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Abstract: Skin injuries caused by physical, pathological, and chemical factors not

only compromise appearance and barrier function but can also lead to life-threatening

microbial infections, posing significant challenges for patients and healthcare systems.

Artificial intelligence (AI) technology has demonstrated substantial advantages in

processing and analyzing image information. Recently, AI-based methods and

algorithms, including machine learning, deep learning, and neural networks, have

been extensively explored in wound care and research, providing effective clinical

decision support for wound diagnosis, treatment, prognosis, and rehabilitation.

However, challenges remain in achieving a closed-loop care system for the

comprehensive application of AI in wound management, encompassing wound

diagnosis, monitoring, and treatment. This review comprehensively summarizes

recent advancements in AI applications in wound repair. Specifically, it discusses AI’s

role in injury type classification, wound measurement (including area and depth),

wound tissue type classification, wound monitoring and prediction, and personalized

treatment. Additionally, the review addresses the challenges and limitations AI faces

in wound management. Finally, recommendations for the application of AI in wound

repair are proposed, along with an outlook on future research directions, aiming to

provide scientific evidence and technological support for further advancements in

AI-driven wound repair theranostics.

Keywords: Skin injuries, Artificial intelligence, Deep learning, Wound diagnosis,

Wound repair



3

Introduction

As the body’s largest organ, the skin is critical in protecting internal organs and

tissues from external injuries, resisting foreign microorganisms, regulating

temperature, and participating in immune responses [1-3]. Injuries caused by physical,

chemical, and disease-related factors can not only disrupt skin appearance and barrier

function but also involve micro-level damage to local blood vessels and cells [4]. In

the United States, over 11 million people are affected by acute wounds annually, and

more than 6 million suffer from chronic wounds, resulting in wound care costs

exceeding $30 billion per year [5, 6]. Severe skin injuries can lead to infection,

amputation, systemic complications, and even life-threatening, posing a significant

burden on healthcare systems and causing substantial economic and psychological

stress on society [7, 8]. Therefore, promoting wound repair and enhancing healing

quality is clinically significant for reducing disability and mortality, especially in

minimizing scar formation.

Current wound treatment methods, including dressing changes, skin grafting,

artificial dermis, wound dressings, negative pressure therapy, and the administration

of growth factors and cytokines, are limited by low overall efficacy, single

functionality, and suboptimal outcomes [9, 10]. These approaches also face numerous

challenges, such as poor healing of chronic wounds, high infection risk, lack of

real-time and accurate assessment, insufficient personalized care, limited medical

resources, and significant economic burdens. Wound repair involves multiple

interconnected stages, including hemostasis, inflammation, angiogenesis, dermal

tissue regeneration, and remodeling. Due to the complexity and dynamic nature of

wound healing processes, predicting the precise healing trajectory and effective

clinical interventions remains challenging [11-13]. Accurate wound diagnosis,

including injury type and severity, aids in monitoring and analyzing wound conditions,

and informing clinical decisions. Building upon this foundation, personalized

treatment strategies that harness the body’s self-repair capabilities can effectively

promote wound healing and skin regeneration.

Artificial intelligence (AI) is a cutting-edge technological science used to simulate,

extend, and enhance human intelligence [14]. Currently, various AI technologies have

been developed, including machine learning (ML), neural networks (NN), deep

learning (DL), support vector machine (SVM), and electronic health records (EHR).
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AI excels in analyzing, presenting, understanding, and interpreting complex medical

data, fundamentally transforming and reshaping global healthcare systems [15, 16].

For example, AI can integrate medical images such as magnetic resonance imaging,

CT scans, and 3D ultrasound reconstructions for automated diagnosis, significantly

improving diagnostic efficiency and accuracy while optimizing healthcare resources.

Moreover, AI techniques can efficiently process large amounts of unstructured data,

extract crucial data, learn iteratively to accurately identify complex conditions, and

provide recommendations for personalized treatment [17, 18].

Traditional wound diagnosis and treatment require skilled and experienced

clinical physicians, and the process can be time-consuming with the possibility of

diagnostic errors. Currently, AI can leverage large datasets, including various textual

and image data, to efficiently assist physicians in wound diagnosis [19]. Subsequently,

it aids in formulating treatment plans and optimizing wound management, leading to

improved treatment outcomes and patient prognosis [20]. AI not only supports clinical

doctors but also provides less experienced training for nursing teams with limited

skills, enabling remote healthcare and enhancing overall service quality. While

AI-based methods offer decision support for wound care, the current focus is mainly

on diagnosis and measurement techniques, with limited attention to treatment

outcomes and strategies [19, 21]. Challenges remain in achieving a closed-loop care

system for the comprehensive application of AI in wound management, which should

encompass wound diagnosis, monitoring, and treatment. Comprehensive reviews in

this area are currently lacking. Hence, this review provides a comprehensive overview

of recent advancements in AI applications in wound repair theranostics. It covers the

current use of AI in injury type classification, wound area and depth measurement,

wound tissue type classification, wound monitoring and prediction, and personalized

treatment strategy development (Figure 1). Additionally, the article discusses the

limitations and future potential of AI in wound management. Through in-depth

analysis, this review not only demonstrates the practicality and efficiency of AI in

optimizing wound diagnosis and treatment but also highlights the challenges and

potential solutions. It provides scientific evidence and technological support to drive

innovation and clinical practice in this field.

AI Diagnose Wound Type Classification
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Skin injuries can be classified based on various criteria, including cause, location,

size, depth, exposure to the external environment, severity, healing time, and potential

infection risk. Clinically, common wound types include diabetic foot ulcers (DFU),

arterial ulcers (AU), lower extremity venous ulcers (VU), pressure ulcers (PU), and

surgical wounds [22]. Different types of injuries require different treatment

approaches, making the development of high-precision classification models and

accurate wound classification crucial for diagnosis, treatment planning, and prognosis.

Researchers have proposed various innovative AI models to address this need. CNN

in DL consists of convolutional layers, pooling layers, and fully connected layers,

which can automatically extract local features of data, mainly focusing on extracting

basic features such as edges and textures of images. For instance, as a novel

convolutional neural network (CNN) architecture, DFUNet is often used to classify

foot ulcers in diabetes. The framework combines the traditional convolution layer and

parallel convolution layer to better capture feature differences in images and

effectively identify different features between healthy skin and diabetes foot ulcers,

such as edge, intensity, color changes, etc. Even on small datasets, DFUNet can

accurately classify DFU and normal skin, with 10-fold cross-validation and an area

under the curve (AUC) of 0.961 [23]. In addition, DFUNet can process input data

more accurately and efficiently, reducing processing time. In addition, DFUNet can

process input data more accurately and efficiently, reducing processing time. Machine

learning algorithms can efficiently process massive amounts of data and automatically

extract valuable features from the data, with accurate prediction and classification

capabilities. Optimizing the error between predicted and observed results, helps

computers learn all complex nonlinear interactions between variables, thereby

achieving the goal of automatically optimizing the error between predicted and actual

results. As a machine learning algorithm, SVM has the advantages of strong

generalization ability, suitability for high-dimensional data, and insensitivity to data

loss. Based on this, Wang et al. developed an SVM algorithm based on image color

channels to determine chronic wound areas, which can analyze images on

smartphones. This algorithm uses an SVM to determine wound boundaries and

differentiate between healthy tissue and wound areas based on color and wavelet

features, with an average sensitivity of 73.3% and specificity of 94.6% [24]. As

another branch of ML, DL can automatically extract features from raw data, with
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excellent complex perception and task understanding, and effective processing of

high-dimensional data. It adapts to different tasks and dataset sizes by increasing the

number of layers, and neurons, or changing the network architecture. Other studies

have successfully used CNN to classify DFU and VU [25]. Kim et al. [26] developed

a high-precision classification model using ML algorithms, corresponding to existing

injury severity scoring systems. This model can quickly and accurately triage patients

at large-scale disaster sites via wearable devices, even in the absence of medical

personnel. Sarp et al. used interpretable AI tools X-AI-cwc, transfer learning, and data

augmentation techniques with the VGG16 network as the classification model,

successfully categorizing chronic wounds into four types. The average F1 score was

0.76, with prediction accuracies of 95.36% for DFU, 100% for lymphatic injuries,

100% for pressure injuries, and 99.2% for surgical wounds[27]. Another study

developed an interpretable AI model using 2,957 images from the Singapore

Advanced Institutes Image Registration Center, which analyzed vascular images in

Asian populations and classified neuroischemic ulcers (NIU), surgical site infections,

venous leg ulcers (VLU), and PU, achieving an average classification accuracy of

95.9% [28]. Table 1 provides a summary of wound-type classifications.

Currently, hybrid models based on DL and transfer learning perform well in

chronic wound classification and interpretation tasks. For example, SVM has the

drawbacks of high computational complexity, sensitivity to parameters, and

unsuitability for large-scale data. Transfer learning can achieve high accuracy with

limited data and shorten training time by leveraging existing pre-trained models. The

combination of transfer learning and DL can effectively address the shortcomings of

SVM, enabling it to adapt to new task requirements more quickly, enhance the

model's generalization ability, and reduce the risk of overfitting. AI technology

overcomes the limitations of visual inspection by the human eye in distinguishing

tissue types, and high-performance automated classifiers can assist medical personnel

in accurately determining wound types. However, collecting more data and

developing new methods, further improve feedback between AI and end users can

guide clinicians and caregivers in making joint decisions, resulting in more accurate

predictive insights and improved classification performance.

AI-Assisted Wound Measurement
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The geometric shape and appearance of wounds contain important information

about their cause, severity, duration, status changes, and healing expectations [29].

Wound measurement (including size, area, or volume) is essential for diagnosis,

treatment planning, and prognosis prediction, playing a crucial role in determining the

healing trajectory of wounds. Monitoring the reduction in wound area or volume, and

the growth of granulation/epithelial tissue, are key indicators of wound healing and

treatment effectiveness [30]. However, many clinicians still face challenges in

ensuring consistency and accuracy in measurements. Traditional wound assessment

relies on visual elements (such as erythema, granulation tissue (GT), and wound

exudate evaluation) and accurate measurement methods using digital cameras, paper

rulers, and depth probes to calculate wound area and volume [29, 31]. AI has been

widely applied in medical image segmentation due to its capabilities in denoising,

contrast enhancement, and edge detection. Commonly used detection models include

You Only Look Once (YOLO), single shot multibox detector, and regions of interest

(ROI)-CNN [32]; and popular classification models include YOLO, GoogLeNet,

AlexNet, ResNet, and VGG [33]. Studies have shown that the application of

segmentation and outlier removal techniques can improve the classification accuracy

of DL in distinguishing burn areas from surrounding healthy skin [34].

