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Structured abstract 11 

Background. The sensitivity and specificity of current breath biomarkers are often 12 

inadequate for effective cancer screening, particularly in colorectal cancer (CRC). 13 

While a few exhaled biomarkers in CRC exhibit high specificity, they lack the requisite 14 

sensitivity for early-stage detection, thereby limiting improvements in patient survival 15 

rates. 16 

Methods. In this study, we developed an advanced Mass Spectrometry-based 17 

volatilomics platform, complemented by an enhanced breath sampler. The platform 18 

integrates artificial intelligence (AI)-assisted algorithms to detect multiple volatile 19 

organic compounds (VOCs) biomarkers in human breath. Subsequently, we applied this 20 

platform to analyze 364 clinical CRC and normal exhaled samples. 21 

Results. The diagnostic signatures, including 2-methyl, octane, and butyric acid, 22 

generated by the platform effectively discriminated CRC patients from normal controls 23 

with high sensitivity (89.7%), specificity (86.8%), and accuracy (AUC = 0.91). 24 

Furthermore, the metastatic signature correctly identified over 50% of metastatic 25 

patients who tested negative for carcinoembryonic antigen (CEA). Fecal validation 26 
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indicated that elevated breath biomarkers correlated with an inflammatory response 27 

guided by Bacteroides fragilis in CRC. 28 

Conclusion. This study introduces a sophisticated AI-aided Mass Spectrometry-based 29 

platform capable of identifying novel and feasible breath biomarkers for early-stage 30 

CRC detection. The promising results position the platform as an efficient noninvasive 31 

screening test for clinical applications, offering potential advancements in early 32 

detection and improved survival rates for CRC patients. 33 

Trial registration. Chinese Clinical Trial Registry (ChiCTR2300073117) 34 
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Graphical abstract: 39 

Introduction 40 

Colorectal cancer (CRC) is the third most prevalent cancer and the second top cancer-41 

related cause of death worldwide[1]. Projections indicate that by 2030, global CRC 42 

cases will witness a 60% surge, reaching over 2 million new cases, leading to around 1 43 

million fatalities[2]. Earlier detection of CRC could increase survival by an estimated 44 

30 to 40%. Moreover, patient prognosis in CRC is predominantly influenced by the 45 
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clinical stage at diagnosis, especially the presence of distant metastasis. Despite state-46 

of-the-art computed tomography, fecal occult blood test and serum carcinoembryonic 47 

antigen (CEA) for patients with CRC, the rate of correct diagnosis is 40-65% and the 48 

rate of identifying metastases is 40-60%[3]. Meanwhile, these traditional methods are 49 

invasive, time-consuming, expensive and may lead to complications. Given these 50 

challenges, it is urgent to introduce a novel diagnostic tool for precise identification of 51 

patients with preclinical and truly localized disease in CRC with higher patient 52 

compliance and low cost. 53 

Breath serves as a valuable source for recognizing highly sensitive biomarkers as 54 

it promptly reflects bodily changes[3, 4]. Moreover, volatile organic compounds (VOCs) 55 

composition in breath is significantly simpler than that of serum or plasma, making 56 

breath an optimal choice for analyses[5]. Both our research and prior investigations 57 

have identified >180 VOCs in human breath[6]. Approximately 40% of these VOCs in 58 

breath originate from those in plasma, and over 100 VOCs produced in the colorectum 59 

can be detected in the breath of healthy subjects[7]. Thus, breath is a feasible tool for 60 

identifying noninvasive biomarkers for CRC. However, large-scaled and effective 61 

application of breath biomarkers in clinical practice is often hampered by three 62 

challenges: (i) Lack of standardization in sample collection. Tedlar® and other polymer 63 

storage bags may lead to limited sensitivity due to collection of single exhaled breath 64 

and contamination with VOCs from bag[8, 9], (ii) Deficiency of a universal breath 65 

VOCs analysis method. The common analytical instruments were limited by inter-66 

instrument variability, temporal stability and poor chemical selectivity, such as SIFT-67 

MS and Electronic Nose[10, 11]. (iii) Insufficiency of machine learning analytical 68 

methods to recognize reliable marker panel. Some models are of poor design and 69 

inadequate sample size, risking bias and overfitting[12]. Hence, an imperative 70 

comprehensive study, including standardized methodology for breath analysis and 71 

biomarkers screening, is still unavailable until now. 72 

Here, we developed a prospective MS-based volatolomics platform combined with 73 
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improved breath sampler for detection of CRC to directly address the challenges of 74 

standardization in breath sampling and analysis in translational clinical analyses. Then 75 

we utilized optimized artificial intelligence (AI)-based machine learning (ML) 76 

algorithms with vigorous feature selection to build diagnostic and metastatic models of 77 

14 markers and 7 markers, respectively. The sensitivity and specificity of the models 78 

were evaluated in the clinically relevant cohort of healthy individuals and those with 79 

CRC in two stages, and compared with that of CEA. At last, the alteration of crucial 80 

breath VOCs is correlated in gut microbiome. This step-by-step research generates 81 

greatly precise non-invasive breath VOCs markers and demonstrates the promising role 82 

of breathomics in future CRC detection. 83 

Results 84 

Study design and clinical characteristics 85 

Figure 1A demonstrate a breath biopsy technique that merges AI and TD-GC × GC-86 

QQQ MS to simultaneously diagnose CRC by untargeted analysis of exhaled VOCs. 87 

Our technique acquires GC-MS signals of endogenous VOCs, then analyzes them using 88 

robust machine learning algorithms. There are two outputs: cancer detection and tumor 89 

stages discrimination. In the first step, the AI-enhanced machine learning framework 90 

determines each signal as normal or cancerous, yielding a cancer likelihood score. In 91 

the second step, multiple classifier models, trained on cancer stages using the one-92 

vs.one strategy, generate metastasis evaluations of positive predictions from the prior 93 

step. We highlight the distinguishing performance of this system using 160 samples that 94 

included difference stage CRC patients (Figure 1B). 95 

A cohort of 194 participants, comprising 93 HCs and 101 CRC patients (including 96 

without metastasis and with varying degrees of metastasis), was recruited between July 97 

2023 and November 2023. After excluding 12 individuals, resulting in 182 participants 98 

eligible for further analyses. The average age of the participants was 63.8 ± 16.8 years, 99 

with 56% being male. Both age and gender distributions showed balance between the 100 



 

5 

HCs and CRC patients (P > 0.05), with the HC group being slightly younger (Figure 101 

2A). Patients with CRC displayed a higher likelihood of having hypertension, elevated 102 

serum triglyceride levels, and increased insulin levels. Detailed baseline characteristics 103 

of these participants can be found in Table S1. The HCs contained some patients with 104 

mild intestinal polyps, which were analyzed by PCA and clustered heat maps with the 105 

completely healthy group in this study (Figure S1; Figure S2). It was found that there 106 

was almost no difference between the two groups, so we unified them together as HCs. 107 

Refined breath-VOCs profile minimizing confounding factors 108 

Breath samples were gathered concurrently with corresponding ambient air at the 109 

Huadong hospital site and analyzed by GC-MS/MS. We detected and extracted a total 110 

of 72 VOCs from the chromatograms. Averaging was applied to repeated measurements 111 

before subjecting the normalized peak areas to principal component analysis (PCA) for 112 

outlier identification and removal. Using partial least squares—discriminant analysis 113 

(PLS-DA), we achieved a distinct separation between breath and ambient air samples 114 

