA targeting 793 

mesangial antigens, including βII-spectrin and CBX3 [146, 147]. This finding supports 794 

the idea that local IgA production against mesangial antigens plays a direct role in 795 

kidney damage in IgAN. It remains unclear whether specific antigens from the gut 796 

microbiota cross-react with IgAN, but this hypothesis is gaining attention and may be 797 

of interest in formulating a vaccine to prevent the onset of diseases. 798 

Microbial Metabolites  799 

Metabolites are pivotal in the regulation of inflammation in both the intestinal and 800 

parenteral settings through their influence on leukocyte recruitment and chemokine 801 

function. SCFAs alter cell recruitment by modulating the expression of adhesion 802 

molecules in neutrophils and endothelial cells. Particularly, propionate and butyrate 803 

have been observed to suppress pro-inflammatory agents like TNF-α, IL-6, and nitric 804 

oxide. Conversely, butyrate boosts IL-10 expression, facilitating immune tolerance in 805 

lymphocytes [148]. The presence of low concentrations of butyrate promotes the 806 



release of MUC2 from intestinal epithelial cells, enhancing the barrier function and the 807 

ability to respond to pathogens and commensal microorganisms. Conversely, high 808 

concentrations of butyrate have been shown to impair the barrier function [149]. SCFAs 809 

also fuel B cells to augment IgA production  and activate dendritic cells through SCFA 810 

receptor engagement and histone deacetylase inhibition, facilitating IgA CSR [150]. 811 

There is a reduction in fecal levels of SCFAs from patients with IgAN, including acetic, 812 

propionic, butyric, isobutyric, and caproic acids, which is associated with a decline in 813 

SCFA-producing bacteria like Alistipes [105]. The implications of SCFAs in IgAN may 814 

encompass heightened intestinal permeability, diminished expression of antimicrobial 815 

peptides, inflammatory activation, and increased susceptibility to pathogen infections 816 

[151]. 817 

Tryptophan, an essential amino acid sourced from dietary proteins, undergoes 818 

metabolism via host (kynurenine and serotonin) and microbial (indole) pathways [152]. 819 

In IgAN, elevated levels of 5-hydroxytryptophan and kynurenine, alongside reduced 820 

indole metabolites such as indole-3-acetic acid and 3-indolepropionic acid, have been 821 

reported [106]. Lower levels of 3-indolepropionic acid in the intestine impair the 822 

integrity of the intestinal barrier, causing elevated permeability and the activation of 823 

inflammatory processes [153]. Moreover, decreased intestinal 3-indolepropionic acid 824 

levels have been associated with increased intestinal SIgA and IgG in Clostridium 825 

sporogenes-deficient mice [154]. 826 

 827 

5.5. Gut microbiota：B cell activation 828 

Intestinal B cell activation and differentiation rely heavily on the gut microbiota. 829 

In return, B cells help regulate the gut microbiota and maintain intestinal homeostasis 830 

through the production of immunoglobulins. The role of IgA in shaping microbiota was 831 

initially identified in mice deficient in activation-induced cytidine deaminase (AID), an 832 

enzyme essential for antibody isotype switching. AID-deficient mice exhibited 833 

hyperplasia of the intestinal lymphoid follicles and a 100-fold increase in anaerobic 834 

commensal bacteria within the intestine [155]. Bacterial flow cytometry and 16S rRNA 835 

gene sequencing have identified a diverse set of IgA-coated microbiota, including 836 



Actinomyces, Bifidobacterium, Erysipelotrichaceae, Dorea, Ruminococcus, 837 

Akkermansia, Streptococcus, Escherichia-Shigella, Clostridium, Bacteroides, Blautia 838 

and Roseburia [156]. Studies suggest that Bacteroides species elicit a stronger IgA 839 

response in murine Peyer’s patches compared to Lactobacillus, possibly through the 840 

upregulation of AID in B cells [157]. Bacteroides ovatus, in particular, has been shown 841 

to stimulate significant mucosal IgA production through a T cell-dependent B cells 842 

activation pathway [158].  843 

Extracellular vesicles derived from high-protein-fed microbiota activate epithelial 844 

TLR4 and promote the expression of BAFF and a proliferation-inducing ligand (APRIL) 845 

[159]. Morphine-induced gut microbial dysbiosis triggers TLR-dependent IgA targeting 846 

gram-positive bacteria and induces upregulation of CD11b and TLR2 on a specific 847 

subset of IgA+ B cells [160]. This suggested that B cells were regulated by dietary 848 

metabolites. The MyD88 signaling pathway is downstream of TLR receptors. MyD88-849 

mediated signaling was required for the development of intestinal IgA+ B cells. Loss of 850 

Disruption of MyD88 signaling diminished targeting of the gut microbiota by high-851 

affinity IgA leading to a breakdown in the regulation of bacterial growth and 852 

community homeostasis [161]. 853 

Additionally, dysfunction of the epithelial barrier can lead to abnormal B cell 854 

immune responses. A recent study by Kinashi et al. [162] provides evidence that Ap1m2 855 

deficiency induces intestinal epithelial barrier dysfunction and resulting dysbiosis, 856 

which spontaneously lead to IgAN-like features in the mouse kidney. Moreover, Ap1m2 857 

deficiency resulted in a marked increase in IgA+ B cells within the gut lamina propria, 858 

accompanied by elevated IgA levels in the supernatant of ex vivo intestinal cultures. 859 