Assessing wound area and depth is fundamental to evaluating the extent of skin

injuries and is critical for determining clinical treatment strategies. Currently, rapid

and portable computer-aided diagnosis (CAD) tools and laser Doppler imaging

provide automated assistance for burn assessment, but their high maintenance costs

limit widespread use in hospitals [35]. In contrast, DL imaging systems based on

photography and spectroscopy offer more accessible solutions. Combined with DL

algorithms (such as CNN and variational autoencoders), these systems can support

clinicians in wound assessment and inform clinical treatment [36, 37]. In summary,

AI-enhanced wound measurement methods provide clinicians with more accurate and

consistent assessment tools. This not only improves the accuracy of diagnosis and

treatment but also better monitors the healing process, optimizing treatment strategies

and enhancing patient outcomes.

AI measures wound area
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Accurate assessment of wound area is crucial for clinical treatment, particularly

in burn cases where incorrect area evaluation can lead to improper fluid resuscitation,

increasing the risks of fluid overload, shock, renal failure, and compartment syndrome

[38]. High-quality imaging is the basis of wound measurement [31]. Digital wound

measurement systems (DWMS) demonstrate high accuracy in challenging scenarios

involving dark skin tones, indistinct wound edges, irregular shapes, unhealthy tissue,

and NT [39]. Three-dimensional measurement systems (3D-DWMS) have

demonstrated reliability in two-dimensional area analysis, they have not yet met

clinical standards for three-dimensional depth and volume analysis [40, 41]. Sheng et

al. [42] improved accuracy in burn area assessment by using three-dimensional

reconstruction data combined with wound images, surpassing traditional geometric

area calculation methods. As a type of DL, deep convolutional neural networks

(DCNN) automatically learns object features in images and utilizes translation

invariance and local perception characteristics to improve the effectiveness of local

features, which is of great significance for complex burns. Based on this, researchers

have developed a DCNN architecture for automatic wound and tissue segmentation,

combined with diverse datasets, which can effectively overcome the limitations of

traditional burn area assessment methods. A study proposed a DL-based method for

burn wound detection, segmentation, and TBSA% calculation [43]. Researchers

trained U-Net and MASK R-CNN models using annotated burn wound images and

healthy images. For burn wound image segmentation, the MASK R-CNN model

combined with ResNet101 performed the best, achieving a Dice coefficient (DC) of

0.9496, while the U-Net combined with the ResNet101 model had a DC of 0.8545.

Another study investigated the effectiveness of CNN trained on datasets for

segmenting DFU and VLU. Under supervised learning, CNN based on egNet,

LinkNet, U-Net, and Unet-VGG16 algorithms was trained using a dataset of sacral

PU. The results showed that the CNN based on U-Net effectively segmented the

wounds with the best performance and highest speed, achieving an AUC accuracy of

0.997, specificity of 0.943, and sensitivity of 0.993 [44]. Further research involved

preprocessing input images to eliminate artifacts, followed by generating probability

maps through CNN and finally extracting wound regions from the probability maps to

address false positives [45].
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The diversity of wound characteristics and the ambiguity of wound boundaries

pose significant challenges in wound segmentation and assessment. To address this

issue, Liu et al. [46] proposed a deep cross framework (WoundSeg) that includes data

augmentation, segmentation networks, and post-processing to achieve automatic

localization and segmentation of wound areas. This framework combines the complex

feature extraction ability of DNN with the efficient polynomial relationship mining

ability of cross networks to comprehensively understand data. Under five-fold

cross-validation, WoundSeg achieved accuracy, sensitivity, precision, mean

intersection over union (IoU), and DSC of 98%, 90%, 97%, 84.6%, and 91.66%,

respectively. Additionally, a novel composite wound segmentation model combining

traditional manual annotation with DL was proposed. This model integrates

pre-background removal images with a deep neural network, achieving precise

segmentation of wounds under semantic correction [47]. With the excellent instance

capability of MASK R-CNN, Munoz et al. achieved precise segmentation of images

of DFU patients to evaluate wound healing during Heberprot-P treatment. By

incorporating transfer learning, the proposed model's segmentation accuracy ranged

from 93.90% to 98.01% [48]. Jiao et al. combined a multi-scale CNN and a regional

proposal network to improve the classification function of fully CNN instance

segmentation, resulting in a burn wound segmentation framework [49]. They

evaluated three backbone networks: Residual Network-101 with Atrous Convolution

in Feature Pyramid Network (R101FA), Residual Network-101 with Atrous

Convolution (R101A), and Inception V2-Residual Network with Atrous Convolution,

finding that R101FA had the highest accuracy (84.51%) and performed best in

superficial, partial-thickness, and full-thickness burn segmentation. Recent studies

have applied DCNN image segmentation algorithms, which involve inputting feature

maps from standard convolution layers into convolution layers and mapping them to

output feature maps via convolution kernels. Comparative analysis with traditional

fuzzy C-means and regional convolutional neural network (RCNN) models showed

that the DCNN model demonstrated higher accuracy in image segmentation tasks,

significantly enhancing segmentation precision [50].

With the rapid development of AI technology and the widespread use of mobile

devices such as smartphones and smartwatches, treatment methods in the healthcare

field have become increasingly efficient. The integration of precise pattern
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recognition technology with cameras built into smartphones and tablets has

significantly advanced the development of remote wound area measurement and

assessment[31]. A mobile device-based fully automated wound segmentation system,

combining DL MobileNetsV2 with labeled datasets, achieved wound segmentation

from natural images. This model features a simple framework and low computational

requirements, enabling it to run on mobile devices, with a DC reaching 94% [51].

Furthermore, researchers developed the AutoTrace model, a DCNN structure runnable

on mobile devices, enabling precise and objective calculation and prediction of

wounds and tissues, with average IoU reaching 0.8644 and 0.7192, respectively [52].

To achieve high-precision data analysis with limited data, Rania et al. [53] evaluated

the accuracy of three DL models (U-Net, V-Net, and Seg Net models) in segmenting

DFU areas on mobile clients. The U-Net model performed well in this task, with a

maximum accuracy of 94.96%, IoU of 94.86%, and DC of 97.25%. These studies

indicate that mobile terminals are ideal media for wound image acquisition and data

transmission, with broad application prospects [54]. Additionally, a mobile device

wound area measurement method relying on a multi-step process has been proposed,

including steps such as image capture, grayscale conversion, blur processing,

threshold segmentation, wound recognition, and expansion and erosion of wound

areas, effectively enhancing measurement accuracy. By employing DL models

supported by the OpenCV framework (such as U-Net, PSPNet, DeeplabV3+, and

MASK R-CNN), this method demonstrates outstanding performance in tasks such as

comprehensive wound segmentation, palm segmentation, and deep burn segmentation,

with accuracies reaching 0.90767, 0.98987, and 0.90152, respectively [55]. Using

mobile applications such as Burn Med, CARES4WOUNDS (C4W), Swift, and

Wound Aide for burn area prediction and wound size measurement has shown high

reliability and accuracy information feedback between devices and users, significantly

improving measurement speed and reducing evaluation time [56-60]. Research has

integrated FLIR™ infrared cameras with the Swift mobile application, providing skin

temperature readings equivalent to clinical reference thermometers, enabling the Swift

mobile application to have the advantage of a non-contact, user-friendly wound

measurement tool. This allows clinical doctors to image, measure, and track wound

size and temperature from one visit to the next, suitable for home monitoring by

patients and their caregivers [61]. For chronic wounds, Chan et al. [62] utilized the
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C4W mobile application to monitor the recovery process of DFU and compared it

with traditional measurement methods to evaluate its measurement accuracy in terms

of length, width, and area. The system showed reliability in measuring wound length,

width, and area of DFU wounds in 8 patients, with reliability scores of 0.947, 0.923,

and 0.965, respectively. Table 2 provides a summary of wound area measurement.

Although many current technologies primarily focus on wound segmentation to

aid diagnosis, achieving a comprehensive evaluation still necessitates establishing

labeled datasets for wound depth and developing dedicated assessment frameworks

for more thorough wound analysis and management. One of the key challenges for

future research is to enhance the versatility of models to adapt to a wider range of

wound types and clinical scenarios, thus enabling more comprehensive and precise

wound assessment. In conclusion, the application of DL and other advanced

technologies in wound segmentation and analysis provides clinicians with accurate,

rapid, and automated methods for wound assessment. The development and

refinement of these technologies will provide stronger support for wound treatment,

facilitate patient recovery, and improve medical efficiency. With ongoing

technological advancements, the prospects for applications in remote healthcare and

self-monitoring will be even broader in the future.

AI measures wound depth

Currently, assessing wound depth is not only a crucial step in evaluating the

severity of injuries but also forms the basis for devising clinical treatment plans.

Inaccurate burn assessments can lead to improper wound management, often resulting

in delayed healing or unnecessary surgeries [63]. Differences in wound color and

texture reflect varying degrees of dermal capillary damage and serve as the primary

basis for diagnosing burn depth. Although clinical assessment remains a widely

accepted method, the lack of timely and accurate early diagnosis can lead to

inappropriate treatment and affect prognosis. Therefore, using image analysis

technology to assist in diagnosing burn depth has significant theoretical and practical

value [64]. Although a large number of AI algorithms have been developed and

validated for wound image analysis, outliers can lead to a decrease in accuracy,

especially when training models. The SVM and k-nearest neighbor (KNN)

classification methods based on supervised learning algorithms can separate data



12

points of different categories as much as possible to remove outliers. Based on this, Li

et al. [65] trained multiple burn classification models using SVM and k-nearest

neighbor (KNN) classification methods, and developed a multi-stage method based on

Z-test and univariate analysis to improve the classification accuracy of deep injuries,

wound beds, and partial injuries by removing outliers. Under 10-fold cross-validation,

the accuracy reached 76%. In another study, researchers addressed the shortage of

specific scene images by integrating transfer learning into a convolutional neural

network-based ResNet50 model, achieving a diagnostic accuracy of 80% for three

burn types (superficial, intermediate, and deep) [66]. To address color factors in CAD

image analysis, Acha et al. combined psychophysics with multidimensional scaling

(MDS) analysis to enhance burn depth judgment. By leveraging its powerful

visualization capabilities for complex high-dimensional data, MDS analysis

outperforms SVM in terms of specificity and positive predictive values, reaching 0.94

and 0.94, respectively [64]. Furthermore, AI burns diagnostic systems based on

multimodalities such as ultrasound and RGB images have been developed, with

texture features provided by ultrasound improving the accuracy of depth classifiers to

80% [67]. The U-Net CNN is capable of integrating low-level detail features with

high-level semantic features, enabling precise segmentation of target areas.

Researchers combined this model with a high-performance polarized optical camera

to accurately assess wound depth. The findings indicate that the accuracy of this

research in diagnosing pediatric burns is nearly 97% [68].