(R2Y = 0.90, Q2Y = 0.87, P < 0.05) (Figure 2B). This separation was driven by 33 115 

VOCs, with a variable importance projection (VIP) score > 1. A complete list of the 116 

VOCs characterizing each sample type and their respective VIP scores can be found in 117 

Table S2. This separation was also confirmed via low correlation between breath and 118 

ambient air (spearman r -0.3-0.3; Figure 2C), which exhibited our breath testing was 119 

independent from ambient air. Furthermore, figure 2C shows the ratio of each VOC in 120 

human breath to ambient air. The median ratio is 1.28, indicating that the intensity of 121 

the breath VOC signal is usually higher than the corresponding ambient VOC signal, 122 

even though they are usually of the same order of magnitude. 123 

We further examined the effects of smoking habits on breath VOCs derived from 124 

patients with CRC. The ANOVA and binary logistic analysis showed that eight 125 

smoking-related VOCs (benzene, toluene, ethylbenzene, o-xylene, p-xylene, 126 

acetophenone, 2-methylfuran, and decane) were independent risk factors for smoking 127 

habit, and should be excluded from subsequent analysis (Figure 2D; Table S3; Table 128 
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S4). Moreover, we explored drinking habits as well as BMI and gender in the same way 129 

as above, but found no significant risk factors associated with these factors. Thus, the 130 

remaining 64 VOCs are listed in Table S5 as breath metabolites set after adjusting for 131 

these relevant confounders. 132 

The breath-VOC profile of CRC was demonstrated by linear discriminant analysis 133 

(LDA) using breath metabolites set (Figure 2E). The first two principal components 134 

explained 96% of the overall variance. The CRC samples exhibited differentiable 135 

signatures compared to healthy control samples, as evidenced by their spatial separation 136 

in the LDA diagram, while polyps could not be discerned from the other HC samples. 137 

Similarly, the volcano plots revealed enrichment of these VOCs in the CRC cases. 138 

(Figure S3). According to Metabolomics Standard Initiative level 1 criteria for 139 

metabolite identification, the most common chemical classes associated with CRC in 140 

this study included hydrocarbons (27.69%), aldehydes (18.46%), ketones (13.85%), 141 

acids (7.69%), sulfur compounds (7.69%), terpenoids (6.15%), alcohols (4.62%), 142 

phenols (4.62%), nitrogen compounds (3.08%) and aromatic compounds (1.54%) 143 

(Figure 2F). These volatile organic compounds exhibit multifaceted correlations, with 144 

short-chain fatty acids (SCFAs) presenting as self-associated clusters in both the 145 

heatmap and categorical correlation diagrams (Figure S4; Figure S5). 146 

Innovative AI-driven models for accurate CRC Diagnosis 147 

We performed an AI-based study relying on breath VOCs set derived above to diagnose 148 

CRC with different stages. The study consisted of three parts: (1) AI-assisted feature 149 

importance list generation; (2) model-based variable selection; (3) model derivation and 150 

validation (Figure 3A). Breath samples were randomly assigned into training and 151 

validation cohorts with a 4:1 proportion. 152 

In order to rank feature importance, we first built a selection frequency counter 153 

employing the SVM-RFE, LASSO and Boruta algorithms (Figure 3B; Methods for 154 

details). The frequency counter summarizes the selected features for each ML method 155 

during bootstrap procedure (Table S6). Following 100 iterations of the process, a 156 
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feature importance list was generated by ranking total selection frequencies (Table S7). 157 

With the ranked list of breath VOCs, we constructed a comprehensive pipeline for 158 

variable selection. This process was accomplished by comparison of multiple baseline 159 

models, each of which displayed distinct adaptabilities to the original data structure 160 

upon the incremental input of 64 variables in descending order. These models included 161 

logistic regression (RL), random forests (RF), support vector machine (SVM), extreme 162 

gradient boosting (XGB), and neural networks (NNet), with corresponding mean AUCs 163 

of 0.71, 0.72, 0.74, 0.69, and 0.86 and mean accuracy of 72%, 75%, 77%, 75%, and 164 

80%, respectively (Figure 3C; Table S8). In terms of its best discriminant performance，165 

NNet was chosen to construct diagnostic model for CRC detection. Subsequently, NNet 166 

extracted the minimum 14 features from feature importance list by developing an 167 

efficiency sweet spot which was reflected in Fig 3d. These 14 features generated a 168 

diagnostic marker panel for CRC, comprising 3 short-chain fatty acids (SCFAs), 2 169 

aldehydes, 2 ketones, 2 hydrocarbons, and 2 sulfur-containing compounds (Table S9).  170 

By using nested cross-validation approach, we finely tuned hyperparameters of 171 

NNet to fit this diagnostic marker panel, and finally constructed the Diagnostic Model. 172 

For CRC detection, the model achieved an AUC of 0.90, sensitivity of 89.1%, 173 

specificity of 89.6%, and accuracy of 91.6% in the training set, which consisted of 72 174 

CRC and 74 HCs (n = 146) (Figure 3E). We also carried out a 10-fold internal cross-175 

validation, yielding a verified AUC of 0.87 and an accuracy rate of 86.9%. Meanwhile, 176 

in the validation set comprised of 18 HCs and 18 CRC (n = 36), the Diagnostic Model 177 

attained 88.3% sensitivity, 92.3% specificity with an AUC of 0.91 (Figure 3E). These 178 

results indicated this model possesses outstanding performance for CRC detection and 179 

achieves great improvements compared to those models with only a single classifier in 180 

studies of Yang. et al[13]. 181 

Subsequently, we embarked on developing the Metastatic Model, which was 182 

designed to utilize the same methodology for detecting varying stages of CRC. After 183 

evaluating five baseline models, we determined that the SVM classifier yielded the 184 
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most optimal results in terms of AUC and accuracy. Following the creation of the SVM 185 

feature efficiency curve, we were able to extract the top 7 features from a pool of 14 186 

variables in the Diagnostic Model, as depicted in Figure 3D. These seven features 187 

encompassing 1 hydrocarbon, 2 aldehydes, 2 ketones, sulfide, allyl methyl and 188 

hexanoic acid, were defined as the metastatic marker panel (Table S10). Utilizing this 189 

panel, we optimized the hyperparameters of SVM and developed the final Metastatic 190 

Model. This model demonstrated a sensitivity of 81.1%, a specificity of 84.0%, an 191 

accuracy of 87.2%, and an AUC of 0.87 when distinguishing CRC patients with and 192 

without metastases (Figure 3F). While a better result was acquired for identifying NM 193 

from the metastatic subgroups LNM and DM, yielding an identification accuracy of 194 

82.4% and 89.6%. To further examine the sensitivity of Metastatic Model, we evaluated 195 

the performance of Diagnostic Model in discerning LNM and DM from NM group. 196 

These paired comparisons generated AUCs of 0.500 and 0.638, respectively (Figure 197 

S6), indicating the Diagnostic Model has limited predictive power for metastatic stages. 198 

The comparative analysis of two models highlights the better sensitivity and reliable 199 

performance of the Metastatic Model with 7 features in distinguishing CRC with 200 

metastasis. Overall, our Diagnostic/Metastatic models exhibit excellent at identifying 201 

both CRC and different staging types, and provide a powerful complement to existing 202 

CRC diagnostic techniques. 203 

We further assessed the efficiency of 14 markers in the diagnostic model (Figure 204 