This enhanced mucosal IgA response in Ap1m2 deficiency mice is likely driven by 860 

intestinal dysbiosis, characterized by an overabundance of Candidatus Arthromitus. 861 

Candidatus Arthromitus, previously identified as a segmented filamentous bacterium, 862 

is a powerful stimulator of the intestinal immune system, notably enhancing Th17 and 863 

IgA responses [163]. Subsequently, the depletion of gut microbiota through antibiotic 864 

treatment reduced IgA deposition in the kidneys of Ap1m2 deficiency mice. 865 

 866 



6. Translational research in IgAN 867 

6.1. Biomarkers 868 

6.1.1. Traditional Biomarkers in IgAN 869 

Over recent decades, the diagnostic and prognostic landscape of IgAN has relied 870 

heavily on non-specific biomarkers. The cornerstone of IgAN diagnosis remains in 871 

kidney biopsy, a method with inherent limitations due to its invasiveness and potential 872 

complications. In predicting IgAN progression, clinicians have traditionally used a 873 

combination of non-specific markers such as proteinuria, blood pressure, and eGFR, 874 

supplemented by IgAN-specific findings from kidney biopsy. Among these, the Oxford 875 

MESTC histologic score stands out. This score encapsulates four key pathological 876 

features: mesangial, endocapillary hypercellularity, segmental sclerosis, and interstitial 877 

fibrosis/tubular atrophy. Each component contributes to a comprehensive 878 

understanding of the disease's severity and progression risk [164]. Its significance is 879 

underpinned by 21 validation studies involving nearly 7,000 patients across various 880 

continents, establishing its robustness in clinical practice [165]. The development of the 881 

International IgAN Prediction Tool marks a significant advancement in prognostic 882 

strategies [166]. This tool amalgamates globally available, clinically embedded 883 

biomarkers validated for prognostic efficacy. Its recent validation in a cohort of 1,275 884 

patients further underscores its potential utility in clinical settings [167]. Nevertheless, 885 

neither pathological evaluations nor International IgAN Prediction Tool can guide 886 

treatment strategies or facilitate real-time disease surveillance. 887 

6.1.2. Intestinal barrier Biomarkers in IgAN 888 

Recent advancements in the study of IgAN have highlighted the importance of 889 

intestinal barrier biomarkers. Research conducted by our team has revealed elevated 890 

levels of serum zonulin in IgAN patients. This elevation points to zonulin's crucial role 891 

as a regulator of epithelial and endothelial barrier functions, thereby emphasizing its 892 

potential as a biomarker in this disease context [168]. Zhou et al. [169] explored the 893 

characteristics of the intestinal barrier in rats with IgAN. Their study identified a strong 894 

correlation between the degradation of the intestinal barrier and reduced expression of 895 

the tight junction proteins zonula occludens-1 and occludin, plus intestinal microbiota 896 



dysbiosis in IgAN rats. In the IgAN mice model, rhein was observed to enhance the 897 

expression of zonula occludens-1 and occludin, which is crucial for repairing damaged 898 

tight junctions and restoring the intestinal barrier [170].  899 

6.1.3. Microbiomic Biomarkers in IgAN 900 

The preceding sections have outlined differential findings regarding the gut 901 

microbiome in individuals with IgAN compared to healthy individuals and across 902 

varying disease stages. These observations propose that changes in specific microbial 903 

taxa, the overall structure of the microbial community, diminished bacterial diversity, 904 

and the stability of the microbial community may hold potential as biomarkers for IgAN. 905 

A recent study has documented that a striking expansion of the taxonomic chain 906 

Proteobacteria-Gammaproteobacteria-Enterobacteriales-Enterobacteriaceae-907 

Escherichia-Shigella was observed in patients with IgAN who were treatment-naive, 908 

which was reversed only in patients who achieved clinical remission after six months 909 

of immunosuppressive therapy. The study suggests Escherichia-Shigella test in patients 910 

with IgAN may be utilized as a tool for both differential diagnosis and monitoring the 911 

effectiveness of immunosuppressive therapy [92].  912 

 913 

6.2 Therapy Targeting Microbiota 914 

The gut microbiome, dynamic and diverse, is heavily subject to external 915 

modulation. The presence, function, and interaction of bacteria with the host, diet, and 916 

various gut components can significantly affect the development of infectious and 917 

chronic diseases. This underscores the potential of the gut microbiota as a novel 918 

therapeutic target for IgAN. Emerging evidence suggests the efficacy of microbiota-919 

focused interventions in ameliorating IgAN (Figure 4). 920 

6.2.1 Dietary interventions, antibiotics, prebiotics and probiotics 921 

The impact of diet on the gastrointestinal tract, in terms of regulating gut 922 

microbiota composition and functionality, as well as the influence of inadequate 923 

nutrition on the pathogenesis and progression of several disorders, has been extensively 924 

documented. A MR study has confirmed that alcohol intake frequency is associated 925 

with an increased risk of IgAN, whereas the intake of cheese, cereal, and sushi is 926 



associated with a decreased risk of IgAN [171]. High-fat, high-sugar, high-salt, and 927 

high-animal protein diets can contribute to the proliferation of pathogenic bacteria in 928 

the gut, leading to gut dysbiosis, inflammation, and compromised intestinal barrier 929 

integrity. On the contrary, a diet abundant in vegetables and fibers, supplemented with 930 

probiotics and vitamin D, leads to the restoration of gut microbiota and an elevation in 931 

anti-inflammatory factors associated with the microbiome, such as SCFAs. Clinical 932 

observations revealed a decline in IgA antigliadin antibodies and proteinuria in IgAN 933 

patients upon adoption of a gluten-free diet [172]. Of interest, the protective effects of 934 

the Mediterranean diet against a range of conditions, including chronic inflammatory 935 

disorders such as IgAN, have been documented. These benefits are attributed to its 936 

ability to suppress pro-inflammatory factors (IL-1, IL-6) and reduce oxidative stress 937 

