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Abstract 

Purpose: This study aims to assess whole-mount Gleason grading (GG) in prostate cancer 

(PCa) accurately using a multiomics machine learning (ML) model and to compare its 

performance with biopsy-proven GG (bxGG) assessment. 

Materials and Methods: A total of 146 patients with PCa recruited in a pilot study of a 

prospective clinical trial (NCT02659527) were retrospectively included in the side study, all of 

whom underwent 68Ga-PSMA-11 integrated positron emission tomography (PET) / magnetic 

resonance (MR) before radical prostatectomy (RP) between May 2014 and April 2020. To 

establish a multiomics ML model, we quantified PET radiomics features, pathway-level 

genomics features from whole exome sequencing, and pathomics features derived from 

immunohistochemical staining of 11 biomarkers. Based on the multiomics dataset, five ML 

models were established and validated using 100-fold Monte Carlo cross-validation.  

Results: Among five ML models, the random forest (RF) model performed best in terms of 

the area under the curve (AUC). Compared to bxGG assessment alone, the RF model was 

superior in terms of AUC (0.87 vs 0.75), specificity (0.72 vs 0.61), positive predictive value 

(0.79 vs 0.75), and accuracy (0.78 vs 0.77) and showed slightly decreased sensitivity (0.83 vs 

0.89) and negative predictive value (0.80 vs 0.81). Among the feature categories, bxGG was 

identified as the most important feature, followed by pathomics, clinical, radiomics and 

genomics features. The three important individual features were bxGG, PSA staining and one 

intensity-related radiomics feature.  

Conclusion: The findings demonstrate a superior assessment of the developed multiomics-

based ML model in whole-mount GG compared to the current clinical baseline of bxGG. This 

enables personalized patient management by identifying high-risk PCa patients for RP. 
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Notes: PCa: prostate cancer; ML: machine learning; GG: Gleason grading; AUC: area 

under the curve. 

  



Introduction 

Prostate cancer (PCa) is the second leading cancer-related death in men, with an incidence 

of nearly 20% worldwide [1]. PCa has the highest five-year survival rate (98%) for all stages 

combined among different tumor types [2]. As first-line therapy, radical prostatectomy (RP) 

has substantially contributed to this phenomenon [3]. However, as a consequence of RP, 

around 31% of patients suffer from urinary incontinence [4], and about 90% suffer from erectile 

dysfunction [5]. Hence, precise identification of individuals who experience minimal clinical 

advantages but encounter substantial adverse effects in RP is of utmost importance. Currently, 

the decision on whether to perform RP is mainly determined by biopsy-proven Gleason score 

(bxGS)[6]. Despite its important role in identifying PCa type, stage, differentiation, and the 

resulting influence on treatment modality [7], several studies have revealed a strong 

discrepancy between bxGS and whole-mount GS after RP[8–10]. Since whole-mount GS 

holds a strong association with clinical outcomes [11–13], a more reliable method to assess 

whole-mount Gleason grading (GG) is needed to accurately identify candidates for RP.  

Multiomics provides urologists with comprehensive insights into various aspects of PCa [14], 

including genetic signatures from genomics, molecular heterogeneity from radiomics, and 

protein expression from pathomics. Genetic tests of PCa biopsy samples are currently 

available to predict subsequent disease progression after RP [15]. While genomics is 

nowadays part of the standard repertoire of cancer research approaches, the full prospects of 

pathomics and positron emission tomography (PET)-based radiomics yet remain to be 

explored. Radiomics is an emerging field where imaging features are extracted for objective 

and quantitative tumor characterization[16]. Radiomics application on prostate-specific 

membrane antigen  (PSMA) PET scans has shifted clinical PCa research towards a 

personalized direction [17,18]. Recent studies have showcased the capability of pathomics, 

an approach for the extraction of quantitative features from pathological images, in PCa 

characterization [19–21]. However, no studies have yet leveraged the potential of combining 

genomics, radiomics, and pathomics. Machine learning (ML) can serve as an ideal platform 

for the integration of high-dimensional multiomics data. 



In this study, we aimed to assess whole-mount GG in PCa accurately using a novel ML 

approach to identify appropriate candidates for RP and to compare it with biopsy-proven GG 

(bxGG). 