S8) and found that furfural and hexanoic acid showed the most favorable performance 205 

with AUCs of 0.706 and 0.637 in the training cohort. (Figure 4B). Additionally, 206 

metastatic markers furfural and Octane-2-methyl were significantly higher in CRC 207 

patients' breath, while hexanoic acid, sulfide, and allyl methyl levels decreased with 208 

cancer progression, reaching the lowest levels in DM (Figure 4A). These findings 209 

provide valuable insights into potential markers for metastasis and indicate their 210 

association with CRC advancement. 211 
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Breath VOCs biomarkers complemented FIT and serum CEA 212 

For comparison, we concurrently assessed the fecal immunochemical test (FIT), a 213 

recognized CRC screening biomarker, in 145 fecal samples. These were methodically 214 

distributed into two datasets: the training set, comprising of healthy controls (HC), n = 215 

51, and CRC patients, n = 50; and the validation set with HC, n = 22, and CRC, n = 22. 216 

In the training cohort, FIT demonstrated a sensitivity of 62.8% (31/50) and an 217 

impeccable specificity of 95.8% (49/51). Contrarily, within the validation cohort, the 218 

sensitivity was recorded at 70.2% (15/22) while maintaining a specificity of 100% 219 

(22/22). Concurrently, our novel breath diagnostic marker panel exhibited a 220 

commendable area under the curve (AUC) of 0.902 with a sensitivity of 85.7% and 221 

specificity of 86.3% in the training set. In the validation set, the figures stood at 0.910, 222 

88.7%, and 91.6%, respectively. Notably, the diagnostic sensitivity proffered by the 223 

breath marker panel surpasses that of FIT. Analyzing both the training and validation 224 

cohorts, the breath marker panel augmented diagnostic precision for an additional 12 225 

patients (24.0%) and 6 patients (27.2%), respectively, as visualized in Figure 4C. Of 226 

those that returned negative results via FIT in CRC, the training set accurately 227 

diagnosed 63.6% (12/19), and the validation set achieved an impressive 87.5% (6/7) 228 

through the breath diagnostic marker panel. The combination of both FIT and the breath 229 

diagnostic marker panel heralds a more proficient diagnostic approach, manifesting a 230 

sensitivity and specificity of 88.8% and 94.1% in the training set, with corresponding 231 

figures of 91.8% and 92.4% in the validation set. 232 

Shifting our focus to the metastatic dimension, the widely acknowledged clinical 233 

CRC metastasis biomarker, CEA, was carefully evaluated in 80 serum samples. The 234 

overarching results suggest that the breath metastatic model's efficacy parallels that of 235 

serum CEA. When we integrated the breath VOCs marker panel with serum CEA, there 236 

was a significant increase in predictive efficacy compared to the standalone use of CEA. 237 

This combination manifested an AUC of 0.939, with sensitivity, specificity, and 238 

accuracy metrics at 90.9%, 88.2%, and 93.5%, respectively. Adopting the established 239 
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clinical CEA threshold of 5 ng/mL to distinguish metastatic from non-metastatic CRC, 240 

serum CEA unveiled a sensitivity of 58.1%, a specificity of 78.0%, and an AUC of 241 

0.615 (Figure S7). Within the cohort diagnosed with metastatic CRC, CEA identified a 242 

total of 24 individuals (58.5%). The breath metastatic markers further augmented the 243 

diagnostic power by recognizing an additional 10 patients (24.4%). Subgroup analyses 244 

elucidated the metastatic model's enhanced discriminatory capacities, identifying an 245 

extra 6 patients (27.2%) with lymph node metastasis (LNM) and 5 patients (26.3%) 246 

with distant metastasis (DM), compared to CEA's detection of 12 individuals (54.5%) 247 

with LNM and 12 cases (63.2%) with DM (Figure 4D). Of the cohort who were CEA-248 

negative in LNM or DM categorizations, 60.0% (6 out of 10) and 71.4% (5 out of 7) 249 

were accurately identified as having metastases via our marker panel. 250 

To better understand the effectiveness of breath VOCs in detecting CRC and 251 

determining the risk of metastasis, we utilized the cutoff values of each key VOC and 252 

classifiers of each model on both training and validation cohorts. When it comes to 253 

diagnosis, combining the marker panel with the FIT showed a sensitivity of 88.8% and 254 

specificity of 94.1% in the training set, and 91.8% and 92.4% in the validation set, 255 

respectively (Figure 4E- bottom). At the same time, when it comes to assessing 256 

metastatic risk, using the marker panel along with serum CEA resulted in a sensitivity 257 

of 90.9% and specificity of 88.2% (Figure 4E-upper). It's worth noting that the marker 258 

panel consistently outperformed individual compounds in terms of sensitivity. 259 

Moreover, when combined with FIT or serum CEA, the marker panels from both 260 

approaches significantly improved diagnostic accuracy. 261 

Tracing CRC breath markers to gut microbiota origins 262 

The gut microbiome and its metabolites play roles in both CRC development and 263 

progression. Our study utilized 16S rDNA sequencing techniques to shed light on the 264 

origins of exhaled CRC biomarkers, revealing potential associations with gut 265 

microbiota. For this purpose, we collected fecal samples from 44 participants, including 266 

25 CRC patients and 19 HCs. Initially, we enumerated the top 10 species in terms of 267 
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abundance at the phylum levels for the two groups and depicted these in relative 268 

abundance bar charts (Figure 5A). Upon aligning sequences to assess bacterial diversity 269 

differences, we noted significant variations in the Shannon (6.03 ± 1.39 vs. 6.55 ± 0.90, 270 

P = 0.053) and Chao1 indexes (425.70 ± 79.63 vs. 485.81 ± 127.98, P = 0.048) between 271 

CRC and HC groups (Figure 5B). Weighted and Unweighted PCoA plots illustrated 272 

group segregation based on the first three PCoAs (Figure S9). These findings imply that 273 

the richness and diversity of gut microbiota could be significantly shaped by the tumor 274 

burden, providing an analytical basis for exploring the metabolic pathways related to 275 

CRC exhaled biomarkers. 276 

Based on the PICRUSt2 function prediction of the 16S rDNA sequence, 17 277 

functional pathways of significantly different were observed between CRC group and 278 

HCs group (Data S1; Figure S10). Notably, among 17 functions pathways, only five 279 

were upregulated in CRC (log2 (Control/CRC) < 0, P < 0.05, FDR < 0.05), all of which 280 

are involved in energy utilization, cell signaling, and host interactions. Next, we plotted 281 

a tripartite correlation heatmap using the breath biomarker data[14], PICRUSt2 282 

functional enrichment data and species abundance data (Figure 5C).  283 

A total of 12 VOCs exhibited significant associations with 15 metabolic pathways 284 

and 21 prominently enriched species (P < 0.05). This underscores the pivotal role of 285 

microbial activities and taxa in interactions with breath VOCs in influencing host well-286 

being. Significantly positively correlations were detected between B. fragilis and those 287 

five upregulated pathways (Figure 5C, blue module; r > 0.7, P < 0.01). This suggests 288 

that B. fragilis of CRC patients may not only enhance energy substrate utilization 289 

efficiency but also intensify host inflammatory responses and possibly promote the 290 

spread of cancer cells. Such insights indicate close attention to the impact and role of 291 

B. fragilis in CRC progression. 292 

As evidenced by Figure 5C, exhaled dimethyl octane and tetradecane positively 293 

correlate with B. fragilis (Bacteroides), while D-limonene negatively correlates. 294 