[173]. In light of the significant impact of diet on the composition of gut microbiota, 938 

crucial for preserving normal immune responses and kidney health, lowering risks, 939 

modulating symptoms, and ameliorating pathophysiological factors linked to IgAN, the 940 

integration of dietary adjustments with pharmacological interventions could serve as a 941 

viable strategy to rebalance gut microbiota dysbiosis and enhance symptomatic relief. 942 

Antibiotics may have the potential to be utilized for modulating the gut microbiota 943 

as a practical therapeutic intervention in IgAN. Previous research has illustrated that 944 

antibiotic treatment significantly reduced hIgA1 mesangial deposition, glomerular 945 

inflammation, and the progression of proteinuria in the α1KI-CD89Tg mouse model 946 

[174].  947 

Probiotics exhibit antimicrobial and anti-inflammatory properties, and they also 948 

reduce intestinal permeability, aiding in the maintenance of intestinal microbiota 949 

balance and alleviation of gastrointestinal issues. The use of probiotics is recommended 950 

for addressing intestinal disorders such as IBD, celiac disease, as well as various 951 

cardiovascular diseases, and obesity [175]. In individuals with IgAN, shifts in the gut 952 

microbiome have been documented, characterized by elevated levels of A. muciniphila 953 

and Streptococcus, and diminished populations of butyrate-producing bacteria [30]. It 954 

seems reasonable that probiotics such as Lactobacillus plantarum, and Bifidobacterium 955 

pseudocatenulatum may function as adjuncts in countering the onset and progression 956 



of IgAN, due to their anti-inflammatory and antioxidant properties. In concordance, the 957 

administration of Bifidobacterium as a supplement offers promise in alleviating the 958 

clinicopathological manifestations of IgAN by impeding the NLRP3 signaling pathway 959 

and mitigating gut dysbiosis, characterized by an augmentation of beneficial bacteria 960 

and a reduction in potentially pathogenic bacteria, as demonstrated in an IgAN mouse 961 

model [101]. 962 

6.2.2 Budesonide  963 

Despite the well-established "four-hit hypothesis," numerous mechanisms 964 

contributing to disease pathogenesis remain inadequately described, including B-cell 965 

priming triggered by various antigens within the intestinal microbiota. In the human 966 

body, several sites harbor organized lymphoepithelial tissue, including the tonsils. 967 

Nonetheless, the most crucial locations for IgAN are the GALT and Peyer’s patches, 968 

where B cells in the ileum’s mucosal layer produce Gd-IgA1 in response to dietary (e.g., 969 

gluten) or microbial antigens [176]. The correlation demonstrates the potential efficacy 970 

of budesonide in addressing intestinal immunity and localized inflammation in the 971 

context of IgAN treatment. A budesonide formulation designed to specifically deliver 972 

the drug within the intestine to immune cells producing IgA (Nefecon), was first utilized 973 

as a novel therapeutic intervention for IgAN ten years ago [177]. A compilation of 974 

recent reviews suggests that previous research backs the prescription of budesonide for 975 

IgAN treatment, showing a decrease in proteinuria and the stability of renal function 976 

[178]. The results of the global phase 3 clinical trial (ClinicalTrials.gov identifier: 977 

NCT03643965) demonstrated a statistically significant treatment benefit with Nefecon 978 

versus placebo by the time-weighted average of eGFR over two years [179]. Notably, 979 

a 9-month treatment period with Nefecon provided a clinically relevant reduction in 980 

eGFR decline and a durable decrease in proteinuria versus placebo, supporting a 981 

disease-modifying effect in patients with IgAN. Nefecon has been proven to reduce 982 

pathogenic forms of IgA and IgA immune complexes.  983 

6.2.3. B/Plasma cell depletion/ modulation 984 

Recent research has provided compelling insights into the role of plasma cells in 985 

IgAN. A noteworthy study confirmed that patients with IgAN exhibit elevated 986 



circulating surface Gd-IgA1+ B cells expressing the chemokine receptors CCR10 and 987 

CCR9. These receptors are closely associated with the upper respiratory tract and gut. 988 

Furthermore, it was observed that the Gd-IgA1+ cell population in peripheral blood is 989 

enriched with plasma cells [180]. These analyses indicate that B cell subpopulations 990 

and serum Gd-IgA1 could be explored as novel biomarkers for treating IgAN. 991 

Therapeutic strategies for targeting Gd-IgA1-producing B cells may be 992 

summarized in two points: (1) Direct removal of B cells, including debulking of MALT-993 

Tonsillectomy, GALT targeting-CD38/40 monoclonal antibody (2) Modulation of the 994 

B cell programming involved in the abnormal IgA production, including Corticosteroid, 995 

Proteasome inhibitor, TLR antagonism, APRIL/BAFF antagonism. 996 

Some ongoing trials are testing emerging drugs that can interfere with plasma cells. 997 