 

Materials and Methods 

Study Design 

A total of 146 patients with histologically-confirmed PCa from the pilot study of a prospective 

clinical trial (clinicaltrials.gov NCT02659527) were retrospectively enrolled, all of whom 

underwent 68Ga-PSMA-11 PET/MR scans before RP between May 2014 to April 2020 at the 

Division of Nuclear Medicine in the Vienna General Hospital. This clinical trial complied with 

the Helsinki Declaration and its amendments. The inclusion and exclusion criteria were listed 

in Supplementary Method M1. The primary aim of this prospective trial was to improve the 

detection rate of primary localized PCa using non-invasive PSMA PET/MR in comparison with 

conventional biopsy. Our study, in contrast to previous work, incorporates radiomics, 

pathomics and genomics data, offering a more comprehensive analysis while predicting 

whole-mount Gleason grading rather than the improvement of detection rate. The study was 

approved by the ethics committee of the Vienna General Hospital (ID: 1649/2016). Each 

subject gave prior written informed consent.  

Clinical Data Acquisition 

Clinical parameters, including age, weight, height, body mass index (BMI), and pre-operative 

prostate-specific antigen (PSA) levels in serum were collected from the documentation of the 

clinical trial.  

Based on 68Ga-PSMA PET/MR images, two nuclear medicine physicians (S.R. and A.H.) with 

more than 10 years of experience, blinded to the outcome of each patient, assessed six 

parameters: (1) lesion involvement: whether the tumor affected one or two lobes or was 

diffusely spread throughout the prostate; (2) lesion position in the anatomy zone: whether the 

tumor was located in the central zone (CZ), transition zone (TZ), peripheral zone (PZ), anterior 



fibromuscular stroma (AFS), or it was diffusely distributed (i.e., tumor lesions involving at least 

two anatomical zones or the whole prostate; (3) extracapsular extension: whether the tumor 

exceeded the prostate capsule; (4) contact with neurovascular bundles:  whether the tumor 

infiltrated adjacent neurovascular bundles; (5) lymph node (LN) infiltration: whether the tumor 

infiltrated the pelvic or distant LNs; (6) bone metastasis: whether tumor metastasized to bones.  

Genomics Data Acquisition 

Formalin-fixed paraffin-embedded (FFPE) tissue sections (3×10 μm) were obtained from RP 

samples and DNA extraction was performed. Genomic libraries were prepared and the raw 

sequencing data were processed. Somatic small variants were identified from paired samples 

of the tumor and corresponding normal tissue using the SomaticSeq variant caller [22].  

Identified variants were annotated using Ensembl's Variant Effect Predictor (VEP) tool. 

Pathogenicity scores from the evolutionary model of variant effect (EVE) [23], Combined 

Annotation-Dependent Depletion (CADD) [24], and PolyPhen [25] were annotated and 

combined into a final pathogenicity metascore for each identified variant after normalization. 

Pathogenic genetic disruption was computed as the sum of combined pathogenicity scores of 

all variants in the given gene. Pathway genetic disruption was subsequently computed as the 

sum of the pathogenicity scores of all genes in each pathway based on the Kyoto 

Encyclopedia of Genes and Genomes (KEGG). 

The tumor mutational burden (TMB) for each sample was computed as the number of 

identified somatic variants per million base pairs of the sequence region. Copy number 

variants (CNVs) were called using the CNVkit tool[26] with the set of paired normal samples 

used as a panel of “normals" in the computation. CNV burden was computed as the ratio of 

CNV sum size to the sum size of all sequenced regions. More details are described in 

Supplementary Method M2 and Supplementary Figure S1. 

Radiomics Data Acquisition 

The imaging protocol was described in a previously published study [27]. 68Ga-PSMA-11 

PET/MR images were acquired and volumes of interest (VOIs) were delineated on PET 



images with the T2-weighted imaging (T2WI) as anatomical reference. The delineations were 

performed manually by two nuclear medicine physicians (S.R and A.H) with more than 10 

years of diagnostic experience in a slice-by-slice fashion. In instances of differing viewpoints, 

the physicians reached a consensus through discussion, ensuring precise and accurate 

identification of the VOIs. PET image intensities were converted to standardized uptake values 

(SUV) normalized to body weight, and conventional SUV metrics were extracted from VOIs, 

including SUVmin, SUVmax, SUVmean, SUVpeak, PSMA-tumor volume (PSMA-TV) and total 

lesion-PSMA (TL-PSMA) [28].  