Dimethyl octane and tetradecane are common markers of oxidative stress in human, 295 
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contrast with antioxidant D-limonene. Concurrently, supported by studies from Du and 296 

Bhandari, B. fragilis is widely associated with inflammatory responses that can promote 297 

cancer cell proliferation by triggering the IL-17 inflammatory cascade response[15-17]. 298 

This association elucidates a possible mechanism of tumor proliferation driven by B. 299 

fragilis that augments the production of dimethyl octane and tetradecane while 300 

inhibiting D-limonene (Figure 5D). Furthermore, Figure 5C reveals positive 301 

correlations between exhaled 2-nonanone and geranyl acetone and Akkermansia. These 302 

ketones are produced during lipid β-oxidation and linked to activities in liver. 303 

Akkermansia stimulates their production by enhancing hepatic and intestinal 304 

circulation of TBA, thereby exhibiting anti-inflammatory and anti-cancer effects. This 305 

observation supports the notion that elevated concentration of 2-nonanone and geranyl 306 

acetone in exhaled breath of CRC may be a consequence of Akkermansia's positive 307 

regulation on lipolysis (Figure 5E). Significant reductions in exhaled butyric and valeric 308 

acids in CRC were observed, corresponding with decreased abundances of 309 

Bifidobacterium and Lactobacillus. These bacteria have been implicated as SCFAs-310 

producers in several studies. In this way, they serve as the primary energy source for 311 

colorectum epithelial cells and exert a positive effect on gut health. This reduction in 312 

butyric and valeric acids is most likely due to declines in beneficial acid-producing 313 

bacterial abundance in gut (Figure 5D). Additionally, an increased exhaled allyl methyl 314 

sulfide concentration associating with up-regulation of Desulfovibrio was noted in the 315 

CRC group (Figure 5C). Desulfovibrio metabolizes thioethers into thiols via sulfur 316 

reductase, while producing hydrogen sulfide. This toxic gas potentially damages 317 

intestinal mucosal barriers, induces inflammatory responses, and eventually contributes 318 

to the development of colorectal cancer. Therefore, the elevation in exhaled allyl methyl 319 

sulfide concentration may originate from the dominant proliferation of Desulfovibrio. 320 

Through our investigations, production mechanisms of most substances in the 321 

breath marker panels have been identified through relevance studies with the gut 322 

microbiota, which related to inflammatory response, lipid oxidation, energy supply, and 323 
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cellular damage. Our findings suggest that gut microbiota activities contribute to 324 

understanding the generation mechanisms of exhaled VOCs in CRC patients, 325 

underscoring the feasibility of exhaled markers in clinical diagnosis and metastasis 326 

prediction for CRC. 327 

Discussion 328 

This study focuses on the early diagnosis of colorectal cancer through an extensive 329 

investigation of breath markers. Utilizing TD-GC×GC-QQQ-MS technology, we 330 

successfully identified a total of 72 VOCs from the breath samples of 90 colorectal 331 

cancer patients and 92 healthy controls. After adjusting for confounding factors, 332 

advanced AI methods were subsequently employed to construct both the CRC 333 

Diagnostic and Metastatic Models. These models revealed the presence of fourteen 334 

diagnostic markers and seven metastatic markers, which showcased superior 335 

performance compared to conventional tests like CEA and FIT. Moreover, through a 336 

comprehensive analysis involving the gut microbiome, we established a connection 337 

between these markers and inflammatory responses, lipid metabolism, and other 338 

significant factors. This sheds light on their potential not only as indicators of colorectal 339 

cancer dynamics but also for fostering advancements in clinical applications. 340 

The utilization of exhaled VOCs for diagnostic purposes in CRC faces limitations 341 

due to confounding factors. In order to mitigate these limitations, we implemented a 342 

system that utilizes TD tubes with the ReCIVA sampler for breath sample collection. 343 

This method of sampling provides clean air and is superior to traditional equipment 344 

such as airbags, effectively limiting interference from ambient air and ensuring 345 

accuracy of respiratory data. Monitoring pressure and CO2 levels during patient 346 

breathing in real-time proved to be essential to achieving accurate capture of breath 347 

samples. Our correlation analysis revealed minimal influence from ambient VOCs, 348 

indicating that our method successfully mitigates ambient VOC interference. These 349 

findings are consistent with Di Gilio's comparative study on respiratory sampling 350 

techniques[18]. Previous research has shown that physiological and habitual factors 351 
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such as age, BMI, smoking, and drinking may impact the distribution of VOCs in 352 

exhaled breath. However, our variance and regression analyses did not identify age, 353 

BMI, and drinking as significant risk factors for CRC. Smoking, however, was found 354 

to significantly relate to five BTEX compounds (benzene, toluene, ethylbenzene, and 355 

xylene) and 2-methylfuran in human breath. BTEX compounds have been previously 356 

identified as secondary products of cigarette combustion due to their positive 357 

correlation with exhaled CO levels[19]. 2-methylfuran has also been found to be an 358 

effective indicator for identifying smoking participants, as demonstrated by Alonso et 359 

al[20]. Consequently, we excluded these smoking-related VOCs from further 360 

investigation. These results highlight the effectiveness of our approach in minimizing 361 

potential confounders and maintaining the integrity of subsequent screening programs 362 

involving exhaled biomarkers. 363 

Subsequently, we developed an AI-based model to identify breath markers for 364 

CRC detection. During the modeling stage, we integrated the outcomes obtained from 365 

three AI-driven feature selection techniques: the RFECV algorithm utilizing recursive 366 

action, the Boruta algorithm employing random shadow generation, and the LASSO 367 

algorithm employing penalized shrinkage training. This synergy of techniques within 368 

our approach addressed issues of feature redundancy and selection bias that have been 369 

observed in previous model-based biomarker studies[21], which often neglected the 370 

crucial step of comprehensive feature selection or relied solely on a singular 371 

method[22]. Moreover, our comparison between models with and without feature 372 

ranking revealed a substantial disparity in performance (AUC 0.76-0.95 vs 0.46-0.70), 373 

thereby validating the efficacy of our feature selection outcomes. This phenomenon can 374 

be attributed to the successful elimination of noise features utilizing the sequential 375 

inputting strategy (Figure S11). In the event that all features were incorporated into the 376 

models, there would be a heightened risk of overfitting and diminished performance, as 377 

emphasized by Wang. et al. in their study[23, 24]. Furthermore, by utilizing a feature 378 

importance list, we assessed the adaptability of five baseline classifiers in terms of mean 379 
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AUC and accuracy. We then selected the most optimal classifier among them for 380 

subsequent modeling processes. When compared to prior studies on biomarker 381 

modeling conducted by Halner et al.[25, 26], the classification accuracies achieved by 382 

our models exhibited significant enhancements. This improvement can likely be 383 

attributed to our meticulous consideration of the compatibility between classifiers and 384 

data structures. Overall, our AI methodology assures precise biomarker identification, 385 

enhances the utility of models, and provides a reliable means for non-invasive CRC 386 

diagnosis through exhalation. 387 

In utilizing our AI-driven methodology, we identified breath markers for CRC 388 

comprising 3 SCFAs, 3 aldehydes, 5 hydrocarbons, and 3 sulfur-containing compounds. 389 

We then evaluated and compared the performance of these breath markers with that of 390 