Cirillo et al. combined DCNN with Tivi cameras for nontemporal evaluation and

prediction of wounds. The ResNet-101 model achieved average, minimum, and

maximum accuracies of 81.66%, 72.06%, and 88.06%, respectively, in 10-fold

cross-validation. This demonstrates that CoHI outperforms deep CNN in wound

recognition accuracy, achieving 90.54% accuracy, 74.35% sensitivity, and 94.25%

specificity across different burn depths [35]. In traditional wound image processing

and analysis, multi-parameter and high-dimensional methods are often used to achieve

high accuracy, which brings difficulties to processing complex images. The VGG-16

network based on DCNN can effectively extract local features of images while

reducing the number of parameters. In addition, using pooling layers to maintain the

main features of the image reduces data dimensionality, computation, and parameter

count. Based on this, Despo et al. used an improved fully convolutional network
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(FCN) DL method based on the VGG-16 network for burn classification and

developed an end-to-end DL model to evaluate specific burn wound features. The

model was trained on a new dataset containing four types of wound images and

achieved accurate classification. The binary classification accuracy was as high as

96.4%, with an average of 94.28%, and the ternary classification accuracy was as high

as 91.9% and 87.7% [69]. Table 3 provides a summary of wound depth measurement.

AI technology shows promise in automatically predicting burn depth, and

integrating image acquisition with DL algorithms can significantly improve diagnostic

accuracy. However, the current methods achieve an accuracy of only about 90%,

indicating the need to expand datasets, select appropriate imaging modalities, and

optimize algorithms to further enhance accuracy [70, 71]. In summary, accurate

assessment of burn depth remains a critical and challenging aspect of injury

evaluation. Despite progress in burn depth detection, the irregular shapes and

significant color variations of chronic wounds, along with the similar appearance of

wounds with different depths and tissue compositions, suggest that these technologies

alone may not be sufficient for precise evaluation. Automated and objective

diagnostic methods are the ideal widely accepted approach, but the clinical experience

and expertise of physicians are still required.

AI Diagnose Wound Tissue Type Classification

The composition of tissue types within a wound (epithelial tissue (ET), GT,

slough, necrotic tissue (NT), and eschar) is a crucial indicator of the healing process.

Accurate estimation of tissue components allows clinicians to select appropriate

dressings, identify wounds at risk of non-healing, refer patients to specialists promptly,

tailor treatment according to the patient's condition, and optimize wound care and

healing outcomes. High-performance automatic classifiers can assist or augment

clinicians in

classifying wound tissue types, especially in resource-limited settings [72, 73]. The

application of AI in image recognition offers an effective solution for automatically

classifying wound tissues [74]. However, automatic wound classification is affected
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by environmental noise, heterogeneity, and inaccuracy in image capture. To this end,

Veredas et al. [75] utilized a mean shift process combined with region-growing

methods

to effectively segment pressure ulcer regions and extract color and texture features.

Using a hybrid method based on neural networks and Bayesian classifiers, their

sensitivity to wounds and NT reached 78.7% and 86.3%, respectively. Zahia et al. [76]

proposed a method using CNN for tissue analysis of pressure ulcer images. They

extracted ROI from the raw wound images, removed noise, and extracted 5X5 pixel

patches from each ROI for precise classification. This method achieved a

classification accuracy of 92.01% for different tissue types such as GT, slough, and

NT. In further research, Nejati et al. [77] divided chronic wound images into nXn

patches and fed them into a deep neural networks (DNN) to extract features and train

an SVM classifier. This approach achieved an accuracy of 86.4% in classifying seven

tissue types (NT, slough, healthy GT, unhealthy GT, hypergranulation, infected, and

epithelialized). In contrast, recent studies have proposed an automated wound

assessment method by combining automatic color correction with DL models, such as

variants of EfficientNet and MobileNetV2 integrated with U-Net architecture. This

method effectively compares images under different lighting, distance, and camera

conditions, excelling in segmenting wound areas and GT but still requiring

improvements in ET and NT segmentation [78].

AI techniques, utilizing a multi-view strategy and superpixel FCN methods, have

significantly enhanced the efficiency of wound tissue classification [79]. Currently,

image enhancement strategies have been used to improve the accuracy of tissue

classification in chronic wounds[80]. Niri et al. [81] introduced a superpixel

segmentation technique using linear iterative clustering (LIC combined with

five-dimensional color (R, G, B, X, Y) and image plane space. By utilizing LIC with

its powerful pixel segmentation and tight boundary fitting capabilities, fast and

effective image segmentation can be achieved. The researchers inputted the above

results into FCN Net based on VGG16 (including FCN-32, FCN-16, and FCN-8) and

successfully segmented healthy skin and chronic wound areas, improving the

accuracy of tissue classification and DC to 92.68% and 75.74%, respectively. Goyal et

al. [82] employed superpixel color descriptions to obtain ROIs and inputted them into
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an integrated CNN model based on InceptionV3, ResNet50, and InceptionResNetV,

achieving classification accuracies of 90% and 73% for ischemic and IT, respectively.

Additionally, researchers have developed a computer-aided tissue classification

scheme for chronic wound assessment using image processing and DL [83]. In this

scheme, wound images are converted from the original RGB to HIS, and a fuzzy

divergence thresholding method is used for region segmentation to reduce edge

interference. The study found that using an SVM with a cubic polynomial kernel

could accurately classify GT, NT, and slough based on color and texture features,

achieving an accuracy of 86.3%.

Using an app for remote wound tissue classification can help patients monitor

wound dynamics in real-time, alleviating anxiety during home treatment. In

telemedicine, researchers have developed a mobile wound capture system that uses

smart device cameras to collect wound images. A new image database called

“Complex Wound DB” has been designed to classify complex wounds into five

categories: non-wound area, GT, fibrinous tissue, dry necrosis, and hematoma.

Although consisting of only 27 images annotated by four health professionals, this

dataset is publicly available [84]. Currently, Shenoy et al. [85] have developed a

mobile application named Deep-wound based on a multi-label CNN ensemble that

can classify wound images, facilitating daily wound care. Moreover, remote

automated wound tissue classification methods will provide valuable advice to

doctors, aiding in more comprehensive wound assessment and more precise treatment

planning. Table 4 provides a summary of wound tissue type classification.

Notably, a study using a U-Net architecture and the DL toolbox in MATLAB

2019a classified HE-stained images of mouse wound sections into GT, the epidermis,

dermis, muscle, and background with accuracies exceeding 90%. However,

classification accuracies for scabs and hair follicles were slightly lower [86].

Currently, wound tissue classification relies on analyzing features of each pixel or

groups of pixels (superpixels) in the image and assigning them to different tissue

types (e.g., GT, slough, necrosis). This method can address critical diagnostic issues.

However, the high similarity between wound tissues, particularly between GT and

infected tissues (IT), necessitates optimizing multi-view strategies and superpixel

FCN methods. Building on this, combining surface wound images with pathological

sections can further enhance identification accuracy.
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AI Monitor and Predict of Wound Healing

Predicting wound healing trajectories is particularly challenging but is crucial for

achieving wound resolution [87]. Predicting wound healing helps physicians select the

most appropriate treatment plans, and enhances the efficiency and effectiveness of

wound care. By automatically learning from and monitoring large volumes of clinical

records, AI enables precise wound measurements from specific data sources and uses

diagnostic data to predict wound healing trajectories [88-90]. Furthermore, predicting

wound healing times helps healthcare providers plan treatment strategies, set realistic

patient expectations, and potentially improve outcomes while reducing costs.

AI monitors cell behavior

Wound healing arises from the coordinated actions of fibroblasts and epidermal

cells, with cellular behavior mirroring the state of tissue repair. Simulating these

behaviors enables monitoring of wound healing progress. A multi-agent heuristic

technique, simulated fibroblast optimization, has been proposed to simulate fibroblast

migration and systemic behavior, encompassing migration to connective tissue,

collagen synthesis in the extracellular matrix, and new tissue formation during healing

[91]. While manual cell tracking techniques effectively determine cell trajectories and

wound closure rates, they are time-consuming and prone to bias, limiting their utility

in high-throughput experiments. To address this, EPIC software has been developed,

employing AI to automatically track low-resolution, low-frame-rate cells. This

software analyzes high-throughput drug screening experiments, yielding various

wound healing metrics and publishable data (Figure 2A) [92]. Additionally,

researchers have devised a model-free controller for the wound healing process using

a neural network controller (NNC). By training the NNC with an appropriate

reference model and measuring skin cell content as the output, effective control of the

healing process is achievable(Figure 2B) [93].

Recently, a new automatic cell tracking system named Deep-ACT has been

developed, which combines cascaded cell detection with a Kalman filter-based

algorithm to quantitatively evaluate single-cell movement and dynamics. Additionally,

this system can distinguish the movement speed of cells in the central region

compared to those in the peripheral areas (Figure 2C) [94]. Oldenburg et al. [95] have

developed an intelligent cell detection (ICD) method based on CNN, which
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demonstrates high robustness against image distortion. This method analyzes

high-throughput drug screening experiments, generating various wound healing

metrics and publishable data. It matches the speed of manual methods in detecting

endothelial cell migration and is twice as fast in cell image speed measurement

(Figure 2E). The mechanical modulus of cells significantly impacts cellular functions.

Bermudez et al. [96] were the first to quantify the non-uniform deformation of mildly

stretched cell layers and use AI inference to convert measured strain fields into

effective modulus fields, allowing researchers to visualize the effective modulus

distribution of thousands of cells(Figure 2D).

AI provides precise data support and decision-making for clinical practice in

wound healing. AI can not only monitor and simulate cellular behaviors but also

regulate the entire healing process through intelligent analysis and control techniques.

Cell behavior detection heavily relies on image quality and user input. With

advancements in technology and algorithms, it is anticipated that cell labeling and

detection will become feasible, further enabling the in vivo monitoring and control of

skin cell behaviors to predict and oversee the entire wound healing process.

AI monitor and predict of wound progress

AI has shown immense potential in simulating and controlling the wound healing

process, particularly during the remodeling phase. By simulating the healing process

after burns, AI can provide scientific evidence for the true healing potential of each

burn-imaging area[93]. Furthermore, by training on large clinical datasets and

real-time detection data, this technology can continuously and comprehensively

monitor the pathological and physiological development of trauma patients, offering

significant advantages over traditional triage tools and warning score systems, thus

opening new avenues for trauma care. For instance, a study utilized an APP called

Foot Snap on an iPad to observe plantar images and predict the incidence of DFU.

This program standardizes foot images, evaluates the healing process of DFU (shape,

texture, and color) through machine vision algorithms, and enables wireless real-time

non-contact wound detection[97]. Additionally, Kalasin et al. [98] developed

AI-guided wearable sensing technology (FLEX-AI) by combining flexible wearable

systems and deep artificial neural networks (DANN). This system using wireless

communication technology combined with bandages containing dressings, trained
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with pH-responsive voltage output, achieved an accuracy of 94.5% in monitoring and

treating chronic wounds (Figure 3A).

Traditional wound healing monitoring often does not consider treatment factors,

making wound prognosis challenging. In a study, researchers evaluated the

effectiveness of the Swift Skin and Wound technology in assessing wound healing

under nutritional intervention. In the evaluation of 11 types of wounds, it was found

that the system can effectively evaluate wound area with an ICC of up to 0.99,

indicating excellent reliability in real-time tracking of healing progress [99].