For instance, CD38-directed therapies that target and deplete plasma cells including 998 

felzartamab (ClinicalTrials.gov identifier: NCT05065970) and mezagitamab 999 

(ClinicalTrials.gov identifier: NCT05174221), inhibits of BAFF and APRIL, including 1000 

BION-1301 (ClinicalTrials.gov identifier: NCT03945318), Blisibimod 1001 

(ClinicalTrials.gov identifier: NCT02062684), Atacicept (ClinicalTrials.gov identifier: 1002 

NCT02808429), Sibeprenlimab (ClinicalTrials.gov identifier: 1003 

NCT05248646/NCT05248659), Telitacicept (ClinicalTrials.gov identifier: 1004 

NCT04905212), and Povetacicept (ClinicalTrials.gov identifier: NCT06564142) have 1005 

been demonstrated to have significant therapeutic effects in IgAN. Furthermore, our 1006 

previous randomized controlled trial has provided evidence of the therapeutic potential 1007 

of oral Hydroxychloroquine. Hydroxychloroquine, an inhibitor of mucosal and 1008 

intrarenal TLRs administered for six months, has shown remarkable effectiveness in 1009 

significantly reducing proteinuria levels in patients with IgAN [181]. It is still awaiting 1010 

international randomized controlled trials and long-term follow-up data in determining 1011 

its efficacy and safety in improving kidney outcomes. 1012 

6.2.4. Sodium–Glucose Transporter 2 Inhibition 1013 

Given that IgAN is a common cause of glomerular disease and CKD, large 1014 

numbers of patients with IgAN were included in the DAPA-CKD and EMPA-KIDNEY 1015 

trials of SGLT2 inhibitors in non-diabetic CKD. In these trials, SGLT2 inhibitor 1016 



treatment produced substantial benefits for IgAN patients, slowing kidney disease 1017 

progression and improving survival outcomes [182, 183]. SGLT2 inhibitors are thought 1018 

to exert nephroprotective effects through mechanisms such as tubuloglomerular 1019 

feedback-induced vasoconstriction of afferent arterioles and increased proximal tubular 1020 

pressure, both of which contribute to lowering glomerular capillary pressure and 1021 

reducing renal oxygen consumption [184]. A recent study suggests that SGLT2 1022 

inhibitors may regulate the gut microbiota, reducing the production of uremic toxins 1023 

and thereby exerting nephroprotective effects [185]. Another study has also confirmed 1024 

that SGLT2 inhibitors, empagliflozin, mitigates DN by modulating the gut microbiota, 1025 

leading to a reduction in LPS-producing bacteria and an increase in SCFA-producing 1026 

bacteria [186]. The renoprotective effect of SGLT2 inhibitors is beyond doubt, its 1027 

association with gut microbes in IgAN treatment is worthy of detailed exploration. 1028 

6.2.5. FMT  1029 

In recent times, there has been an increasing focus on FMT as a viable and 1030 

efficacious method to restore eubiosis in numerous illnesses. Initially sanctioned for 1031 

addressing Clostridium difficile infection, FMT is now being explored for a range of 1032 

gastrointestinal and non-gastrointestinal conditions [187]. FMT offers a distinct 1033 

advantage over probiotics, prebiotics, and synbiotics due to its capacity to confer 1034 

enduring benefits following a solitary intervention, with the option of repetitive 1035 

administrations based on individual assessments. Additionally, numerous studies have 1036 

documented a therapeutic effectiveness coupled with minimal side effects. Notably, two 1037 

case studies suggest that these individuals exhibited a notable decrease in 24-hour urine 1038 

protein levels over a six-month period post-treatment, alongside a progressive 1039 

augmentation in the diversity of their gut microbiota subsequent to FMT [188, 189]. 1040 

Another study indicates that after FMT, a decrease in the absolute count of serum B 1041 

cells was observed. Notably, changes in the relative abundance of Bacteroides 1042 

uniformis and Bacteroides ovatus showed a significant positive correlation with serum 1043 

B cell count changes, while the abundance change of Prevotella copri was significantly 1044 

negatively correlated with serum B cell counts [190]. Beyond transplanting a raw fecal 1045 

lysate, specific fecal components, such as certain miRNAs that regulate microbiota or 1046 



particular bacterial strains, may also be utilized as targeted treatment [191]. 1047 

 1048 

7. Conclusions and future perspectives 1049 

In this comprehensive review, we have summarized the observed alterations in the 1050 

gut microbiota and associated metabolic pathways in the context of IgAN. We have also 1051 

delved briefly into the underlying mechanisms driving these alterations and extensively 1052 

discussed the potential of the gut microbiome as a groundbreaking therapeutic target 1053 

for the treatment of IgAN. Over recent years, a wealth of research has elucidated the 1054 

profound impact of gut microbiota and its metabolites on the pathogenesis of IgAN. As 1055 

we navigate the future of IgAN research, it becomes increasingly evident that 1056 

microbiota-based diagnostics and therapeutics hold tremendous promise. 1057 

In moving the field forward, many vital challenges need to be addressed, and some 1058 

recommendations provided might be helpful (1) Investigating the causal link between 1059 

the gut microbiome and IgAN pathogenesis is crucial. Establishing strong evidence of 1060 

causality will deepen our comprehension and facilitate the development of precise 1061 

interventions. (2) Understanding the complex interplay between the gut and kidneys 1062 

requires a detailed exploration of the underlying mechanisms. It is crucial to pinpoint 1063 

specific microbial strains that significantly maintain mucosal integrity and produce Gd-1064 