FIT or CEA, which are the primary globally recognized CRC-specific tests used by 391 

physicians and patients[27]. Our Diagnostic Model, based on these breath markers, 392 

enhances sensitivity by almost a third compared to FIT. Additionally, Remarkably, 24% 393 

of the FIT-negative CRC patients in the training cohort and 27.2% in the validation 394 

cohort were correctly identified through our diagnostic model. When evaluating tumor 395 

invasion and metastasis, the Metastatic Model outperforms CEA in accuracy, increasing 396 

it from 69.2% to 93.5% (+24.3%). In comparison to relying solely on CEA (≥5 ng/mL), 397 

incorporating CEA with the metastatic markers increases sensitivity from 58.1% to 398 

90.9%, representing a significant improvement of 32.8% for all metastatic patients. 399 

These analyses reveal that our exhaled markers not only capture physiological 400 

alterations in cancer patients but also discern CRC with greater accuracy and efficiency. 401 

Additional further research is needed to investigate if our breath metastatic markers can 402 

serve as an early warning for recurrent CRC. 403 

We undertook an exploration of sources and production processes of respiratory 404 

biomarkers that can be utilized for CRC detection. Numerous studies have pointed 405 

towards the significant role of the gut microbiome in CRC tumorigenesis and 406 

progression, potentially via microbial metabolites, triggering pro-inflammatory 407 
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responses, and affecting energy equilibrium within cancer cells[28]. With this 408 

understanding, we combined fecal bacterial 16S rDNA sequencing results with breath 409 

markers to elucidate potential associations. Consistent with our findings, existing 410 

literature indicates an elevation in the levels of alkanes and methylated alkanes in the 411 

exhalations of cancer-afflicted individuals[29]. The origins of these methylated alkanes 412 

remain a subject of contention; however, prevailing sentiments within the academic 413 

community suggest that they are byproducts of oxidative stress[30]. Our results support 414 

this perspective, revealing that the pro-inflammatory role of B. fragilis intensifies 415 

oxidative stress in vivo, culminating in heightened levels of dimethyl octane and 416 

tetradecane in the breath of CRC patients. It is noteworthy that ketones, closely 417 

connected to augmented fatty acid oxidation in various cancers[31], are expected to 418 

largely stem from gut microbiome dysfunction[32]. This observation dovetails with our 419 

discovery regarding Akkermansia's facilitative role in lipolysis. Interestingly, studies in 420 

DeBerardinis. have found that the lipid membrane of cancerous cells exhibits a 421 

pronounced saturation compared to their benign counterparts[33]. This lipidic interplay 422 

could potentially explain the elevated aldehyde concentrations in the breath of CRC 423 

patients[34]. While the precise origins of benzonitrile and 3-methylthiophene in our 424 

marker panel remain unclear, previous studies have attributed them to food or industrial 425 

sources[35, 36]. In summary, the variations in our acid, ketone, and hydrocarbon breath 426 

markers primarily result from imbalances in gut microbiome, while aldehydes are 427 

influenced by changes in the cellular microenvironment. These intertwining influences 428 

highlight the intricate relationship between the gut microbiome and CRC progression 429 

and warrant further exploration in future studies. 430 

Meng et al. applied HPPI-TOFMS to study the breath test of cancer patients, and 431 

they used a Tedlar gas bag to collect the patients' breath gas[37]. The samples were 432 

collected one breath at a time due to the bag's capacity limitation, and the entire 433 

collection process lasted only 60 seconds. This presents a significant issue, as breath 434 

markers with low concentrations may not reach the detection limit and therefore cannot 435 
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be detected by the instrument. In addition, our improved breath sampler uses TD 436 

adsorbent tubes to concentrate and collect the subject's breath for 15-20 minutes, with 437 

a volume of up to 2L. This eliminates the risk of exogenous pollutants and loss of VOCs 438 

during storage. Furthermore, the machine learning component of our system 439 

exclusively employs SVM algorithms to build the model. While this approach has 440 

limitations, we have determined it to be the most effective modeling tool for our 441 

purposes. It appears that this study did not have a feature screening process, but rather 442 

included all detected substances in the training. As a result, the bio-interpretability of 443 

the findings was poor, and they subsequently failed to identify a breath marker for lung 444 

cancer. In contrast, our platform integrates multiple machine learning algorithms to 445 

form a classifier evaluation pipeline that identifies the optimal solution for the 446 

classification algorithm based on experiments with a high-capacity collection of 447 

samples. Fourteen VOCs were identified as diagnostic markers for colorectal cancer. 448 

The biological origin of these markers was also discussed from the perspective of gut 449 

microbiome. Altomare et al. used a similar breath sampler for CRC-related study, but 450 

also suffered from insufficient sampling time and oversimplified method for screening 451 

markers[38]. Their results showed that ethylbenzene and methylbenzene were key 452 

VOCs for colorectal cancer, but these two substances have been identified as exogenous 453 

in several studies, and they were found to be smoking-related confounders and were 454 

excluded in our study. In conclusion, our platform demonstrated greater rationality and 455 

superiority in sample collection and analysis, data cleaning, classification modeling, 456 

and source interpretability compared to similar work. 457 

Limitations of this study should be considered when explaining these results. 458 

Firstly, the restricted sample size of advanced CRC patients may compromise the 459 

precision of the Metastatic Model in differentiating between stage III-IV cancer 460 

participants. Therefore, further validation is necessary to ensure accuracy. Secondly, all 461 

breath samples used for this study were collected solely from Huadong Hospital, which 462 

could introduce bias due to the absence of multi-center external validation. Thirdly, we 463 
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focused solely on the basic classification labels of CRC, without digging into the details 464 

of subtype categorization[39]. Additionally, the relationship between our breath 465 

markers and the gut microbiome during CRC progression remains unclear. This 466 

requires multiple follow-up samples from key patients, which we plan to implement in 467 

future studies. Research on breath biomarkers is still in the exploratory phase, and the 468 

methods used are relatively complex. This currently limits large-scale clinical 469 

applications. The ultimate goal of this research is to develop a simple and inexpensive 470 

portable device that can provide results as quickly as an alcohol test, thus achieving 471 

good results in disease screening. 472 

Despite these limitations, our work offers promising results for non-invasive CRC 473 

diagnosis. Our investigation identified potential associations between breath 474 

biomarkers and the gut microbiome, revealing possible metabolic mechanisms 475 

underlying these biomarkers. Ultimately, our findings present exciting innovations for 476 

reliable CRC detection and offer insight into potential metabolic approaches for treating 477 

the disease. 478 

Methods 479 

Study participants 480 

A total of 90 eligible CRC patients (50 males and 40 females; median age 67 ± 17.1 481 

years) were recruited from Huadong Hospital affiliated to Fudan University in Shanghai, 482 

from July 2023 to November 2023. All cohorts were recruited simultaneously and 483 

consecutively throughout the study. CRC diagnoses were confirmed through 484 

histological examination of tissues and radiological imaging, and breath samples were 485 

obtained in the morning before any surgical, chemotherapeutic, or radiotherapeutic 486 

intervention. Patients who had recovered from surgery accounted for 6.7% of 487 

exclusions, as well as those with alternate pathological diagnoses such as mucinous 488 

adenocarcinoma, melanoma, and other non-CRC tumors. Following these criteria, 90 489 

patients remained eligible, and were categorized based on the absence or presence of 490 
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metastasis into three groups: 46 without metastasis (NM), an incorrectly cited number 491 

for those 25 with local node metastasis (LNM), and 19 with distant metastasis (DM). 492 

The NM group was defined as early stage, while the LNM and DM groups were 493 

classified as advanced stage based on the presence of metastatic lesion in the tumor. 494 