Regarding prognostic factors, Robnik-Sikonja et al. [100] employed the attribute

estimation algorithms Relief F and RRelief F to evaluate and rank the factors that

affect the wound healing process. The initial wound area, patient age, time from

wound appearance to treatment initiation, wound shape, location, and treatment

modality are important prognostic factors in sequence. Meanwhile, At the same time,

researchers used an improved CORE learning system to construct a regression tree

and combined it with prognostic factors to accurately predict wound healing rates,

with an accuracy of up to 80% and 90% at 5 and 6 weeks, respectively. In another

study, Liu et al. [101] evaluated the effectiveness of least squares regression models

and ML in predicting open wound size in 121 patients and identified independent

predictive factors affecting open wound area through goodness of fit statistical

methods. Results indicated that ML can accurately predict wound size based solely on

four factors: fluid volume, length of hospital stay, burn area, and age, with an absolute

error of less than 4% (Figure 3B). Christie et al. [102] evaluated the ability of the

integrated ML algorithm SuperLearner to dynamically assess severe trauma. In the

analysis of 1494 severely injured patients, it was found that the algorithm can

dynamically predict patients with severe trauma, avoiding a one-size-fits-all approach

to trauma repair. Under ten-fold cross-validation, the algorithm achieved prediction

accuracies of 0.94-0.97, 0.84-0.90, 0.87-0.90, 0.84-0.89, and 0.73-0.83 for

posttraumatic death, multiple organ failure, blood transfusion, acute respiratory

distress syndrome, and venous thromboembolism, respectively. This algorithm can

help clinical doctors integrate large amounts of data from severely traumatized

patients to make real-time, dynamic treatment decisions and predict patient outcomes

(Figure 3C).
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In clinical practice, tissue color changes are often utilized to assess wound

healing status. Wang et al. [103] developed a smartphone wound image analysis

system based on tissue color changes. The system uses an accelerated mean shift

algorithm for wound segmentation and boundary detection to evaluate the healing

process of DFU. Analysis of the images collected from the clinic revealed that the

system is capable of high-precision and rapid evaluation of wounds, with a Matthews

correlation coefficient of 0.736. In addition, researchers have stated that the system

can run on both smartphones and servers simultaneously, which is crucial for remote

healthcare and will allow doctors to diagnose and evaluate wounds through remote

access. Additionally, to enhance accuracy, researchers have employed mask overlay to

construct complete tissue layers, which realistically display different stages of wound

repair. ChitoTech company has developed a mobile application called "Heal App" that

utilizes AI to assess wound size, topology, shape, and color, and track wound changes.

This application provides continuous monitoring in wound care centers and patients'

homes, enabling clinicians to remotely track and obtain accurate wound information

[104]. Wang et al. [105] developed an integrated system that combines ConvNet and

SVM to simultaneously perform wound segmentation and analysis, achieving fast

wound segmentation and infection detection with a time and accuracy of 5 seconds

and 95%, respectively. Moreover, when predicting wound healing, it was found that

all wound outcomes predicted by the developed system were consistent with the

average healing outcomes, at 95.67 weeks. Matthew et al. [106] developed a ML

model based on gradient-based decision trees using EHR data, with an accuracy of

AUC 0.854, 0.855, and 0.853 for assessing the risk of wound nonhealing at 4, 8, and

12 weeks. In addition, to further determine the factors affecting wound nonhealing,

researchers used Shapley Additive Explanations to evaluate the output results of each

factor and found that treatment duration, wound depth and location, and wound area

were indeed the most influential factors (Figure 3D). Gupta et al. [107] trained a

prognosis model, AutoTrace, using DL based on a dataset comprising 2,151,185

wound assessments and images. The model extracts objective features and subjective

features such as tissue type, exudate amount, and wound area from images captured

during wound assessment to predict wound healing quantification and progression

patterns. Understanding these factors allows healthcare personnel to adjust wound

care plans in real-time.
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Additionally, Mehta et al. [108] employed a denoising convolutional neural

network (DnCNN) to preprocess immunohistochemical (IHC) images and utilized

automated image analysis to determine the positive correlation between nerve fiber

density and re-epithelialization. This approach accurately assesses the degree of skin

nerve innervation during various stages of wound healing (Figure 3E). Furthermore,

DL algorithms are utilized to predict the risk of lower limb amputation in DFU

patients, which provides clinical insights through interpretability, thus aiding early

intervention to reduce the occurrence of reoperation and delayed healing rates [109,

110]. The outputs of AI models involve objective measurements and predictions

related to wound healing, which include quantifying healing rates, estimating healing

times, or predicting the likelihood of successful healing. AI can identify key wound

characteristics and patient-specific attributes such as age, as well as treatment plans,

which suggests the potential for predicting post-treatment wound healing rates based

on factors and information collected through surveys or electronic medical records

[111, 112]. In summary, the application of AI in wound healing demonstrates

significant innovation and potential, not only in accurately monitoring and simulating

cell behavior but also in regulating the healing process through intelligent analysis

and control techniques. Through AI-enabled quantitative assessment of wound healing,

healthcare professionals can track wound progression in real time, make informed

decisions, and tailor treatment strategies based on predicted outcomes.

AI-Assisted Wound Personalized Care and Treatment

The application of AI impacts diagnosis, treatment, and prognosis, as well as

workflow efficiency and expanding opportunities to access high-quality care. By

enhancing the level of care provided by healthcare teams, the integration of AI can

yield better outcomes for patients [113, 114]. In a non-randomized controlled trial

conducted on patients with lower limb ulcers, DFU, and pressure sores, AI medical

devices could remotely collect precise wound data and automatically obtain objective

clinical parameters with an accuracy rate of 97% [18]. This capability of AI can be

replicated across platforms for monitoring skin injuries, serving as an adjunctive tool

to aid experts in assessing the condition of wounds. Although such systems may have

errors, advancements in tools can correct these errors [115]. The application of AI in

wound care offers unprecedented possibilities for personalized treatment, facilitating
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optimized treatment plans and improved patient outcomes through precise data

analysis and prediction.

AI-assisted personalized wound treatment programs

In the field of modern wound care, a comprehensive wound recognition strategy

is crucial. By extracting specific geometric information from wounds to achieve

precise identification, this strategy combines interdisciplinary technologies such as

image recognition, computer modeling, and nanomaterials, enabling personalized and

diversified clinical applications. For example, the integration of intelligent recognition

and computer modeling technologies, along with the customization of materials,

addresses the issue of excessive coverage by traditional dressings. This allows

dressings to accurately cover wounds, reducing stimulation to surrounding normal

tissues and accelerating the healing process [116, 117]. The application of DL models

in assisting burn wound surgical decision-making demonstrates further advancements

of AI in the medical field. Researchers have developed the DL4 Burn mobile

application using multimodal DL methods to simulate the multifactorial

decision-making process of clinical doctors and predict the feasibility of burn surgery

(Figure 4A) [118]. Additionally, significant progress has been made in real-time data

acquisition for wound monitoring and care using AI. Researchers evaluated the

effectiveness of a ML-based Tissue Analytics application in promoting wound

recovery. It accurately and objectively records and evaluates wounds, and builds a

communication bridge between patients and healthcare professionals, which is crucial

for wound management and recovery (Figure 4B) [119]. Compared with the control

group of patients, patients who received this program intervention showed significant

improvement in wound recovery, with an average reduction of 53.99% in wound size.

This indicates that AI technology has a significant promoting effect on the wound

recovery process. AI chatbot software, as an auxiliary tool, can provide personalized

treatment and lifestyle advice. By simply describing the conversation, the software

can provide accurate wound care plans for 80 patients, with an accuracy rate of up to

90% (91% of patients). This indicates that AI technology has great potential in wound

care, especially in complex wound management, in the future, reducing the time

patients spend visiting hospitals while maintaining optimal wound care [120].
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Furthermore, AI medical devices automate the acquisition of objective clinical

parameters, enabling precise classification and tissue segmentation analysis of wound

bed preparation (WBP). AI medical devices achieve an accuracy rate of 97% in WBP

classification and tissue segmentation analysis, significantly improving the utilization

of medical resources and the scientificity of treatment decisions [18]. Novel portable

handheld probes integrate 3D scanning, temperature measurement, multispectral, and

chemical sensors for real-time wound diagnosis. They enable analysis of chronic

wound tissue composition, area, volume, and temperature profiles, allowing for more

accurate detection of wound environment changes and diagnosis of healing progress

[121]. Filke et al. [122] developed an intelligent robot system (HIS), comprising a free

robotic arm, high-definition camera, and high-precision 3D scanner, achieving precise

measurements and automatic recording using surface point density estimation and

discontinuity detection. In hospitals, wound care nurses utilize the HIS system to

obtain patient basic information, input wound diagnosis results and treatment

processes, integrate wound data, and realize personalized management (Figure 4C).

The application of AI in wound recognition, monitoring, and care not only

improves clinical efficiency and accuracy but also promotes the development of

personalized medicine. In the future, with the widespread application of multimodal

data input and advanced algorithms, AI-based wound diagnosis and treatment systems

will be able to classify and analyze wounds more accurately, provide targeted

treatment plans, and achieve personalized and precise wound care. To further

standardize and optimize wound diagnosis and treatment, establishing a national

minimum dataset and developing corresponding communication tools, such as the

"Wound Care Log APP," are necessary steps to drive the development of this field.

These measures will assist medical professionals in establishing unified standards

nationwide, achieving interoperability of wound data, and providing patients with

higher quality and more systematic wound care services [123, 124]. However,

AI-based applications face some challenges in clinical use and result interpretation,

such as data privacy, improper or outdated data selection, selection bias, and historical

biases, which may lead to erroneous conclusions. With an understanding of AI and

continuous improvement, clinical doctors will be able to adopt this method more

effectively to prevent and manage chronic wounds.
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AI-assisted develop personalized wound treatment products

In the field of modern medical technology, the application of AI is driving

innovation in skin model construction, wound healing process simulation, drug

development, and smart dressings providing new perspectives and tools for wound

treatment. Currently, research has developed hybrid models that combine volume,

membrane, and one-dimensional models to construct three-dimensional geometric and

mechanical models of skin/subcutaneous complexes, capturing complex internal

structures through an automated process [125]. AI-built artificial skin models offer a

new perspective for wound repair research and facilitate the applications of products

with wound repair or monitoring capabilities to these models, thereby greatly

advancing basic research in the field and improving product development

efficiency[126]. In drug development, AI applications have also demonstrated

remarkable achievements. The application of AI in screening for novel antimicrobial

peptides further promotes innovation from surface antimicrobial to deep drug

development. Although most screening studies are still conducted in vitro and in vivo,

integrating computational and statistical frameworks with DL models provides new

directions for drug development [127]. Additionally, research based on sequencing

results from diabetic patient skin and AI-assisted bioinformatics has identified a

potential therapeutic drug, Trichostatin A (TSA), and a potential target, histone

deacetylase 4 (HDAC4), for diabetic wound repair (Figure 5A) [128]. Researchers

have also developed an AI-nanomaterial sensing system for ultra-selective detection

of volatile organic compounds (VOC). This system utilizes functionalized modified

silicon nanowire field-effect transistors combined with different salt molecules. After

integrating with an artificial neural network (ANN) model, the sensor can identify 11

VOCs efficiently even under physical/chemical interference, offering a promising

approach for detecting VOCs in wounds (Figure 5B) [129]. Although there are few

reports on AI-assisted nanomaterials as antibiofilm agents, previous explorations

suggest that combining different AI applications with biofilms and wounds can lead to

the development of more compact wound management devices [130].