IgA1. (3) Understanding the complex interplay between the gut and kidneys 1065 

necessitates a detailed exploration of the underlying mechanisms. To unravel this 1066 

intricate relationship, it is essential to pinpoint specific microbial strains responsible for 1067 

maintaining mucosal integrity and producing Gd-IgA1. (4) The advancement of 1068 

microbiota-based treatment strategies in IgAN relies heavily on developing novel 1069 

methodological tools. Targeted metabolomics, engineered microbial strains, and 1070 

bacteriophages are emerging as promising avenues in microbiome research, with the 1071 

capacity to transform the management of IgAN. (5) Personalized microbiota 1072 

modulation therapy by investigating a tailored approach in IgAN patients. 1073 

The dysregulation of gut microbiota is implicated in the pathogenesis of IgAN, 1074 

potentially triggering abnormal IgA production, renal inflammation, and functional 1075 

impairment. Modulating gut microbiota balance presents a novel therapeutic avenue for 1076 



IgAN, involving strategies like probiotics, FMT, and dietary modifications. Future 1077 

research will uncover the intricate link between gut microbiota and IgAN, fostering the 1078 

development of personalized treatment modalities. Emphasis in research and treatment 1079 

may shift towards multi-organ interventions, especially in systemic therapies targeting 1080 

gut microbiota, inflammation, and hemodynamics, potentially leading to substantial 1081 

improvements in long-term patient prognosis. 1082 
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Table 1. Altered gut microbiota compositions, and fecal and/or serum metabolite in IgA nephropathy. 1635 

Study Country 
IgAN 

/HCs (N/n) 
Methods 

Key findings 

gut microbiota fecal metabolites serum metabolites 

Increased Decreased Increased Decreased Increased Decreased 

Sui,  

2012 

[107] 

China 35 (23IgAN-A,12 

IgAN-B)/23 

Proton nuclear 

magnetic 

resonance 

spectroscopy 

 

 

 

Not assessed 

 

 

 

 

 

 

 

Not assessed 

 

phenylalanine, 

myo-Inositol, 

lactate, 

L6 lipids ( = CH-

CH2-CH = O), 

L5 lipids (-CH2-

C = O), 

L3 lipids (-CH2-

CH2-C = O) 

β-glucose, 

α-glucose, 

valine, 

tyrosine, 

phosphocholine, 

lysine, 

isoleucine, 

glycine, 

glutamine, 

glutamate, 

alanine, acetate, 

3-

hydroxybutyrate 

De Angelis, 

2014 

[96] 

Italy 

 

32 (16 NP, 16 P)/16 16S  (V1-V3)； 

GC-MS/SPME 

Firmicutes, 

Ruminococcaceae

, Lachnospiraceae, 

Eubacteriaceae, 

Streptococcaeae, 

Sutterellaceae, 

Escherichia sp. 

Bifidobacterium

, 

Clostridium, 

Enterococcus,  

Lactobacillus, 

Leuconostoc, 

Bacteroidetes,  

Prevotellaceae. 

FAA (Glu, Ala, Asp, Val, 

Leu, Pro), 

ethyl alcohol,  

2,6-octadien-1-ol 3,7 

dimethyl- (Z), 

1-octanol,  

4-methyl-phenol, 

phenol 4- (1,1,3,3- 

aldehydes, 

tridecanal,  

ketons 

Not assessed 



tetramethylbutyl) 

Dong,  

2020 

[89] 

China 44/33 16S  (V3- 

V4) 

Escherichia-

Shigella 

Roseburia, 

Clostridium, 

Fusobacterium 

 

Not assessed Not assessed 

Hu,  

2020 

[90] 

China 17/16 16S  (V3-V4) Escherichia-

Shigella, 

Eggerthella 

Coprococcus, 

Barnesiella, 

Prevotellaceae 

 

Not assessed Not assessed 

Zhong, 

 2020 

[82] 

China 52/25 16S  (V3- 

V4) 

Fusobacteria, 

Bacteroides, 

Escherichia-

Shigella 

Firmicutes,  

Actinobacteria,  

Blautia,  

Prevotella 9, 

Bifidobacterium 

 

 

Not assessed Not assessed 

Chai,  

2021 

[105] 

China 29/29 16S (V3-V4); 

GC/MS 

Actinobacteria, 

Eggerthella, 

Alloprevotella, 

Enterococcaceae, 

Streptococcus, 

Blautia 

Prevotellaceae, 

Alistipes, 

Lachnospira 

 

 

 

NS 

acetic acid,  

propionic 

acid,  

butyric acid, 

isobutyric 

acid， 

caproic acid 

Not assessed 

He, 2021 

[80] 

China 87/24; 

27/19 

16S  (V3- 

V4) 

Bacteroides Dialister, 

Prevotella 

 

Not assessed 

 

Not assessed 

Sugurmar,  

2021 

[192] 

Malaysia 36/12 16S (V3-V4) Fusobacteria, 

Epsilonproteobact

eria 

Euryarchaoeota, 

Methanobacteria 

 

Not assessed Not assessed 

Shah,  France 20/20 16S (V3-V4) Bacteroides, Prevotella9,  Not assessed 



2021 

[94] 

Escherichia-

Shigella 

Ruminococcace

ae 

Not assessed 

Wu,  

2021 

[102] 

China 15/30 16S (V3-V4);  

LC-MS/MS 

Blautia, 

Streptococcus, 

Enterococcus 

Faecalibacteriu

m,  

Bacteroides, 

Prevotella9, 

Dialister 

bilirubin, trimethoprim, 

phenylalanine, 

phosphatidylethanolamin

e (PE 

lyso 17:0) 

stearamide, 

cis-9,10-

epoxystearic 

acid etc. 