The CRC staging utilized the TNM system endorsed by the Union for International 495 

Cancer Control (UICC). 496 

Simultaneously, Huadong Hospital recruited 92 healthy controls (HCs) with a 497 

median age of 61 years (range: 22-83 years), including 53 males and 39 females. 498 

Among them, 23 individuals were diagnosed with mild intestinal polyps, while the 499 

remaining 65 were deemed completely healthy. These individuals typically underwent 500 

a comprehensive physical examination, including colonoscopy and gastroscopy, during 501 

their 2 to 3 day hospital admission. They were selected based on criteria including no 502 

history of tumors, a clean bill of health from a physical exam, and no respiratory 503 

diseases in their medical history. Table S1 presents a comparison of the demographic 504 

and clinical data of the 182 CRC patients and HCs. A schematic diagram of participant 505 

recruitment and sample allocation proportions for model construction is provided in 506 

Figure S12. All participants entered the study with informed consent. The research 507 

adhered to the principles of the Declaration of Helsinki and received approval from the 508 

Ethical Committee at Huadong Hospital (KY 2023K127). 509 

Breath Sampling Methodology 510 

Once obtaining informed consent from all patients, we strictly followed a standardized 511 

sampling procedure using an enhanced sampler comprised of breath biopsy cartridges 512 

and a porTable air supply for exhaled sample collection. The Method S1 provides a 513 

description of the parameter optimization scheme and detailed internal structure of the 514 

improved breath sampler. To minimize the interference of confounding factors, we 515 

performed sample collection between 7:00 and 8:00 am after an overnight fast. Patients 516 

were also asked to rest in the same area for at least 20 minutes before sampling. For 517 

each participant, we collected 2L of alveolar breath gas with corresponding ambient 518 
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samples. Target VOCs were collected in two duplicate multi-layer thermal desorption 519 

(TD) tubes containing Carbograph 5 TD and Tenax/TA (Markes biomonitoring tubes, 520 

Markes International Ltd, UK). 521 

Pretreatment and instrumental analysis 522 

Following quality control measures on the samples, the TD tubes were analyzed using 523 

a comprehensive mass spectrometry-based procedure composed of TD-GC-MS/MS. 524 

The thermal desorption instrument (TD, from Marks Company, UK) first pre-purged 525 

the TD tubes for 10 minutes at a helium flow rate of 100 mL/min to remove moisture 526 

and oxygen from the samples. The TD tubes were then heated to 300°C for 5 minutes 527 

to desorb the samples, and the desorbed VOCs were concentrated in an internal focusing 528 

cold trap at 30°C. After purging the focusing cold trap with helium gas at a flow rate of 529 

25 mL/min for 2 minutes, it was rapidly heated to 300°C and maintained for 5 minutes. 530 

During the heating process, VOCs were desorbed from the focusing cold trap and 531 

injected into an Agilent 7890A gas chromatograph coupled with an Agilent 7000B triple 532 

quadruple mass spectrometer (GC-MS/MS, Agilent Technologies Inc., USA) through a 533 

180°C transfer line in a non-split mode for qualitative and quantitative analysis of 534 

VOCs. The GC employed a J&W Scientific DB-624 chromatographic column (60 m, 535 

internal diameter 0.25 mm, film thickness 1.4 μm), with an injection port temperature 536 

of 250°C. The oven was maintained at 40°C for 5 minutes, then ramped at 5°C/min to 537 

160°C, followed by a 10°C/min ramp to 230°C, where it was held for 21 minutes. The 538 

ion source and MS transfer line temperatures were set at 230°C and 250°C, respectively. 539 

The MS was operated in full-scan mode for analyte identification, with a mass range 540 

(m/z) of 30–350. Quantitative analysis was performed in Selected Ion Monitoring (SIM) 541 

and Multiple Reaction Monitoring (MRM) modes. The chemical characteristics of each 542 

peak were confirmed by reference to the National Institute of Standards and Technology 543 

(NIST) mass spectral library (version 2.3). After confirming the retention time and mass 544 

spectrum of the target compounds in SCAN mode, quantitative analysis was performed 545 

in Selected Ion Monitoring (SIM) and Multiple Reaction Monitoring (MRM) modes. 546 
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The Agilent MassHunter quantitative analysis software and the Agile2 integrator were 547 

used to automatically integrate compound peaks, with manual adjustments made as 548 

necessary. A combination of external standard curves and internal standard 549 

normalization was used to quantify 82 VOCs. 550 

Potential Confounding Evaluating methods 551 

To gauge the impact of environmental air on human breath, we constructed a Partial 552 

Least Squares Discriminant Analysis (PLS-DA) and computed z-scores. The 553 

significance of PLS-DA models was assessed using the 'ropls' package. We deemed 554 

compounds with a variable importance in projection (VIP) score exceeding 1 as 555 

significant for classification purposes. Additionally, we analyzed PLS-DA model 556 

loadings to ascertain the contributions of different groups. The Wilcoxon rank-sum test 557 

was employed for univariate analyses, with the Benjamini–Hochberg method 558 

correcting for false discovery rates. Normal distribution was not characteristic of most 559 

volatile organic compounds (VOCs); thus, we employed the two-tailed Mann-Whitney 560 

U test for detecting significant disparities across datasets. This nonparametric test ranks 561 

individual values collectively from both datasets and is as robust as the standard 562 

Student's t-test for identifying shifts in median values, without the requirement for 563 

normal distribution. A z-score magnitude greater than 1.96 typically signifies a 564 

statistically meaningful difference between two datasets at the 5% significance 565 

level[40]. 566 

We handled physiological and habitual confounders by applying ANOVA and 567 

binary logistic regression to eliminate significant risk factors. Given the smaller sample 568 

size and non-normal data distribution, we compared breath VOC concentrations 569 

between smokers and non-smokers using a one-way ANOVA for preliminary p-values, 570 

considering p < 0.05 significant. This aided in selecting potential smoking-related VOC 571 

candidates. Subsequently, binary logistic regression models were formulated to 572 

evaluate the potential of these VOCs in association with smoking in CRC patients. We 573 

plotted Receiver Operating Characteristic (ROC) curves and computed the areas under 574 
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the curves (AUCs) to appraise the diagnostic accuracy of these risk factors, with a p-575 

value less than 0.05 in a two-tailed test indicating statistical significance. 576 

AI-assisted discovery of candidate breath biomarkers 577 

Training and testing of the models were executed using R Version 4.2.1, utilizing a suite 578 

of packages including random Forest, e1071, glmnet, rpart, caret, xgboost, and cvAUC 579 

for machine learning tasks[41]. We developed two separate analytical frameworks: one 580 

aimed at distinguishing CRC patients from healthy individuals (the Diagnostic Model) 581 

using breath VOCs signatures, and another (the Metastatic Model) for differentiating 582 

between early and advanced stages of cancer in those diagnosed with CRC. 583 

Both models underwent a consistent two-stage construction process, initiated by 584 

an AI-driven feature ranking executed through three advanced machine learning 585 

techniques: (1) a variant of the linear support vector machine recursive feature 586 

elimination (SVM-RFE) algorithm[42], (2) Least Absolute and Shrinkage and 587 

Selection Operator (LASSO) with L1 penalty and embedded feature selection, and (3) 588 