Radiomics features were computed using PyRadiomics 3.0.1 [29]. All extracted features were 

compliant with the international biomarker standardization initiative (IBSI) [30]. PET images 

were resampled to an isotropic voxel size of 2x2x2 mm3 using B-spline interpolation and bin 

width was set to 0.3 SUV units. The workflow is shown in Supplementary Figure S2. 

Pathomics Data Acquisition 

Tissue samples were obtained from FFPE specimens. Tumor areas and normal areas from 

each sample were delineated on hematoxylin and eosin (H&E)-stained slides by an uro-

pathologist with over 30 years of diagnostic experience (L.K.). Three cylindrical cores 

(diameter: 2.2 mm) were punched from annotated tumor areas and three from normal areas. 

These cores were transferred to a recipient paraffin block to create an array of tissue samples. 

The recipient block was sectioned into 2-5 µm thick sections and TMA slides were prepared. 

The tumor cores were specifically chosen from areas within the RP specimens that presented 

the most aggressive features upon pathological morphology in order to be most representative 

of the PCa tissue aggressiveness. 

H&E and IHC staining were performed on the TMA slides. PSMA[31], androgen receptor (AR) 

[31], Ki-67[32], PSA[31], NK3 homeobox 1 (NKX3.1) [31], cyclin-dependent kinase 2 (CDK2) 

[33,34], cluster of differentiation 3 (CD3) [35], signal transducer and activator of transcription 

3 (STAT3) [36], fatty acid synthase (FASN) [31], thyroid hormone receptor beta (TRβ) [37] and 

interleukin-6 signal transducer (IL6ST)[38] were selected as targets. The antibodies for IHC 



staining were listed in Supplementary Method M3. 

The uro-pathologist (L.K.), blinded to the clinical data, evaluated the GS of each core based 

on H&E-stained TMA slides. As the punching process effectively mimics the targeted biopsy 

in clinical routines[39,40], the GS from each core was considered as bxGS to eliminate any 

time discrepancy. Moreover, the pathologist determined the percentages of strongly, 

moderately, or weakly stained cells of each core on IHC slides using the modified H-score [41], 

which was calculated using the formula: ([% of weak staining] × 1) or ([% of moderate staining] 

× 2) or ([% of strong staining] × 3), yielding a range from 0 to 300 [42,43]. The average and 

maximum H-score values from tumor cores were considered representative indicators of 

different targets’ expression levels. The workflow is shown in Supplementary Figure S3. 

Reference standard 

As binary ML prediction target, the post-operative International Society of Urological Pathology 

(ISUP) grading derived from whole-mount samples was split into low-risk (ISUP < 3) and high-

risk (ISUP ≥ 3) [44]. This aligns with a previous large multicenter study indicating that the 

best prognostic stratification can be achieved at the threshold of grade three [45]. The ISUP 

grading system allows for better interpretation of morphological patterns and more accurate 

GG stratification [46,47].   

Machine Learning 

The resulting 203 input features included 13 clinical features, 113 radiomics-wide features 

(107 radiomics features and 6 conventional SUV metrics), 53 genomics features, 23 

pathomics features, and 1 feature, namely biopsy-proven ISUP (bxISUP). All the features are 

listed in Supplementary Table S1. 

ML was conducted using five classification algorithms, namely k-nearest neighbors (kNN), 

random forest (RF), extreme gradient boosting (XGB), support vector machine (SVM) and 

logistic regression (LGR). Robust performance evaluation was performed using 100-fold 

stratified Monte Carlo cross-validation with 70% of samples in the training set and 30% in the 

test set. The test set was exclusively used for testing, while a subset of the training data was 



employed for preprocessing and hyperparameter tuning. Features with more than 30% 

missing values were excluded. Any remaining missing values were imputed using k-nearest 

neighbor imputation with distance weighting [48]. Features were normalized using z-score. 

Feature selection was performed using minimum redundancy and maximum relevance 

(mRMR) [49]. Hyperparameter tuning was performed using random search. All procedures, 

including imputation, normalization, feature selection, and hyperparameter tuning, were 

performed separately for each fold while fitting on the training set and performing 

corresponding transformations on the test set to avoid any data leakage. Probability calibration 

was performed using an isotonic regression. 