Not assessed 

Dong,  

2022 

[91] 

China 117/150 16S (V3-V4); 

LC-MS 

Proteobacteria,           

Actinobacteriota, 

Escherichia-

Shigella,  

Streptococcus, 

Bifidobacterium,  

Dorea,  

Roseburia,  

Collinsella 

Anaerostipes,  

Parasutterella, 

Fusicatenibacte,  

Blautia,  

Lachnospira,  

Bacteroides 

 

 

 

Not assessed 

myo-Inositol, 

(1H-Indol-3-yl)-

N-

methylmethanam

ine, catechol, 

pimelic acid, 

oxaloglutarate, 

tryptophan etc. 

 

folic acid, 

octadecanamide, 

l-tyrosine, beta-

Alanine, 

Cholesterol，etc. 

Tang,  

2022 

[95] 

China 35/20 16S (V3-V4) Escherichia-

Shigella, 

Bacteroides 

Actinobacteria, 

Bifidobacterium

,  

Blautia 

 

Not assessed 
Not assessed 

Zhao, 

2022 

[92] 

China 127/127 16S (V3-V4) Proteobacteria,  

Escherichia-

Shigella,  

Pseudomonas,  

Erysipelatoclostri

dim 

Lachnospira,  

Lachnospiraceae

, 

Fusicatenibacter

, 

Agathobacter,  

 

 

Not assessed 
Not assessed 



Romboutsia 

Wu,  

2022 

[106] 

China 15/30 16S (V3-V4); 

LC-MS/MS 

NS Bacteroidetes oligopeptides,  

polypeptides, 

phenylalanine, 

tryptophan, tyrosine, 

leukotriene B4,  

leukotriene D4.  

 

cycloleucin, 

3-

indolepropio

nic acid, 

palmitoleic 

acid,  

oleic acid,  

9-OxoODE 

citrulline,  

arginine,  

ornithine,  

indoxyl-sulfate, 

phenylacetylgluta

mine,  

indole,  

3-

hydroxyanthranil

ic acid,  

xanthurenic acid, 

kynurenine 

creatinine, 

guanidinosuccinic 

acid, 

putrescine,  

3-indolepropionic 

acid, 

indoleacrylic 

acid, anthranilic 

acid 

Tan,  

2022 

[101] 

China 35/25 16S  (V3-V4) Bacteroides  Bifidobacterium

, 

Prevotella 9 

 

Not assessed 

 

Not assessed 

Liang,  

2022 

[81] 

China 20/20 metagenomic 

sequencing 

Bacteroides,  

Flavonifractor, 

Bacteroides 

fragilis,  

Flavonifractor 

plautii, 

Ruminococcus 

gnavus, 

bacteroides 

vulgatus 

Alistipes,  

Prevotella,  

Faecalibacteriu

m, 

Ruminococcus, 

Alistipes 

putredinis, 

Faecalibacteriu

m prausnitzii, 

Prevotella copri 

 

 

 

 

Not assessed 
Not assessed 



Tang,  

2023 

[100] 

China 25/20 16S  (V3-V4) Proteobacteria, 

Fusobacteria, 

Bacteroides, 

Faecalibacterium, 

Ruminococcus, 

Escherichia-

Shigella. 

Bifidobacterium

,  

Blautia,  

Roseburia,  

Coprococcus 

 

 

 

Not assessed Not assessed 

Bao,  

2023 

[93] 

China 19/15 16S  (V3-V4) Escherichia-

Shigella, 

Bifidobacterium, 

Dorea 

Bacteroidetes,  

Lachnospira,  

Coprococcus,  

Sutterella. 

 

 

Not assessed 
Not assessed 

Cai, 

2023 

[193] 

China 260/174 16S  (V3-V4) NS Butyricicoccus, 

Coprococcus,  

Ruminococcus 

 

Not assessed Not assessed 

Jeon,  

2023 

[108] 

 Korea 20 (10NP, 10 P)/10 Proton nuclear 

magnetic 

resonance 

spectral 

Not assessed Not assessed Acetone, 

Glycerol,  

Glycine,  

Threonine,  

Valine,  

Formate,  

Betaine,  

N,N-Dimethylglycine. 

 

 

 

NS 
Not assessed 

Zhu,  

2024 

[99] 

China 48/31 16S (V3-V4) Escherichia-

Shigella, 

Clostridium 

 

NS 

 

Not assessed Not assessed 

Gao,  China 77/69 16S (V3-V4) Escherichia- Faecalibacterim,    



2024 

[98] 

Shigella, 

Bacteroides, 

Alistipes 

Prevotella Not assessed Not assessed 

Gleeson,  

2024 

[30] 

France 33/65 16S (V3-V4) Akkermansia 

muciniphila, 

Ruminococcus, 

Blautia 

Prevotella, 

Parabacteroides 
 

Not assessed Not assessed 

Yuan,  

2024 

[97] 

China 61/68 16S (V3-V4) Bacteroides,  

Escherichia-

Shigella,  

Parabacteroides 

 

Parasutterella,  

Dialister,  

Faecalibacteriu

m, 

Subdoligranulu

m 

 

 