Boruta package characterized by shuffling shadow features and binomial distribution 589 

conception. Subsequent procedures involved an 80:20 train-to-validation dataset 590 

division, where breath VOC signatures underwent scrutiny based on aggregated 591 

selection counts from 100 bootstrapped random samples across the three evaluative 592 

methods. This rigorous analysis culminated in the generation of comprehensive feature 593 

importance hierarchies for each model (Figure 3B). 594 

We refined our methodology by employing five baseline models—LR, RF, SVM, 595 

NNet, and XGB. These models were tasked with pinpointing the least number of 596 

features necessary to maximize the AUC and accuracy. Selection of the ultimate 597 

classifier depended on its superior average performance metrics during training 598 

iterations, a process that enabled the isolation of vital features for accurate CRC 599 

diagnosis. To construct a robust model, we implemented 10-fold cross-validation (with 600 

a training-to-test data ratio of 90:10) using the most effective classifier identified from 601 

the initial models. The validation cohort was used to valid our training model to avoid 602 
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overfitting. During the model construction process, 182 eligible breath samples were 603 

randomly assigned to the training and test sets in an 8:2 ratio. The AUC was estimated 604 

using ROC analysis from the pROC package to evaluate model performance. An 605 

optimal probability threshold was derived based on the maximum Youden index of the 606 

model (sensitivity + specificity - 1). Samples with values below or above the critical 607 

value will be predicted as healthy controls and colorectal cancer, respectively. 608 

16s rDNA sequencing experimental procedure 609 

DNA extraction from fecal samples was performed utilizing the TianGen Magnetic Soil 610 

and Stool DNA Kit (TianGen, China, Catalog #: DP712). Various regions of the 16S 611 

rRNA/18SrRNA/ITS genes (e.g., 16SV4/16SV3-V4/16SV4-V5, 18SV4/18SV9, 612 

ITS1/ITS2, ArcV4) were amplified using primers specific to each region (for instance, 613 

16SV4: 515F-806R, 18SV4: 528F-706R, 18SV9: 1380F-1510R) including barcodes 614 

for identification. The amplification process involved 15 µL of Phusion® High-Fidelity 615 

PCR Master Mix (New England Biolabs), 0.2 µM of each primer, and approximately 616 

10 ng of template DNA. The PCR protocol started with a 98°C denaturation step for 617 

one minute, followed by 30 cycles at 98°C for 10 seconds, 50°C for 30 seconds, 72°C 618 

for 30 seconds, and a final extension at 72°C for five minutes. Post-amplification, PCR 619 

products were combined with a loading buffer containing SYB green and subjected to 620 

electrophoresis on a 2% agarose gel for verification. Equal-density PCR products were 621 

pooled and purified using TianGen's Universal DNA Purification Kit (Catalog #: 622 

DP214). Sequencing libraries were prepared with the NEB Next® Ultra™ II FS DNA 623 

Library Prep Kit (Catalog #: E7430L), according to the manufacturer's instructions, and 624 

assessed via Qubit, real-time PCR, and bioanalyzer analyses for quantification and size 625 

distribution. 626 

For sequence processing, barcodes and primer sequences were trimmed from the 627 

paired-end reads, which were then merged using FLASH (V1.2.11). FLASH is 628 

renowned for its speed and precision in overlapping paired-end reads from the same 629 

DNA fragments. The resulting raw tags underwent quality filtering with fastp (Version 630 



 

24 

0.23.1) to yield high-quality clean tags. These tags were then screened against the 631 

reference Silva database (for 16S/18S) or Unite Database (for ITS) using the UCHIME 632 

algorithm to remove chimeric sequences, leaving us with effective tags. Further 633 

denoising was done using DADA2 or the deblur tool in QIIME2 (Version QIIME2-634 

202006) to obtain initial ASVs, discarding those with an abundance under five. Species 635 

annotation was executed via the QIIME2 software, using the Silva Database for 636 

16S/18S and the Unite Database for ITS sequences. QIIME2 also facilitated multiple 637 

sequence alignments to examine phylogenetic relations and dominant species variations 638 

across different samples or groups. Normalization of ASV abundances was based on 639 

the least sequenced sample, and both alpha and beta diversity analyses proceeded from 640 

this normalized data. 641 

Statistics 642 

We performed statistical evaluations using SPSS version 26 (IBM, Armonk, New York, 643 

USA) along with RStudio (version 4.2.3, RStudio Inc., Boston, MA, USA). Within 644 

SPSS, we applied univariate non-parametric evaluations—specifically, Wilcoxon 645 

signed-rank, sigh, and marginal homogeneity tests—to discern disparities in exhaled 646 

VOC levels between individuals with CRC and healthy controls, considering a p-value 647 

below 0.05 as indicative of statistical significance. The relationship between respiratory 648 

and conventional serum biomarkers was explored through Spearman's correlation. 649 

Meanwhile, RStudio facilitated the use of linear discriminant analysis (LDA) to 650 

compress and cluster the VOC dataset. 651 

Study approval 652 

The present study received approval from the Ethics Committee Board of the Huadong 653 

Hospital, Fudan University (Reference numbers: KY 2023K127), and has been 654 

registered in the Chinese Clinical Trial Registry (ChiCTR2300073117). 655 
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Figure legends 792 

Figure 1. One test-multi-CRC using VOCs-MS-AI. A. Overview. Human breath with 793 

endogenous VOCs is collected using improved sampler. Signals were observed by TD-794 

GC-MS/MS and analyzed by AI algorithms. The system outputs predictions about 795 

cancer presence and cancer metastasis. A histogram shows actual examples of the 796 

representative predicted results for each cancer status. B. AI framework. In the first step, 797 

diagnostic model is constructed through the multiple AI-based classifier results. In the 798 

second step, signatures extracted by the previous CRC classifier are analyzed, then a 799 

metastatic marker panel is generated using three types of feature selection algorithms. 800 

Cartoons were created with BioRender.com. 801 

Figure 2. Confounders exclusion and VOCs profile description. A. Enrollment of 802 

the cohort study and BMI and age information of study participants. B. Breath and 803 

ambient air present distinct VOCs profiles. Supervised analysis with PLS-DA showed 804 

a clear separation between breath and ambient air VOCs profiles (R2Y = 0.90, Q2Y = 805 

0.87, P < 0.05). Ellipses show 95% confidence intervals. C. Ratio of median from 806 

breath gas samples to median of ambient air samples and also the correlation of breath 807 

gas and ambient air samples. VOCs in bold are those with VIP greater than 1 in PLS-808 

DA. D. The distribution of 8 smoking-related VOCs concentration between SM and 809 

NSM groups. E. Score plot of linear discriminate analysis (LDA) overview of breath 810 

VOCs among the healthy controls (HCs), Benign polyposis (polyps), CRC without 811 
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metastases (early stage) and CRC with metastases (later stage) groups. F. The major 812 

chemical classes associated with CRC in this study and their percentage of candidate 813 

VOCs. Abbreviations: BMI, body mass index; SM, smokers; NSM, non-smokers. 814 

Figure 3. Study flow chart, machine learning algorithms and their performance 815 

when using the two prediction models. A. The two stages workflow for building the 816 

diagnostic and metastatic models with breath VOCs markers. B-C. The flow chart of 817 

integrating three algorithms' results in ranking features and integrating five 818 

classification algorithms in building classification models. D. The number of feature 819 

selection was determined by AUC and accuracy. E-F. The receiver operating 820 

characteristic (ROC) curves of Diagnostic Model and Metastatic Model that were used 821 

for predicting CRC and metastatic tumor in the training cohort (E) and the validation 822 

cohort (F). 823 

Figure 4. Verification of the breath biomarkers using comparative analysis. A. 824 