To ensure maximum transparency of the ML models and to enable the interpretation of 

decisions made by the applied algorithms, a set of explainable artificial intelligence (XAI) 

methods were employed, Shapley additive explanations (SHAP), permutation feature 

importance, and surrogate models. Permutation and SHAP importance both show feature 

importance, but the calculation of importance values differs [50]. Surrogate models are post-

hoc explainable artificial intelligence techniques that aim to estimate the predictions of black-

box models using a simple and interpretable model. In this study, we extracted this description 

from the RF model to create a simplified diagnostic workflow (decision tree). Further details 

on ML are described in Supplementary Method M4. 

Statistical Analysis 

The Python 3 package-scipy package 1.11.4 was used for statistical analysis. Quantitative 

metrics were calculated as mean ± standard deviation (SD), and categorical variables as 

percentages. Mann-Whitney test was used for comparison between quantitative variables. 

The chi-square test was used for comparison between categorical variables. All p values were 

tested as two-tailed. P values less than 0.05 were regarded as statistically significant. 

 

Results 

Data Overview  

A total of 65 PCa patients (age: 64 ± 7.6) with clinical, genomics, radiomics, and pathomics 



data were included for final analysis following the cohort flow chart in Figure 1. Of these 

patients, 28 (43%) patients (age: 62.4 ± 7.9) were categorized as low risk (ISUP < 3) and 37 

(57%) patients (age: 65.2 ± 7.1) as high risk (ISUP ≥ 3). Clinical and imaging parameters of 

both groups are shown in Table 1. 

Based on the KEGG database, a total of 10,305 genes were identified in the exome of DNA. 

The overall mutation frequency was low, with only 29 genes mutated in ≥10% of patients 

(Supplementary Figure S4). No significant correlation (p ≥0.05) was found between any of 

the gene mutations and TMB, CNV burden, or whole-mount ISUP. Due to the sparse 

distribution of gene mutations, only pathway-level genomics features were employed for the 

subsequent ML analysis (Figure 2). Among 341 pathways annotated in the KEGG database, 

51 pathways were selected due to their association with PCa tumorigenesis, aggressiveness, 

progression, or metastasis. The literature is listed in Supplementary Table S2 to show the 

predictive potential of 51 pathways. 

In total, 107 radiomics features were extracted and categorized into shape (n=14), histogram 

(n=18), and texture (n=75) features. Texture features included 24 gray level co‐occurrence 

matrix (GLCM), 16 gray level run length matrix (GLRLM), 16 gray level size zone matrix 

(GLSZM), 14 gray level dependence matrix (GLDM) and 5 neighboring gray-tone difference 

matrix (NGTDM) features. Features are categorized in Supplementary Table S3.  

ISUP grading was determined by H&E-staining with morphological details depicted in Figure 

3A. Representative images of PSA expression between ISUP high and low groups are shown 

in Figure 3B. After statistical analysis of the whole cohort, we found that the maximum H-

score of PSA was the most distinguished biomarker, and its value in high-risk PCa was lower 

than that of the low-risk group. 

Machine Learning Performance 

The five ML models (KNN, RF, SVM, LGR, XGB) were compared based on area under the 

curve (AUC), accuracy (ACC), sensitivity (SNS), specificity (SPC), positive predictive value 

(PPV) and negative predictive value (NPV), as depicted in Figure 4A. In terms of AUC, the 



RF model achieved the highest performance (Supplementary Table S4). The AUC, ACC, 

SNS, SPC, PPV, and NPV of the RF model were 0.87 (95%confidence interval ([CI], 0.85-

0.89), 0.78 (95%CI, 0.76-0.80), 0.83 (95%CI, 0.80-0.86), 0.72 (95%CI, 0.68-0.76), 0.79 

(95%CI, 0.77-0.81) and 0.80 (95%CI, 0.77-0.83) respectively. 

The performance metrics of needle biopsy AUC, ACC, SNS, SPC, PPV, and NPV were 0.75, 

0.77, 0.83, 0.61, 0.75, and 0.80 respectively. In comparison, the performance of RF showed 

an increase in AUC, ACC, SNS, and NPV by 12%, 1%, 11%, and 1%, respectively while SNS 

and PPV decreased by 6% and 4% (Figure 4B. 4C).  

A total of 73 features were selected in the validation procedure, consisting of 1 feature, namely 

bxISUP, 5 clinical features, 12 gene-level genomics features, 43 radiomics-wide features and 

13 pathomics features. After comparison of the mean permutation importance of different 

types of features, bxISUP was identified as the most attributable feature, followed by 

pathomics, clinical, radiomics, and genomics features (Figure 4D). Ranked by permutation 

importance value, the ten most important features included six radiomics features, three 

pathomics features, one clinical feature, and biopsy-derived ISUP (Figure 4E). More details 

were described in Supplementary Results R1-3. 