Currently, wearable sensors assisted by AI have been developed for wound

detection and management. Kalasin et al. [98] proposed a flexible AI-guided

(FLEX-AI) wearable sensor that utilizes a DANN algorithm for chronic wound

monitoring and short-distance communication. It communicates with seamless,
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MXene-connected, radiofrequency-tuned, and wound dressing-integrated

(SMART-WD) bandages. Additionally, a DL-assisted microneedle sensor patch has

been developed and trained on a dataset of fluorescence intensity data using the KNN

model to achieve multivariate classification of wound infection types. By combining

smartphone-captured fluorescence images, pH value can be visualized, enabling

accurate and reliable wound management (Figure 5C) [131]. The application of AI in

the field of bio 3D printing is evolving, particularly in auxiliary roles and data-driven

manufacturing within 3D printing fabrication [132]. The integration of 3D printing

technology with AI continuously enhances the precision, versatility, and compatibility

of various materials [133, 134]. Researchers have optimized DL models based on

Gaussian process regression (GPR) to successfully predict the printability scores of

bio-inks (Figure 5D) [133]. Additionally, a study proposed an AI-assisted

high-throughput printing condition selection system (AI-HTPCSS) after optimizing

DL models. This system comprises programmable pneumatic extrusion bio-printers

and AI-assisted image analysis algorithms, capable of predicting the printability of

bio-inks and subsequently optimizing the printing process to develop higher-quality

three-dimensional printed hydrogel dressings (Figure 5E) [134]. Through DL methods,

the optimization of the 3D printing process of bio-inks has been achieved, providing

new insights for developing superior quality three-dimensional printed hydrogel inks.

With the combination of advanced AI and the development of new materials, the

field of wound treatment is experiencing unprecedented innovation and breakthroughs,

providing vast development opportunities and potential for future medical

advancements. With the further application and development of AI, it is expected to

optimize wound diagnosis and treatment processes, combined with the development

of personalized treatment products, to bring more precise and personalized medical

services to patients, and improve treatment efficiency and effectiveness.

Discussion and Perspectives

Advantages and limitations of AI models and algorithms

Wound care involves tasks such as image analysis, tissue classification, size

measurement, and temporal monitoring, which are often time-consuming and prone to

assessor biases [21, 135]. AI is revolutionizing traditional wound diagnosis and
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management methods, enabling greater precision and intelligence in the evaluation

process [19, 136]. A comprehensive AI-based wound diagnosis, prediction, and

treatment system can significantly save clinicians' time, reduce patients' financial

burdens, and improve their quality of life. Currently, AI-assisted wound diagnosis and

treatment systems create an integrated framework by automatically identifying,

analyzing, summarizing, understanding, learning, planning, and updating, thereby

continuously assessing the entire wound healing process [19, 136]. Despite the

immense potential of AI in enhancing the safety, accessibility, and quality of wound

care, the field is still in its early stages, and its clinical feasibility remains to be

validated [21, 137].

In Table 5, we summarize the applications, advantages, limitations, and

scalability of current AI models and algorithms in wound healing. Shallow-ML

models, suitable for various data types, including structured and unstructured data,

can identify and leverage the most relevant features to improve prediction accuracy.

Algorithms such as random forests and SVM are used to predict healing outcomes by

analyzing patient records and treatment data, and optimizing treatment plans based on

specific patient characteristics (e.g., age, diabetic status, infection risk). However,

shallow-ML models are prone to overfitting in small sample datasets, leading to poor

performance on new data [65, 102, 103]. DL models, by learning from large datasets,

achieve high classification and prediction accuracy, with CNN particularly excelling

in wound image recognition and classification. These models can automatically

identify wound types, assess healing stages, and estimate wound area. Additionally,

DNN combine patient history data and wound characteristics to predict healing time.

However, DL models require extensive labeled data for training, and their

performance may be inadequate without it [46, 69, 81, 105, 138]. Natural language

processing (NLP) technologies, such as GPT, can efficiently process and analyze large

volumes of text data, enhancing the retrieval of clinical information. By understanding

and analyzing natural language, these technologies can extract key wound care-related

information from EHRs for decision support [139, 140]. By appropriately selecting

and applying AI models, integrating image data with clinical data, and combining

multiple models and algorithms, more efficient and precise diagnosis and treatment

can be achieved in wound healing, ultimately improving patient outcomes and quality

of life [106, 138].
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AI applications in wound treatment are mostly in the research or small-scale

clinical trial stages, and effective implementation in clinical practice requires further

investigation [19, 21]. We recommend the following: First, ensure compatibility

between AI tools and existing Hospital Information Systems (HIS) and EHR systems

for seamless data integration. Second, develop intuitive user interfaces and detailed

training programs for AI technology to ensure that medical and technical staff acquire

the necessary skills. Next, annotate data and use algorithms such as CNNs to train AI

models. For example, CNNs or SVMs can automatically identify and analyze wound

types, sizes, and depths; NLP can parse physician notes and patient records to

generate automated reports and recommendations [19, 52, 141]. Validate model

accuracy and practicality through cross-validation and clinical trials to ensure

applicability in real-world settings. Finally, assess AI technology's effectiveness using

specific clinical data, such as diagnostic accuracy, treatment success rates, and patient

satisfaction, and refine technology based on feedback. Regularly update AI models to

enhance performance and reliability. Furthermore, AI models must operate within

legal and ethical frameworks, emphasizing interdisciplinary collaboration to ensure

data security and compliance. In the future, AI technology will not only provide more

precise support for wound care but also advance the development of personalized

medical solutions, thereby improving patient health management and quality of life

comprehensively.

Challenges and coping strategies

AI requires extensive data support, but the lack of standardized wound data

collection guidelines and protocols has led hospitals to develop wound data collection

methods based on their specific needs, complicating the establishment of

comprehensive wound care databases. Researchers face challenges in obtaining large

and comprehensive wound care datasets, hindering the progress of AI in this field.

Even with comprehensive datasets, unspecified or unmeasured factors may still

influence wound healing outcomes, leading to incomplete or inaccurate predictions by

DL models. Therefore, there is a need to establish standardized wound data collection

systems and user-friendly recording devices to enhance operability and facilitate rapid

wound care documentation across various settings. To expedite the wound diagnosis

process, optimize treatment plans, and improve treatment efficiency and patient
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quality of life, we need to explore the integration of computational methods and AI to

achieve these goals [135]. However, the role of AI in automating wound diagnosis

and healing prediction remains underexplored. It is crucial to identify suitable wound

diagnosis tools and further standardize the testing and use of AI-based digital wound

evaluation tools. This will help determine which wound types are best suited for AI

management and which specific algorithms are most effective[142]. Develop

classification models tailored to specific wound types for detailed assessments, such

as the severity of DFU or burn area. Foster inter-institutional collaboration to establish

multicenter image databases, improving model generalizability. AI models can also

collect patient health data, such as blood glucose levels and nutritional status, while

regularly analyzing wound images to generate healing trend charts and predict wound

healing times. These insights can assist clinicians in optimizing treatment plans,

ultimately improving patient outcomes.

AI in wound identification is mainly limited to color recognition and lacks the

predictive ability for wound flexibility and exudate information. Emerging devices

cannot measure longitudinal wound information, as wound sinuses and fistulas cannot

be scanned, requiring manual measurements to obtain data. This indicates the need for

new strategies to collect, analyze, and process vast amounts of information to address

these limitations. A recent study introduced the iDr smartphone application based on a

mobile platform. The application utilizes low-cost yet accurate 3D imaging

technology to comprehensively measure wound area and depth, with its relative error

in wound area and depth measurement significantly lower than traditional clinical

methods, offering new possibilities for remote healthcare and self-monitoring. This

innovative solution eliminates the need for expensive industrial-grade 3D cameras and

achieves non-invasive volume measurement economically and efficiently [143]. Many

studies have not yet evaluated the long-term effects of using AI applications, such as

wound healing speed and quality. However, a few preliminary studies have shown

high satisfaction with AI in clinical practice among both clinicians and patients [144].

Future research should focus on deeper analysis of clinical outcomes, particularly

incorporating patient feedback, while leveraging data augmentation and transfer

learning to enhance model accuracy. Building on this, AI systems can be integrated

with EHRs to combine multidimensional data, including patient history, lifestyle

habits, and metabolic status, alongside wound-specific features such as temperature
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and color changes[135]. This integration enables automated analysis of wound types

and comorbidities. Based on historical data, AI can generate personalized care

recommendations, such as wound cleaning frequency, dressing selection, and

medication dosage, to support clinical decision-making and improve patient recovery

management.

As experts say, "Treatment is not just the wound on the patient, but the whole

patient." Thus, a comprehensive approach must consider a complex network of factors

beyond just the wound [145]. Integrating AI technology into existing clinical

workflows and EHRs could address this complexity [111]. However, this integration

faces several challenges, particularly in managing trauma patients. For instance,

current AI systems cannot automatically generate EHRs, and the extensive textual

data they contain still requires manual entry by clinicians. Large language models

(such as GPT) offer new possibilities for automated case generation. However, AI

technology currently cannot personalize clinical pathways and treatment plans, which

must still be developed by physicians. Google's Med-PaLM model offers new

directions for managing personalized medical plans [146]. Additionally, compatibility

issues between AI tools and different EHR systems used by hospitals and clinics

hinder data integration and consistency. AI systems require ongoing updates and

maintenance to adapt to new medical knowledge, technological advancements, and

regulatory changes, which demands long-term technical support and resources from

healthcare institutions. In addition, the widespread application of AI technology in

wound care faces several scalability challenges, including data quality and diversity,

system integration, clinical workflow optimization, regulatory compliance, data

protection, cost-effectiveness, and regional adaptability. To address these challenges,

it is essential to adhere to local laws and regulations while establishing

cross-institutional data-sharing platforms to collect high-quality, multi-source, and

diverse data to enhance model generalization. Open standards and interfaces (such as

HL7 and FHIR) should be adopted to promote system integration, ensuring that AI

systems are compatible with diverse EHR systems and optimizing clinical

workflows[147, 148]. Regarding costs, cloud-based AI solutions should be promoted

to reduce hardware investment and alleviate the financial burden on healthcare

institutions. In resource-limited regions, low-cost and user-friendly AI tools should be
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used, and the technology's accessibility and application can be expanded through

telemedicine and mobile health platforms.