Not assessed 
Not assessed 

1636 



Abbreviations: GC-MS/SPME: Gas-chromatography mass spectrometry-solid-phase microextraction; HC: healthy controls; IgAN-A: diseases of grades I-III based on renal 1637 

biopsies stained; IgAN-B: diseases of grades IV-V based on biopsies stained; LC-MS/MS: liquid chromatography-tandem mass spectrometry; NP: non-progressor; P: progressor. 1638 

NS: no significance. 1639 
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Table 2. Characterization of the gut microbiota in IgAN animal models 1655 

Study Country Model Key words Key findings 

McCarthy, 

2011 

[109] 

Canada BAFF-Tg 

mice 

Commensal flora, 

IgA-associated nephropathy 

 

Serum IgA from ASF-colonized BAFF-Tg mice bound specifically to Lactobacillus 

murinus isolated from these mice. 

After colonization of BAFF-Tg mice with ASF, the number of IgA+ B220- B cells were highest in 

the BAFF-Tg lamina propria compartment. 

Chemouny, 

2019 

[110] 

France α1KI-

CD89Tg 

mice 

Antibiotics, 

IgAN, 

Gut microbiome 

Antibiotic treatment efficiently depleted the fecal microbiota, impaired GALT architecture and 

impacted mouse IgA production. 

The antibiotic treatment markedly prevented hIgA1 mesangial deposition, glomerular 

inflammation and the development of proteinuria. 

Fecal bacterial load strongly correlated with critical clinical and pathophysiological features of 

IgAN such as proteinuria and hIgA1-mIgG complexes. 

Fukunaga,  

2019 

[114] 

Japan Grouped 

ddY mice 

Dietary lipid, 

Dietary protein, 

Gut microbiome 

Abundance levels of Desulfovibrionaceae sp., Oscillospira, and Bacteroides were high in mice 

fed a diet containing 20% milk casein and 17% beef tallow. 

Faecalibaculum rodentium- and Allobaculum stercoricanis-like bacteria were highly abundant in 

the mice fed 40% whole-egg powder.  

Fukunaga, 

2020 

[115] 

Japan Grouped 

ddY mice 

Beef tallow, 

Casein, 

Egg yolk, 

Gut microbiome 

L. murinus- and B. vulgatus-like bacteria were susceptible indigenous bacteria to egg yolks. 

Lachnospiraceae-like bacteria was susceptible indigenous bacteria to diet containing either 20% 

(w/w) milk casein and 17% beef tallow. 

Di Leo V, 

2021 

[112] 

France α1KI-

CD89Tg 

mice 

Gut microbiome, 

Rifaximin 

Rifaximin treatment decreased the urinary protein-to-creatinine ratio, serum levels of hIgA1-

sCD89 and mIgG-hIgA1 complexes, hIgA1 glomerular deposition, and CD11b+ cell infiltration.  

Rifaximin treatment decreased significantly BAFF, and TNF mRNA expression. 

Lauriero, 

2021 

France α1KI-

CD89Tg 

FMT, 

IgAN, 

The microbiota from P-pts was able to induce an increase of serum BAFF and galactose deficient-

IgA1 levels and a decrease of CD89 cell surface expression on blood CD11b+ cells which was 



[111] mice Gut microbiome associated with soluble CD89 and IgA1 mesangial deposits.  

The microbiota from HC-sbjs induced a decrease in albuminuria, increased CD11b+ cell surface 

CD89 expression and reduced expression of renal inflammatory chemokines. 

Kano, 

2021 

[194] 

Japan Grouped 

ddY mice 

Germ-free,  

IgAN,  

Aberrantly glycosylated IgA 

The germ-free IgAN-onset ddY mice nasally immunized with CpG-oligonucleotide showed 

aggravation of kidney injury with mesangial IgA deposition, whereas those that received fecal 

transplants did not develop IgAN.  

The germ-free IgAN-onset ddY mice did not develop IgAN, while they showed aggravation of 

kidney injury with mesangial IgA deposition after transfer to the specific pathogen-free state. 

Tan,  

2022  

[101] 

China W-IgAN 

mice 

 

Gut dysbiosis, 

IgAN model 

 

Both supplementation with probiotics mainly containing Bifidobacterium and their SCFA 

metabolites could attenuate the clinicopathological manifestations of IgAN by inhibiting the 

NLRP3/ASC/Caspase 1 signaling pathway. 

Currie, 

2022 

[195] 

Canada BAFF-Tg, 

HC-Tg, 

B×hC-Tg 

mice 

Cytokines, 

Immunoglobulins, 

Immunology 

Colonization of B×hC-Tg mice with Neisseria resulted in elevated levels of systemic Neisseria-

specific IgA. 

Neisseria-specific IgA-secreting cells were detected within the kidneys of these mice. 

Xie,  

2022 

[196] 

China α1KI-Tg 

mice 

IgA protease, 

Fc-fusion protein, 

IgAN 

Fc-AK183 was also able to remove chronic IgA and associated complement C3 deposits in the 

glomerulus. 

Gleeson, 

2024 

[30] 

 France α1KI-

CD89Tg 

mice 

Akkermansia muciniphila, 

IgAN 

Mice expressing human IgA1 and the human Fc α receptor I (α1KI-CD89tg) that underwent 

intestinal colonization by Akkermansia muciniphila developed an aggravated IgAN phenotype. 