SHAP importance revealed bxISUP as the most predictive feature, followed by maximum H-

score of PSA, and texture/histogram-based radiomics features. Figure 4F shows the top 8 

features and their SHAP importance values between high and low ISUP groups. In the ISUP 

high group, ISUP derived from needle biopsy tends to be higher, PSA is less expressed on 

IHC slides and GLCM Joint Energy values are lower compared to the ISUP low group.  

A surrogate model was established to provide a simplified diagnostic workflow describing the 

more complex ML model (RF). The resulting simplified diagnostic workflow included three 

features, which were GLCM_Joint Energy, PSAmax_IHC, and bxISUP, which achieved a 

performance of AUC 0.89 in estimating the output of the complex ML model (Supplementary 

Figure S5). Based on the surrogate model, the ML-based workflow is incorporated in the 

clinical diagnostic scheme (Figure 5). We further performed three analyses, each using a 

combination of two feature types, including genomics, pathomics, and radiomics as input. AUC 



values ranged between 0.84 and 0.89 with the full performance metrics for the individual 

analyses shown in Table 2. 

 

Discussion 

In this study, we integrated clinical, imaging, pathomics, and genomics data for the ML-based 

GG prediction in PCa and demonstrated the superiority of the ML approach over the clinical 

standard of bxGG assessment. Furthermore, we developed a simplistic and interpretable 

diagnostic workflow, enabling a software-independent step-by-step procedure for the 

identification of high-risk patients instead of running the ML software. This makes validation 

and integration of the presented findings substantially easier since the repeatability and 

adaptability of ML models are major hurdles for the translation of ML-based software into 

clinical settings [51,52]. 

Numerous published multiomics studies in PCa aimed to guide clinical decision-making by 

directly inferring clinically relevant outcomes and parameters [53–56]. However, most of them 

focused on predictors from genomics, epigenomics, transcriptomics, and proteomics, omitting 

image-based predictors, which is problematic given that imaging features have been shown 

to be important for GS prediction [57–59]. This study addresses this gap by integrating not 

only PSMA PET radiomics with genomics features but also additional pathomics and clinical 

features. Thus, by leveraging diverse data sources, the ML model capitalized on 

comprehensive and complementary underlying information, facilitating more accurate GG 

assessment.  

Despite the slight decrease in SNS and NPV, the AUC, ACC, SPC, and PPV of the ML model 

were superior to those of needle biopsy. The increased specificity, in comparison with the 

current clinical standard, indicates that the ML model has the ability to identify low ISUP 

patients accurately, which is aligned with our goal to avoid unnecessary interventions. Also, 

the high PPV is indicative of our study’s reliability in identifying high-risk patients to provide 

timely and appropriate treatment. 

Despite a discrepancy between bxGG and whole-mount GG, bxISUP was among the most 



important features in our analysis. Especially when combining needle biopsy with additional 

features such as PSA, ML outperformed the current clinical standard of bxGG substantially. 

Additionally, our findings unveil that PSAmax as the most important feature in predicting 

whole-mount GG based on two importance measurement algorithms. PSAmax represents the 

maximum H-score of the tumor tissue in needle biopsy and our results denote the more 

aggressive PCa is, the less PSA the tumor tissue expresses. This is consistent with the study 

that also explored the correlation between PSA H-scores and GG using TMA slides [60]. In 

line with other investigations [61], our study identified the first-order radiomics feature 

Maximum as an important feature in GG prediction. This is because this histogram-based 

feature, similar to the conventional SUVmax, manifests the highest uptake of 68Ga-PSMA-11. 

Of note, our ML model provides a simplified surrogate diagnostic workflow by combining the 

radiomics feature GLCM_Joint Energy, PSAmax_IHC, and ISUP in needle biopsy. Following 

the corresponding decision tree, urologists can select appropriate candidates for RP, which 

has the potential to revolutionize the diagnostic workflow of PCa. In addition to the two 

previously mentioned common features, the decision tree also includes GLCM_Joint Energy, 

a radiomics feature indicative of homogeneous patterns within PCa lesions. The lower Energy 

value means more heterogeneity within the tumor. Our results demonstrate that PCa with 

higher GG is more heterogeneous, as previously suggested by a study that identified the 

transcriptomic heterogeneity of GG 5 groups in a large dataset [62]. 