Scatter plot for octane, 2-methyl-, hexanoic acid, furfural, sulfide allyl methyl, and 825 

benzaldehyde in 92 healthy controls (HCs) and 90 CRC patients, including CRC 826 

without metastases (NM; n = 46), CRC with lymph node metastasis (LNM; n = 25) and 827 

CRC with distant metastasis (DM; n = 19). The median values in each group are shown 828 

as black dotted lines. The differences between groups for each marker were analyzed 829 

by two-sided Kruskal–Walli’s test. B. The independent diagnosis efficiency of two key 830 

markers among the fifteen markers in the diagnostic model. C. ROC curve of serum 831 

CEA, metastatic marker panel, and the combination of the metastatic panel and CEA 832 

for the metastatic model (LNM+DM vs. NM). D. Diagnostic and metastatic predictive 833 

power of the diagnostic markers and metastatic markers in the individuals who were 834 

misdiagnosed by the FIT test or serum CEA. The values in parentheses indicate the 835 

number of samples corresponding to each percent. +, positive; −, negative; n, number 836 

of samples. E. Heatmap of the dot plot data for single breath markers as well as the 837 

diagnostic or metastatic panel with a specificity of 95%, and the combination of 838 

corresponding clinical biomarker indices for the diagnostic or metastatic model was 839 

considered positive when either the panel or FIT/CEA was positive. Red: positive using 840 

the cutoff value with a specificity of 95%. The FIT test, serum CEA, tumor location, 841 

sex, and age are indicated by color-coding. CRC colorectal cancer, FIT fecal 842 

immunochemical test, CEA carcinoembryonic antigen, AFP alpha fetoprotein, Neg. 843 

negative; Pos. positive; NA not available. 844 

Figure 5. Combined analysis of gut microbiome and breath VOCs. A. Component 845 

proportion of bacterial phylum in each group; n = 25 for the CRC group and n = 19 for 846 

the HC group. B. The alpha diversity. C. The tripartite correlation heatmap of gut 847 

microbial species in CRC, KEGG pathways modules and breath markers. The left panel 848 

denotes the Spearman correlations between pathway modules and breath markers. The 849 

top panel denotes the Spearman correlations between species and breath markers. D. 850 

Metabolic pathways of alkane-based markers in relation to inflammatory factors and 851 

reactive oxygen species and sources of bacterial gas production for SCFAs markers. E. 852 
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Relationship of ketone markers metabolic pathways to the hepatic and intestinal 853 

circulation. DMC Diagnostic Marker of CRC, MMC Metastatic Marker of CRC. 854 
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Figures 855 

Figure 1. One test-multi-CRC using VOCs-MS-AI. A. Overview. Human breath with 

endogenous VOCs is collected using improved sampler. Signals were observed by TD-GC-

MS/MS and analyzed by AI algorithms. The system outputs predictions about cancer 

presence and cancer metastasis. A histogram shows actual examples of the representative 

predicted results for each cancer status. B. AI framework. In the first step, diagnostic model 

is constructed through the multiple AI-based classifier results. In the second step, 

signatures extracted by the previous CRC classifier are analyzed, then a metastatic marker 

panel is generated using three types of feature selection algorithms. Cartoons were created 

with BioRender.com. 
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  856 Figure 2. Confounders exclusion and VOCs profile description. A. Enrollment of the 

cohort study and BMI and age information of study participants. B. Breath and ambient air 

present distinct VOCs profiles. Supervised analysis with PLS-DA showed a clear separation 

between breath and ambient air VOCs profiles (R2Y = 0.90, Q2Y = 0.87, p < 0.05). Ellipses 

show 95% confidence intervals. C. Ratio of median from breath gas samples to median of 

ambient air samples and also the correlation of breath gas and ambient air samples. VOCs 

in bold are those with VIP greater than 1 in PLS-DA. D. The distribution of 8 smoking-

related VOCs concentration between SM and NSM groups. E. Score plot of linear 

discriminate analysis (LDA) overview of breath VOCs among the healthy controls (HCs), 

Benign polyposis (polyps), CRC without metastases (early stage) and CRC with metastases 

(later stage) groups. F. The major chemical classes associated with CRC in this study and 

their percentage of candidate VOCs. Abbreviations: BMI, body mass index; SM, smokers; 

NSM, non-smokers. 
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Figure 3. Study flow chart, machine learning algorithms and their performance when 

using the two prediction models. A. The two stages workflow for building the diagnostic and 

metastatic models with breath VOCs markers. B-C. The flow chart of integrating three 

algorithms' results in ranking features and integrating five classification algorithms in building 

classification models. D. The number of feature selection was determined by AUC and 

accuracy. E-F. The receiver operating characteristic (ROC) curves of Diagnostic Model and 

Metastatic Model that were used for predicting CRC and metastatic tumor in the training cohort 

(E) and the validation cohort (F). 
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Figure 4. Verification of the breath biomarkers using comparative analysis. A. Scatter plot 

for octane, 2-methyl-, hexanoic acid, furfural, sulfide allyl methyl, and benzaldehyde in 92 healthy 

controls (HCs) and 90 CRC patients, including CRC without metastases (NM; n = 46), CRC with 

lymph node metastasis (LNM; n = 25) and CRC with distant metastasis (DM; n = 19). The median 

values in each group are shown as black dotted lines. The differences between groups for each marker 

were analyzed by two-sided Kruskal–Walli’s test. B. The independent diagnosis efficiency of two key 

markers among the fifteen markers in the diagnostic model. C. ROC curve of serum CEA, metastatic 

marker panel, and the combination of the metastatic panel and CEA for the metastatic model 

(LNM+DM vs. NM). D. Diagnostic and metastatic predictive power of the diagnostic markers and 

metastatic markers in the individuals who were misdiagnosed by the FIT test or serum CEA. The 

values in parentheses indicate the number of samples corresponding to each percent. +, positive; −, 

negative; n, number of samples. E. Heatmap of the dot plot data for single breath markers as well as 

the diagnostic or metastatic panel with a specificity of 95%, and the combination of corresponding 

clinical biomarker indices for the diagnostic or metastatic model was considered positive when either 

the panel or FIT/CEA was positive. Red: positive using the cutoff value with a specificity of 95%. The 

FIT test, serum CEA, tumor location, sex, and age are indicated by color-coding. CRC colorectal 

cancer, FIT fecal immunochemical test, CEA carcinoembryonic antigen, AFP alpha fetoprotein, Neg. 

negative; Pos. positive; NA not available.  
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Figure 5. Combined analysis of gut microbiome and breath VOCs. A. Component proportion of 
bacterial phylum in each group; n = 25 for the CRC group and n = 19 for the HC group. B. The alpha 
diversity. C. The tripartite correlation heatmap of gut microbial species in CRC, KEGG pathways 
modules and breath markers. The left panel denotes the Spearman correlations between pathway 
modules and breath markers. The top panel denotes the Spearman correlations between species and 
breath markers. D. Metabolic pathways of alkane-based markers in relation to inflammatory factors 
and reactive oxygen species and sources of bacterial gas production for SCFAs markers. E. 
Relationship of ketone markers metabolic pathways to the hepatic and intestinal circulation. DMC 
Diagnostic Marker of CRC, MMC Metastatic Marker of CRC. 
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Supplemental material 860 

All data are available in the main text or the Supplemental material. 861 