As clinical diagnostics, prognosis, and treatment demands increase, integrating

multimodal wound data (such as 2D images, 3D surface morphology, texture, text

data from clinical records and EHRs, and even proteomics and genomics) for

systematic wound management will become essential [19, 21]. There is an urgent

need to identify and guide methods for analyzing multimodal data to support

continuous advancements in data processing capabilities. Additionally, data-driven

technologies like DL could be utilized to build comprehensive public wound datasets

with detailed annotations and develop AI-based evidence-based decision support

systems to advance wound research. Future AI research should focus on identifying

"wound patterns" by understanding the complex interactions between wounds and

patient factors. Integrating multimodal datasets and mobile devices to develop remote

intelligent wound care systems could improve clinical decision-making in wound

diagnosis, treatment, prognosis, and management, ultimately significantly enhancing

patient medical experience and quality of life.

Ethical and legal challenges and strategies

AI diagnostics face challenges in technology, philosophy, law, and ethics,

requiring active involvement in the development and application of AI technology. To

fully leverage AI's potential, a balanced framework must be established to ensure

responsible and fair use of AI in clinical practice. This includes strengthening the

regulation of AI systems, addressing privacy protection, algorithm fairness, decision

transparency, accountability, and regulatory compliance in wound care while

maintaining control in the evolution of human-AI collaboration [149]. First, ethical

review must be strengthened. In AI applications for wound care, patients should have

the right to understand and decide whether to consent to AI involvement in their

treatment process. Ensuring informed consent not only meets ethical standards but

also enhances trust in AI systems. To achieve this, a standardized informed consent

process must be established, providing a clear consent form before patients use

AI-assisted systems, detailing the role, limitations, and potential risks of AI [150].

Additionally, educational materials and explanations from healthcare providers should
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be used to communicate the application and limitations of AI in care, thereby

increasing patient awareness and acceptance of AI-assisted treatments.

The application of AI technology involves vast amounts of patient data, raising

significant concerns about data privacy and security. Therefore, not only must

technology providers implement robust data protection measures, but healthcare

institutions must also conduct compliance reviews and enforce protective measures.

Robust AI technology must ensure the secure transmission and storage of sensitive

health data, complying with strict privacy regulations such as the General Data

Protection Regulation (GDPR) and the Health Insurance Portability and

Accountability Act (HIPAA) [151]. Obtaining explicit patient consent before data

collection is necessary, alongside regular security audits and real-time monitoring of

AI systems to ensure their safety. Moreover, secure AI systems should be designed,

and staff should receive data protection training to effectively safeguard sensitive

patient information and ensure the safe application of AI technologies [144]. The

development of AI systems requires significant initial investment, data collection, and

long-term research, highlighting the importance of establishing digital research

platforms and reasonable data collection guidelines for the success of AI research

[152]. Some companies collaborate with generative AI to provide research practice

communities, building personalized information repositories through interaction and

content sharing, thus offering researchers more specialized resources.

The quality and representativeness of training data are crucial in developing AI

technologies, as biases or misjudgments can lead to unfair treatment in wound care,

affecting treatment outcomes [153]. To prevent this, training data should be diverse,

covering various age groups, genders, and ethnicities, to minimize the risk of

algorithmic bias [154]. In practice, the algorithm's results should be regularly assessed,

and biases corrected promptly to ensure fairness. During the design and validation

phases, fairness testing should be incorporated, and fairness should be prioritized

throughout the algorithm development process. Additionally, collaboration with ethics

committees and multidisciplinary teams is essential to review datasets and algorithms,

ensuring consistent accuracy across different patient populations.

In clinical practice, the transparency and interpretability of AI systems are

considered fundamental to building trust. This requires clear communication to both

physicians and patients about the limitations and confidence levels of AI diagnoses or
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predictions, and the development of usage protocols for wound care AI in

collaboration with ethics experts. Moreover, AI systems are often "black box models,"

particularly DL models, where the decision-making process is difficult to explain. The

lack of interpretability may affect patient consent to AI-assisted diagnosis and

treatment. Therefore, AI systems should be interpretable, incorporating technologies

such as LIME (Local Interpretable Model-Agnostic Explanations) or SHAP (Shapley

Additive Explanations) to help physicians understand the rationale behind AI outputs.

This allows healthcare providers to review the decision-making logic of the AI at any

time, enhancing trust and acceptance of the system[155]. Healthcare professionals

must learn to interpret and use AI outputs to ensure they align with clinical standards

and do not interfere with clinical judgment.

Given that AI predictions and recommendations may directly influence wound

treatment plans, clear responsibility attribution is crucial. When AI causes

misjudgments or biases that harm patients, responsibility must be clearly defined, with

a "shared responsibility" mechanism in place to ensure that AI developers, healthcare

institutions, and users assume legal responsibility within their respective roles[156].

Operational standards and usage protocols for AI in wound care should be established,

ensuring that healthcare providers receive training before using the system and

understand their responsibilities regarding AI outputs. In clinical practice, a

comprehensive accountability system should be implemented, documenting each step

of the AI system's operation and the basis for its decisions, ensuring traceability of

any issues. Meanwhile, efforts should be made to enhance public understanding and

trust in AI technology through education and communication, increasing acceptance

of AI's role in healthcare. Ultimately, the successful application of AI technology

requires the collective efforts of governments, healthcare institutions, technology

companies, and patients to ensure the harmonious development of technological

innovation, ethics, and law [157].

Socioeconomic impact and medical changes

The introduction of AI will reshape the roles of healthcare professionals. For

example, tasks traditionally performed manually by doctors and nurses, such as

wound assessment, monitoring, and treatment decision-making, will be partially taken

over by AI automation systems. AI-driven wound assessment systems can provide
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real-time, accurate information on wound size, type, and healing progress, helping

medical staff develop treatment plans more quickly. However, the widespread use of

this technology may shift the role of healthcare professionals from direct intervention

to supervision and decision support, requiring them to have the skills to interpret and

manage AI recommendations to effectively use AI-assisted medical tools. As AI

becomes more widespread, healthcare workers will face the need to learn new skills,

particularly in data analysis, AI system operation, and data ethics [158]. Furthermore,

healthcare providers must enhance their understanding of AI's limitations and

potential biases, and effectively explain AI's diagnostic recommendations to patients,

alleviating concerns about "machine diagnosis" and minimizing the negative impact

of AI systems in practice. While this retraining demand may pose a challenge to

healthcare institutions' resource allocation, it also presents an opportunity to improve

the overall skill level of healthcare professionals.

It is important to note that the widespread adoption of AI could reduce the

workload of some positions in the healthcare field while increasing the demand for

technical professionals such as data scientists and AI system administrators. The

introduction of clinical decision support systems may reduce the need for human labor

in repetitive or lower-complexity tasks, while advanced care and the management of

complex cases will still require the judgment and expertise of healthcare professionals.

Therefore, the application of AI not only impacts staffing and resource allocation but

may also drive an increased demand for technical talent across the industry, promoting

cross-disciplinary collaboration. Furthermore, the implementation of AI may require

significant investment in infrastructure, particularly in AI devices, algorithms, and

data storage. However, integrating AI offers opportunities to improve efficiency and

the precision of patient care. For example, AI systems can reduce repetitive tasks for

healthcare providers, allowing them to focus more on patient care that requires

interpersonal interaction, thereby improving both medical efficiency and patient

experience [159]. Nevertheless, the core of healthcare remains patient-centered care.

In some cases, patients prefer direct interaction with healthcare providers over relying

on machines for decision-making. Therefore, while promoting AI technology, it is

crucial to ensure that healthcare professionals remain involved in the diagnostic and

treatment process to maintain patient trust and satisfaction [160]. Ultimately, a

balance must be struck between improving efficiency and ensuring care quality,
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ensuring that AI applications do not undermine the human interaction in healthcare.

With the advancement of AI and the accumulation of data, AI applications not

only provide high-quality home care for patients but also drive the development of

remote medical systems, offering professional technical guidance to patients in remote

areas. AI systems can remotely measure wounds and communicate with online

commercial organizations regarding healing trajectories, integrating them into remote

medical platforms to provide care in resource-limited environments [119]. The

increase in massive data and powerful computational resources has played a crucial

role in data-driven care through AI-based digital platforms, reducing expert workload,

increasing accessibility to professional knowledge, and expanding the potential for

remote wound treatment. Especially during the COVID-19 pandemic,

computer-assisted remote wound care technologies have accelerated [161]. Utilizing

tools like ChatGPT, complex tasks can be completed within seconds, enhancing

efficiency and enabling researchers to focus on actual research rather than tedious

administrative tasks. Through generative AI collaboration platforms like ChatGPT

and AlphaFold3, researchers can exchange and share research content, transforming

personalized content into individual data or research repositories, and providing more

specialized outputs for generative AI. These specialized databases are more accurate

than traditional internet methods, saving researchers time and providing outputs for

educating others [162].

In conclusion, while developing industry consensus or guidelines is still a long

way off, professional clinical guidelines will help standardize and improve the

application of AI in wound care, addressing issues of inconsistency and accessibility.

Stakeholders, including technology providers, healthcare institutions, and

policymakers, must collaborate to create an environment conducive to AI

development, promote more efficient and safe medical services, enhance patient care

quality, optimize medical decision-making, and improve operational efficiency.

Looking forward, collaboration among multidisciplinary teams-including clinicians,

scientists, and regulatory experts-is crucial for bridging the gap between research

outcomes and the clinical application of burn and wound healing. As AI systems

continue to optimize, they will adapt to cases involving different regions, races, ages,

and trauma characteristics, providing scientific support for wound diagnosis and

treatment, reducing mortality and complication rates, improving treatment quality and
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efficiency, and alleviating social burdens. Although AI has demonstrated significant

potential in healthcare and is beginning to challenge the professional role of doctors, it

cannot replace the diagnostic capabilities of physicians [163]. Clinicians should

enhance their medical skills and avoid over-relying on AI. Ultimately, it is essential to

recognize that no tool can fully replace direct clinical diagnosis. This underscores the

importance of a human-AI collaboration model, where AI is not viewed as a

replacement for human labor but rather as a tool to enhance healthcare services [164,

165].