Despite the promising results, our study still has several limitations. First, due to its design as 

a retrospective multiomics study, not all the required parameters were available in some 

patients, resulting in a relatively small number of subjects for analysis. Second, due to the 

complexity and unique nature of our study, incorporating an independent validation cohort 

from another center poses significant challenges, particularly in the retrospective collection of 

high-dimensional datasets that are consistent with the ones used in our study. However, to 

ensure the robustness and validity of our findings, employed a rigorous 100-fold Monte Carlo 

cross-validation scheme, which enhanced the robustness, generalizability, and reduced bias 

of our study. Third, ML models in medical imaging, specifically in nuclear medicine, are known 



to suffer from center-specific variabilities, reducing the reproducibility of radiomics 

features[63–65]. Consequently, external validation is needed to verify the reliability of the 

developed approach in the future. 

 

In conclusion, the presented multiomics ML model poses a promising advance in GG 

assessment for the improved stratification of PCa patients for RP. Our findings have the 

potential to substantially impact clinical decision-making and personalized management of 

PCa patients. 

 



Figures and tables 

 

Figure 1: Flowchart of the study cohort. PCa: prostate cancer; TMA: tumor microarray; 

FFPE: formalin-fixed paraffin-embedded; SUV: standardized uptake value. 

 



 



Figure 2: Genomics profile indicates the heterogeneity of the 51 investigated biological 

pathways in 65 PCa patients. The top bar shows TMB and CNV burden distribution. The top 

panel shows the correlation of genes/pathways mutation profile with ISUP groups. The top 

dendrogram shows the clustering patterns of genes/pathways based on their mutation profiles.  

TMB: tumor mutational burden; CNV: copy number variant; ISUP: International Society of 

Urological Pathology; PCa: prostate cancer. 

 

 



Figure. 3: Representative images of H&E staining and PSA staining on TMA slides 

revealing less PSA expression when PCa tissue is more aggressive. A. Representative 

images of H&E staining for each ISUP grade: a. Patient 1, GS 6 (3+3); b. Patient 2, GS 7 

(3+4); c. Patient 3, GS 7 (4+3); d. Patient 4, GS 8 (4+4); e. Patient 5, GS 9 (4+5); according 



to ISUP consensus 2019. B. Representative images of PSA expression in each ISUP grade 

core. a. Patient 1, high PSA expression; b. Patient 2, relatively high PSA expression; c. Patient 

3, moderate PSA expression; d. Patient 4, relatively low PSA expression; d. Patient 5, negative 

PSA expression. The corresponding H&E core and PSA core are from the same cylinder of 

the same patient. The scale bars of the overview core and enlarged details are 400 μm and 

100 μm respectively. C. The maximum H-score of PSA is significantly different between ISUP 

high and low groups (p ＜ 0.0001). TMA: tumor microarray; PSA: prostate-specific antigen; 

ISUP: International Society of Urological Pathology; GS: Gleason score. 

 



 

Figure. 4. ML Performance of the ISUP prediction in PCa. A. Performance comparison of 

the five ML algorithms (KNN, RF, SVM, LGR, XGB). Ranked by AUC, the RF model had the 

best performance. B. Overall comparison of different performance metrics between the RF 

model and ISUP derived from needle biopsy. C. Comparison of the mean permutation 

importance between different types of features. D. Detailed comparison of different 



performance metrics between the RF model and ISUP derived from needle biopsy. E. The top 

10 performing features in ISUP prediction based on permutation importance over all cross-

validation folds. F. SHAP importance of the eight features included in the final RF model 

trained on the entire dataset. Each dot represents a single patient and higher feature values 

are labeled as red while lower values are blue. The increasing positive SHAP values are 

indicative of the model’s tendency to predict high ISUP while decreasing SHAP values indicate 

the tendency of the model to predict low ISUP. KNN: k-nearest neighbors; RF: random forest; 

XGB: extreme gradient boosting; SVM: support vector machine; LGR: logistic regression; AUC: 

area under the curve; ACC: accuracy; SNS: sensitivity, SPC: specificity; PPV: positive 

predictive value; NPV: negative predictive value; ML: machine learning; SUVmean: mean 

standardized uptake value; PSAmax: maximum H-score of PSA expression on three cores of 

TMA slides; PSAavg: average H-score of PSA expression on three cores of TMA slides. 