Zhu, 2024 

[99] 

China C57BL/6J  FMT,  

IgAN 

mice colonized with gut microbiota from IgAN patients mimicked the IgAN phenotype with the 

activation of TLR4/MyD88/nuclear factor-κB pathway and B-cell stimulators in the intestine. 

Abbreviations: ASF: altered Schaedler flora; BAFF: B cell activation factor of the TNF family; BAFF-Tg mice: BAFF overexpressing transgenic mice; B×hC-Tg: BAFF× hC-1656 

Tg progeny; FMT: fecal microbiota transplantation; GALT: gut-associated lymphoid tissue; HC-Tg: human CEACAM-1 transgenic mice; HC-sbjs: healthy controls; MyD88: 1657 

Myeloid differentiation factor 88; NALT: nasal-associated lymphoid tissue; NP-pts: non-progressor; P-pts: progressor; TLR4: toll-like receptor 4; W-IgAN mice: with bovine 1658 



serum albumin (BSA), tetrachloromethane, castor oil, and lipopolysaccharide (LPS) for 8 consecutive weeks. α1KI-CD89Tg mice: humanized mouse model of IgAN.1659 



Figure legends: 1660 

1661 

Figure 1. Illustration of Gut-kidney axis mediated specific organ cross-talk in 1662 

Chronic Kidney Disease. Communication between the gut microbiota and its host in 1663 

chronic kidney disease takes place across the multiorgan axis, with metabolites, 1664 

interleukins, hormones, and toxins playing pivotal roles in mediating this interaction. 1665 

Created with BioRender.com. 1666 



1667 

Figure 2. The potential mechanism of Gd-IgA1 production in a multi-hit model of 1668 

IgA nephropathy. Microbial colonization represents a conditioning exposure that 1669 

directs functional maturation of host innate and adaptive immunity through the actions 1670 

of metabolites, foreign molecular patterns and antigens. Microbiota-derived 1671 

metabolites trigger chemosensory receptors. For example, activation of dopamine 1672 

receptor D2 (DRD2) in the intestinal epithelium by gut microbial metabolism of L-1673 

tryptophan (L-Trp), particularly through the production of indole derivatives, confers 1674 

protection against Citrobacter rodentium, a mouse model for enterohemorrhagic 1675 

Escherichia coli infection [197]. Microbial bile acid (BA) metabolites regulate gut 1676 

RORγ+ regulatory T cell homeostasis and ameliorate host immunologic homeostasis 1677 

through BA nuclear receptors (NR) in mice [198]. Microbiome-derived antigens and 1678 

immunomodulatory signals have also documented the conditioning of adaptive 1679 

immunity. For instance, in the T cell receptor (TCR) transgenic model that was specific 1680 

for Bacteroidetes spp., adoptive transfer of transgenic T cells suppressed colitis induced 1681 

by co-transfer with naive CD4+ T cells, and this effect was recognized by CD4+ 1682 

intraepithelial lymphocytes [199]. Additionally, the microbiome also conditions the 1683 



innate immune system via conserved molecular patterns directly recognized by pattern 1684 

recognition receptors. Firmicutes-derived DL-endopeptidase protects mice from colitis 1685 

through activation of nucleotide oligomerization domain 2 (NOD2) [200]. An 1686 

unhealthy lifestyle due to increased and sustained stress, infection, or other factors can 1687 

cause gut dysbiosis. The Gd-IgA1 may be produced and regulated by gut microbiome 1688 

via crosstalk of the T-cell-dependent and/or the T-cell-independent pathway in IgA 1689 

nephropathy. Abbreviations: AhR: Aryl hydrocarbon receptor; APRIL: a proliferation-1690 

inducing ligand; BAFF: B cell activation factor of the TNF family; BCR:B cell receptor; 1691 

DC: dendritic cell; Gd-IgA1: galactose-deficient IgA1; GALT: gut-associated 1692 

lymphoid tissues; NALT: nasal-associated lymphoid tissue; PAMPs: pathogen-1693 

associated molecular patterns; PRRs: pattern recognition receptors; RLR: rig-I-like 1694 

receptor; SCFAs: short-chain fatty acids; TLR: toll-like receptor; Tregs: regulatory T 1695 

cells; Tfh: t follicular helper. Created with BioRender.com. 1696 



1697 

Figure 3. Timeline of gut microbiota and/or metabolomics studies in IgA 1698 

nephropathy and experimental animal models. Abbreviations: ALB: albumin; 1699 

BAFF: B cell activation factor of the TNF family; BAFF-Tg mice: BAFF 1700 

overexpressing transgenic mice; eGFR: estimated glomerular filtration rate; uACR: 1701 

urinary albumin-to-creatinine ratio; CKD: chronic kidney disease; FMT: fecal 1702 

microbiota transplantation; Gd-IgA1: galactose-deficient IgA1; HCs: healthy controls; 1703 

IgAN: IgA nephropathy; MN: Membranous nephropathy; NALT: nasal-associated 1704 



lymphoid tissue; SCFAs: short-chain fatty acids; Scr: serum creatinine; TLR4: toll-1705 

like receptor 4. Created with BioRender.com. 1706 
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1719 

Figure 4. New prospective treatments targeting the intestinal mucosal immune 1720 

system in IgA nephropathy. Abbreviations: FMT：fecal microbiota transplantation; 1721 

PRRs: pattern recognition receptors; SGLT2: sodium–glucose co-transporter 2; SNPs: 1722 

single nucleotide polymorphisms. Created with BioRender.com.1723 
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