Conclusions

This article reviews the research status of AI applications in injury classification,

wound measurement (area and depth), wound tissue classification, wound monitoring

and prediction, and personalized treatment. It summarizes the datasets used,

development methods, and algorithms, and lists the limitations and future directions

of AI, providing scientific evidence and technical support for further development of

AI in wound treatment and care. In conclusion, there are many opportunities for the

application of AI in wound theranostics, including standardization of treatment,

patient self-management, optimization of healthcare workflows, personalized

treatment plans, and improvement of education and awareness between patients and

providers. Future collaboration between wound care professionals and AI researchers

is needed to advance translational medicine, improve human health, and reduce

healthcare costs.
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Figures and Tables

Figure 1. Applications of AI in wound repair theranostics include wound

classification, measurement of wound area and depth, monitoring and prediction

of wound healing, and personalized care and treatment strategies.
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Figure 2. AI is employed to observe cell behavior in wounds. (A) Cell trajectories

at the leading edge are monitored using manual cell tracking, EPIC, and Viterbi

during experiments conducted at different speeds. Reproduced from ref [92], an open

access article 2022 published by MDPI under a CC-BY4.0 license. (B) An AI

Controller, free from model limitations, is developed using output error to regulate

wound healing Reproduced from ref [93], an open access article 2017 published by

Biosensors Journal under a CC-BY4.0 license. (C) Development of DL-based object

tracking model for automated cell tracking in human keratinocyte colonies.

Reproduced with permission from ref [94]. Copyright 2021 Oxford University Press.

(D) AI can predict the effective modulus of MDCK and 3T3 cells. Reproduced with

permission from ref [96]. Copyright 2022 Elsevier. (E) The process flow of a DL

MATLAB application is illustrated to demonstrate the proper utilization of the ICD

network. Reproduced from ref [95], an open access article 2021 published by BioMed

Central under a CC-BY4.0 license.
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Figure 3. The prediction of wound development throughAI is explored in various

studies. (A) Advanced wound dressing bandages with intelligent wearable sensors for

remote monitoring of chronic skin conditions Reproduced with permission from

ref[98]. Copyright 2022 American Chemical Society. (B) Predicting wound healing

capacity under any given burn size and fluid volume condition. Reproduced with

permission from ref [101]. Copyright 2018 Oxford University Press. (C) Analysis of

severe trauma dynamics using DL algorithms. Reproduced from ref [102], an open

access article published 2019 by Public Library of Science under a CC-BY4.0 license.
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(D) Prediction of chronic wound healing duration through DL with identification of

the top 20 influential variables in the GBDT predictive model at 4, 8, and 12 weeks.

Reproduced from ref [106], an open access article published 2022 by Mary Ann

Liebert under a CC-BY4.0 license. (E) Assessment of innervation in wound healing

facilitated by DL. Reproduced from ref [108], an open access article published 2023

by Springer Nature under a CC-BY4.0 license.
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Figure 4. Personalized wound treatment programs assisted by AI. (A) DL4Burn

utilizes DL to integrate various modalities for predicting candidacy for burn surgery,

with details available on the iOS application and implementation via Google Firebase.

Reproduced from ref [118], an open access article 2022 published by American

medical informatics association under a CC-BY4.0 license. (B) An AI application is

developed to improve wound evaluation and treatment, featuring apps for both

clinician interface and patient interface. Reproduced from ref [119], an open access

article 2022 published by Wiley under a CC-BY4.0 license. (C) An automated

robot-driven system is introduced for reconstructing 3D images of chronic wounds.

Reproduced from ref [122], an open access article 2021 published by MDPI under a

CC-BY4.0 license.
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Figure 5. AI-assisted develop personalized wound treatment products. (A)

AI-assisted bioinformatics analysis is employed to investigate the therapeutic

potential of TSA and the hub gene HDAC4 in diabetic wounds. Reproduced with

permission from ref [128]. Copyright 2022 American Chemical Society. (B)

Ultraselective detection in the gas phase is achieved with artificial sensory

intelligence utilizing silicon nanowires. Reproduced with permission from ref [129].

Copyright 2014 American Chemical Society. (C) DL aids in creating a self-sterilizing

microneedle sensing patch for monitoring wound pH visually. Reproduced with

permission from ref [131]. Copyright 2024 Wiley. (D) A DL model based on gaussian

process regression (GPR) forecasts the printable performance of bio-inks. Reproduced

with permission from ref [133]. Copyright 2022 Wiley. (E) AI predictions aid in

assessing the printability of bio-inks, facilitating the production of high-quality

3D-printed hydrogel dressings. Reproduced from ref [134], an open access article

2023 published by Wiley under a CC-BY4.0 license.
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Tables

Table 1.Wound type classification.
Classification Used Method(s) Used Features Dataset Outcome Advantage or

Limitation
Ref.

DFU DL algorithm (DFUNet), aspect
of CNNs architecture-depth and
parallel convolution layer

Differences of DFU
and healthy skin
patches

Extensive dataset of
foot images

AUC score: 0.961 Cost-effective,
remote, and
convenient

[23]

DFU A cascaded two-stage approach
based on ML implemented with a
SVM

Color and texture
descriptors from
superpixels

100 DFU images Sensitivity:
73.3%,
Specificity: 94.6%

Need to be expanded
in wound image
database

[24]

DFU and VLU DCNN with pre-trained weights Standard
augmentations of
images and pixels;
Wound characteristics
and pixels

863 images from
wound care centress

FI:0.85 Need to be expanded
in terms of wound
images and wound
types; Few wound
images and wound
types

[25]

Various injury
occur in a disaster
site

DL algorithm (RTS, logistic,
random forest, DNN)

460,865 cases: vital
signs and a
consciousness index

National trauma
databank

AUC scores:
(RTS: 0.78;
Logistic
regression: 0.87;
Random forest:
0.87;
DNN: 0.89.)

Reduce triage time;
Retrospective study;
Deficiency of samples
collected

[26]

DFU,
Lymphovascular,
Pressure, Surgical

Explainable AI (transfer learning,
data augmentation and DL）

Wound images are
then hand-labeled

8690 wound images
(1811 DFU, 2934
lymphovascular,
2299 pressure injury,
1646 surgical wound
images)

FI: 0.76 Provides chronic
wound classification
and its associated
explanation

[27]

NU, surgical site
infections,VLU,

DenseNet, MobileNet and ResNet A large number of
wound images from a

2957 from image
registry tertiary

Accuracy：96.3%;
F1: 0.96

Development of an
explainable AI model

[28]
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artificial intelligence: AI; machine learning: ML, deep learning: DL; area under the curve: AUC; support vector machine: SVM; deep neural

network: DNN; deep convolutional neural networks: DCNN; diabetic foot ulcers: DFU; pressure ulcers: PU; venous leg ulcers: VLU.

pressure multi-ethnic
population

institution Singapore for Asian
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Table 2.Wound area measurement.

Type Used Method(s) Used Features Database source Outcome Limitation Ref.

Ulcer, plastic
wounds

OPEN CV Grayscale and DPI Ten images
captured using
different kinds of
devices

Average
MEM of
4.4% for
high quality
pictures

Greatly affected by shooting
distance, brightness and noise

[31]

All types of
wounds

Swift Skin and
Wound mobile
application

Wound margin and length
and width

177 wounds in 56
patients

_- Difficult to generalize and
lack high sensitivity

[39]

PU Burn Case 3D
program

Interest wound region
provided by the structure
sensor and length and
width

232 pressure
injury photos

_- Affected by the photo taking
and the operator

[40,
41]

Sprague-Dawley
rats skin defect
mode

Interactive Graph
Cuts algorithm

Interest region of
depth-map provided by
the structure sensor

A total 46
wounds, including
32 irregular
wounds and
regular 14 wounds

All
correlation
coefficient
exceeds 0.93

High reference value for
monitoring the process
of wound healing; Animal
skin defect mode

[42]

Burn ResNet101,
U-Net and Mask
R-CNN

Standard augmentations of
images and pixels

3571 images of
burns from Far
East Hospital

DC of
ResNet10
1：0.9496

Fewer training images [43]

PU, DFU and
VLU

Seg Net 、
LinkNet、U-Net、
U-Net-VGG16

- 400 PU, 20
DFU,and 20 VLU

VGG16 with
highest
accuracy

Race bound [44]
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DFU A CNN-based
method for
extraction of
diabetic lesion
regions

Pixels from
noise-removing images

341 images Pixel
accuracy:
0.934

Fewer training images [45]

DFU and PU An annotation
tool based on
watershed
algorithm (FCN)

Standard augmentations of
images and pixels

950 digital images Accuracy:
98.12

Need to further expand the
application

[46]

DFU A composite
wound
segmentation
framework
(CNN)

Standard augmentations of
images and pixels

950 wound
images

Accuracy:
94.69

Difficulty distinguishing
between non-skin
backgrounds

[47]

DFU A DFU image
segmentation
algorithm based
CNN (Mask
R-CNN)

Label of ulcer and
image background

1176 images Accuracy
over 93%

Further validation using a
framework

[48]

Burn A segmentation
framework based
on the Mask R-
CNN

Wound margin 1150 images from
Genetic
Engineering and
Biotechnology

Accuracy:
84.51%

Fewer training images [49]

Lower Limb
Chronic Wound

An image
segmentation
algorithm based
on a DCNN

Image features 112 cases Total
effective
rate: 92.86%

Fewer training images and
samples

[50]

DFU Novel
convolutional
framework based

Pixels and shape from
noise-removing images

1109 DFU images DC: 90.47% Extend to mobile devices in
the future

[51]
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on
MobileNetV2(C
NN) and
connected
component
labelling

Pressure injuries,
arterial ulcers,
and VU

DCN and DNN Wound boundaries; Pixels
and shape from
noise-removing images

58 wound images
consisted of
465,187
image-label pairs

Interrater
agreement
intraclass
correlation
0.861 to GT

Poor ability to classify ET [52]

DFU Semantic
segmentation of
small datasets
(SegNet and
V-Net)

Pixels and color and
thermal information

92 images Dice score:
97.25%

Not consider 3D structures [53]

Burn Mobile
application:
BurnMed

Wound size Burn on a
mannequin

Measuremen
t errors:
−0.96 (3.74)

Mannequin not reality wound [56]

VU iPad app:
WoundAide

Wound size Six patients with
10 VU

Coefficient
of variation:
3% to
33.3%;
capturing
sensitivity:
75%

Few patients; Least
sensitivity in image captures

[57]

VU, DFU,
surgical

Mobile
application:
Swift with
HealX

Color, lighting and size 91 patients with
115 wounds

- Limited clinical setting [59]
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diabetic foot ulcers: DFU; arterial ulcers: AU; venous ulcers: VU; pressure ulcers: PU;venous leg ulcers: VLU; neural networks: NN, deep
learning: DL; electronic health records: EHRs; area under the curve: AUC; support vector machine: SVM; convolutional neural networks: CNN;
deep neural network: DNN; deep convolutional neural networks: DCNN ; epithelial tissue: ET; granulation tissue: GT; intraclass correlation
coefficient: ICC; Dice coefficient: DC.

Ulcer, lastic
wounds

Mobile
application :
Swift Wound

Orientation and location
of the wound margin

87 patients ICC:
0.97-1.00

Differences between the
training model and the actual
verification

[61]

DFU CARES4
WOUND system

Wound margin 341 wound
images

Inter-rater
reliability:
0.947

Accuracy depends on camera [62]



65

Table 3.Wound depth measurement.

Type Used Method(s) Used Features Dataset Outcome Advantage or
Limitation

Ref.