  



 

Figure 5: Proposed diagnostic flowchart for prostate cancer (PCa) management. 
PSAmax: maximum H-score of PSA expression on three cores of TMA slides; PSA: 

prostate-specific antigen. 

 

 

 

 

 

 



Table 1: Comparison of clinical and imaging parameters between the ISUP low (ISUP<3) 

group and ISUP high (ISUP≥3) group. Continuous data are expressed as mean ± standard 

deviation (SD); categorical variables are presented as numbers and percentages. 

Parameters   Low risk 

(ISUP < 3) 

High risk 

(ISUP ≥3) 

p value 

Clinical Parameters     

Age (years)  62.4 (7.9) 65.2 (7.1) 0.14 

Weight (kg)  80.5 (10.9) 86.7 (11.1) 0.01 

Height (m)  1.8 (0.1) 1.8 (0.1) 0.25 

BMI (kg/m2)  25.8 (2.8) 27.4 (3.3) 0.05 

PSA-pre OP (µg/l)  9.4 (8.0) 55.4 (135.0) <0.001 

Pre-OP therapy No 27 (96.43%) 30 (81.08%) 0.21 

Yes 1 (3.57%) 5 (13.51%)  

NA 0 (0%) 2 (5.41%)  

Image-based Parameters         

Lesion involvement One lobe 13 (46.43%) 20 (54.05%) 0.23 

Two 

lobes 

5 (17.86%) 3 (8.11%)  

Whole 

prostate 

0 (0%) 2 (5.41%)  

NA 10 (35.71%) 12 (32.43%)  

Lesion position in  

anatomy zone* 

CZ 1 (3.57%) 0 (0%) 0.49 

TZ 2 (7.14%) 1 (2.7%)  

PZ 12 (42.86%) 18 (48.65%)  

AFS 0 (0%) 1 (2.7%)  

Diffusion 2 (7.14%) 5 (13.51%)  

NA 11 (39.29%) 12 (32.43%)  



Extracapsular extension No 17 (60.71%) 11 (29.73%) <0.001 

Yes 1 (3.57%) 14 (37.84%)  

NA 10 (35.71%) 12 (32.43%)  

Contact to neurovascular 

bundles 

No 18 (64.29%) 20 (54.05%) 0.06 

Yes 0 (0%) 5 (13.51%)  

NA 10 (35.71%) 12 (32.43%)  

Lymph node infiltration No 17 (60.71%) 17 (45.95%) 0.03 

Yes 1 (3.57%) 9 (24.32%)  

NA 10 (35.71%) 11 (29.73%)  

Bone metastasis No 17 (60.71%) 21 (56.76%) 0.38 

Yes 1 (3.57%) 4 (10.81%)  

NA 10 (35.71%) 12 (32.43%)  

Clinical T staging cT2a 3 (10.71%) 4 (10.81%) 0.03 

cT2b 5 (17.86%) 2 (5.41%)  

cT2c 8 (28.57%) 4 (10.81%)  

cT3a 1 (3.57%) 3 (8.11%)  

cT3b 1 (3.57%) 12 (32.43%)  

cT3a+b 0 (0%) 1 (2.7%)  

cT4 0 (0%) 1 (2.7%)  

NA 10 (35.71%) 10 (27.03%)  

 
value in the bracket is standard deviation for numeric data and percentage for categorical data 
*CZ: central zone; TZ: transition zone; PZ: peripheral zone; AFS: anterior fibromuscular stroma; Diffusion means PCa lesions involve any 
two/three anatomy zones or the whole prostate; NA: not applicable. 
 

  



Table 2: Performance for different input feature type combinations. ACC: accuracy; SNS: 

sensitivity; SPC: specificity; PPV: Positive predictive value; NPV: Negative predictive value; 

BACC: Balanced accuracy; AUC: Area under the receiver operating characteristic curve; 

  

Feature types ACC SNS SPC PPV NPV BACC AUC 

Genomics and pathomics 0.805 0.830 0.775 0.822 0.820 0.803 0.893 

Radiomics and genomics 0.727 0.743 0.708 0.770 0.716 0.726 0.835 

Radiomics and pathomics 0.781 0.820 0.735 0.795 0.803 0.778 0.874 

Radiomics, genomics and pathomics 0.779 0.827 0.722 0.791 0.804 0.774 0.869 
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