Burn Build a classification
model via DL (SVM and
KNN classification); Z-test
and univariate analysis to
remove outliers

Pixel intensity and
location of image

Multispectral
imaging
training database
(single
wavelength
images)

Accuracy: 76%;
Test
accuracy was
improved from
63% to 76%

Amodel baed on
swine; other
descriptors of
light–tissue
interactions did
not incorporated

[65]

Burn A novel artificial burn
depth recognition model
based on CNN (ResNet50)

Standard
augmentations of
images and pixels and
Patches

484 early wound
images

Accuracy: 80% Fewer training
images

[66]

Burn CNN-based algorithm and
explainable AII (XAI)

Physical textural
features in ultrasound
and pixels in
RGB images

10,085 frames of
pigs and 338
images from
web

Lobal accuracy
greater than 84%

The influence of
race or skin
pigmentation on
segmentation
accuracy could
not be assessed

[67]

Burn DNN (VGG-16,
GoogleNet, ResNet-50,
ResNet-101)

Extracted interes
regions and pixels

23 burn images Average accuracy
for the four
different types of
burn depth
90.54%

Fewer training
cases

[35]

Burn FCN Coarse and pixels 180 images Pixel accuracy:
0.60; IoU of
0.37

Class imbalance [69]

DFU Bilinear CNN (Bi-CNN) Standard 1639 images Accuracy: 84.6% Class imbalance [70]
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diabetic foot ulcers: DFU; intersection over union: IoU; Dice coefficient: DC; convolutional neural networks: CNN; support

vector machine: SVM; k-nearest neighbors: KNN; fully convolutional network: FCN.

augmentations of
images and pixels

Burn End-to-end framework
based on DL method

Standard
augmentations of
images and pixels

516 burn images IoU: 0.5144; PA:
0.6684; DC:
0.6782

Fewer training
cases

[71]

Praediatr
ic scald
injuries

CNN, based on the U-Net Standard
augmentations of
images and pixels

100 burn images Accuracy and
DC, both on
average 92%

Fewer training
images and final
healing result

[68]
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Table 4.Wound tissue type classification.

Classification Used Method(s) Used Features Dataset Outcome Limitation Ref.
DFU A generic Bi-CNN network

architecture
Standard
augmentations of
images and pixels

A DFU dataset of
1639 images

Accuracy 84.6% for
GT

Class imbalance [70]

Surgical, DFU, and
VU

DCNN-based classifier ROI and patches AZH Wound and
Vascular Center:
400 wound images

Maximum accuracy:
96.4%; Average
accuracy: 94.28%

Less financial and time
costs

[72]

PU NN, bayesian classification
and SVM

Color and textural
features

Color photos of
PUtaken by clinical
doctors: 113 images

Sensitivity: 78.7%;
Specificity: 94.7%;
Accuracy: 91.5%

Limited application and no
clinical comparison

[75]

PU CNN Patches, pixels
and color and
textural features

Igurko Hospital and
National Pressure
Ulcer Advisory
Panel: 22 images

Overall average
classification
accuracy: 92.01%

directly extrapolated to
other burn wounds or skin
tumor

[76]

DFU A pre-trained DNN for
feature extraction and
classification at the
patch-level

Patchs and pixels 350 images Accuracy than 80% Fewer training cases [77]

Infection/inflammatio
n,PU, Burn, Trauma,
DFU

U-Net with EfficientNet
and U-Net with
MobileNetV2

Standard
augmentations of
images and pixels;
Incorporates
automatic color
and measurement
calibration

Photos from smart
phone: 31 wound
images

IoU: 0.6964 Small dataset and the
imbalance classes

[78]

DFU DNN （ MobileNetV1
model）

Pixels (plus three
color channels)

Wound Care Center
of Christliches
Klinikum Melle
Germany: 326
augmented images

Precision: 0.67;
Accuracy: 0.69.

Automatic wound
documentation; Validation
statistics should be further
improved

[80]
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diabetic foot ulcers: DFU; venous ulcers: VU; pressure ulcers: PU; machine learning: ML; Deep learning: DL; area under the curve: AUC;

support vector machine: SVM; convolutional neural networks: CNN; deep neural network: DNN; deep convolutional neural networks: DCNN;

regions of interest: ROI; k-nearest neighbors: KNN; fully convolutional network: FCN; granulation tissue: GT; necrotic tissue: NT.

DFU State-of-the-art DNN for
semantic segmentation
fully CN: Seg Net, Unet,
FCN8, FCN 16 and FCN
32

Patches and
pixels， A set of
color and textural
features

Hospital Nacional
Dos de Mayo and
CHRO Hospital:
219 images

Accuracy: 92.68%;
DICE index: 75.74%

High robustness especially
for slough and GT；Fewer
training cases

[81]

DFU A conventional DL
technique for Superpixel
Colour Descriptor

Standard
augmentations of
images and
Superpixels

628 cases infection
and 831 cases
non-infection

AUC: 0.73 Difficult to distinguish
between ischemia and
infection in machine vision

[82]

Chronic wound A fuzzy divergence based
thresholding by minimizing
edge ambiguity and
statistical learning
algorithms ； Bayesian
classification and SVM

A set of color and
textural features;
Hue, saturation,
and intensity

CW images from
Medetec medical
image database: 74
wound images

Accuracies (GT:
86.94%, slough:
90.47%, NT:
75.53%) Overall
accuracy: 87.61%

Limited application;
Few features

[83]

Complex wounds
with five categories

Naive Bayes, Logistic
Regression, and Random
Forest

A pixel encodes
（RGB intensity）

27 images acquired
from 10 patients

FI of Random
Forest：0.9718

High precision; Few mages [84]

Wound Multi-label CNN ensemble,
Deepwound,

Image pixels and
corresponding
labels

1335 smartphone
wound images

AUC than 0.81 Don’t consider blur
detection

[85]

Murine wound U-Net segmentation
network

H&E skin sections 863 cropped wound
images

Accuracy ≥90% murine skin tissue [86]
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Table 5. The application, advantages, and limitations of different AI models and algorithms in wound repair.
Model Algorithms Application Advantage Limitation Extensibility Ref.

Shallo

w- ML

SVM Wound type

classification； Wound

area and depth

measurement;

Predict of wound healing

High global performance

rates； Generalize the

difficult wound segmentation

Accuracy limited by

conditions of image capture；

Can’t produce fine contour

Integrate into smart

phone；Easily extended to

higher dimensions

[24, 65,
102]

SVM with 3rd

order polynomial

kernel

Wound area

measurement

Higher accuracy than

Bayesian classifier

Insufficient sample Diagnose skin tumours

and other skin lesions

[83]

K-means Wound type

classification;

Predict of wound healing

Assess tissue healing in terms

of granulation categories;

Efficiently analyze the wound

healing status

Lack the ability to detect all

granulation regions;

Complication of image

capture process

Home care [103]

Random forest Wound type

classification;

Wound area

measurement

Enough classifying speed;

High accuracy compared with

SVM

Insufficient sample Integrate into mobile

device

[26, 84,
166]

Classification

tree

Predict of wound healing Simple algorithm; Strong

interactions between

predictor variables

Predictive power relies on

interactions between

predictor variables

Applies to a broad range

of wound etiologies

[111,
112]

DL GoogLeNet Wound area Overcome the differences in A light-weight framework Classify the other skin [23]
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measurement the computer vision

perspective

lesions

MobileNet Wound type

classification;

Tissue type classification

Automatic wound

documentation；Explainable

AI model

Validation statistics should be

further improved

- [28, 78,
80]

ConvNet Wound type

classification;

Predict of wound healing

Distinguish between wounds

that look very similar；

Amputation wound healing

with a high degree of

accuracy

Large consumption of

computing resources

Classify the other skin

injury

[109,
110]

FCN Wound type

classification; Tissue

type classification;

Wound depth

measurement

Own dataset with more

wound images；Replace

empirical and imprecise

manual measurement

Draw irregular boundaries；

Instead of learning from

human experts;

Class imbalance

Classify the other skin

lesions Predict key factors

influencing healing；

Integrate into

resource-constrained

platform devices

[46, 69,
81, 105]

Mask R-CNN Wound tissue type

classification

Classification performance

can be comparable to clinical;

Images of DFU without

performing any preprocessing

Unable to classify burn

depths on segmentation; No

comparison with other

frameworks; Real-time

performance is poor

- [43, 48,
49]
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U-Net Wound type

classification; Tissue

type classification;

Wound depth

measurement

Appropriately supervised

data to improve accuracy;

Achieve accurate DFU tissue

classification with small

samples

Race bound; Not consider 3D

structures; Fewer training

images and good healing

result

Diagnose skin tumours

and other skin lesions;

Integrate into mobile

device

[23, 44,
53, 68,
78, 80,
86]

VGG16 Wound area

measurement

Higher precision than the

traditional chronic wound

image

Insufficient sample Home care [44, 49]

ResNet Wound type

classification;

Wound area and depth

measurement

Quickly diagnose of patients

with burn higher precision

than VGG-16、GoogleNet

Insufficient sample; Fewer

training images and final

healing result

- [26, 35,
43, 66,
68]

Bilinear CNN
(Bi-CNN)

Tissue type classification Higher precision than
AlexNet、VGG16、ResNet、
Densenet

Class imbalance Other medical image
classification

[70]

DnCNN Predict of wound
progress

Accelerate training and
enhance denoising outcomes;
Precisely capture nerve fibers

Not elucidate the
morphological characteristics
of cutaneous nerves in 3D;
Real-time performance is
poor

Neural prediction of other
tissues; Precision
medicine

[108]

Others

Multialgorithm
(Neural networks
and Bayesian
classifiers，et al)

Tissue type
classification; Wound
area and depth
measurement; Predict of
wound progress;
Personalized treatment

High global classification
accuracy rates; Well-adapted;
Increased robustness

Increase in complexity; Need
more data types

Classify the other skin
injury; More clinical
setting

[52, 65,
75, 97,
106,
118]

AI chatbot
(IDX-DR,

Personalized treatment
and lifestyle

Generate tailored
recommendations based on

limited by the information it
has within its history plus the

Complex wound care;
Diverse health care

[120,
139].
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ChatGPT，et al） recommendations;
Predict of wound healing

the patient’s specific needs;
Language comprehension and
generation

information it is given in a
particular scenario

settings; patient education

Mobile
application (Burn
Med, C4W,
Swift,TA, et al)

Wound area and depth
measurement; Predict of
wound progress;
Personalized treatment

High accuracy;
Faster detection of high risk
wounds

Accuracy depends on camera;
Captured photos are prone to
color differences

More clinical setting;
Telemedicine; Home
monitoring

[56, 62,
103,
118,
119]

artificial intelligence: AI; support vector machine: SVM; machine learning: fully convolutional network: FCN; CNN; deep neural networks; ML,

deep learning: DL; diabetic foot ulcers: DFU; 3D: three-dimensional.
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