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Abstract 

Background: Markers of aging hold promise in the context of colorectal cancer (CRC) care. Utilizing 
high-resolution metabolomic profiling, we can unveil distinctive age-related patterns that have the 
potential to predict early CRC development. Our study aims to unearth a panel of aging markers and 
delve into the metabolomic alterations associated with aging and CRC. 
Methods: We assembled a serum cohort comprising 5,649 individuals, consisting of 3,002 healthy 
volunteers, 715 patients diagnosed with colorectal advanced precancerous lesions (APL), and 1,932 CRC 
patients, to perform a comprehensive metabolomic analysis.  
Results: We successfully identified unique age-associated patterns across 42 metabolic pathways. 
Moreover, we established a metabolic aging clock, comprising 9 key metabolites, using an elastic net 
regularized regression model that accurately estimates chronological age. Notably, we observed 
significant chronological disparities among the healthy population, APL patients, and CRC patients. By 
combining the analysis of circulative carcinoembryonic antigen levels with the categorization of individuals 
into the "hypo" metabolic aging subgroup, our blood test demonstrates the ability to detect APL and CRC 
with positive predictive values of 68.4% (64.3%, 72.2%) and 21.4% (17.8%, 25.9%), respectively.  
Conclusions: This innovative approach utilizing our metabolic aging clock holds significant promise for 
accurately assessing biological age and enhancing our capacity to detect APL and CRC. 
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Introduction 
Aging is an inevitable life-long decline in 

physiological functions and is the major risk factor for 
high impact chronic diseases such as cancers and 
cardiovascular diseases [1]. Aging involves extensive 
physiological changes and metabolic adaptations over 

decades [2]. Modern “omics” platforms, including 
genomic, transcriptomic, proteomic, and metabolomic 
profiling assays, have provided new opportunities for 
the systematic and agnostic characterization of 
biological aging. 
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 DNA methylation-based profiling, also known 
as “DNAm age”, is a powerful tool for predicting 
chronological age and assessing biological aging. It 
can be used across most tissues and cell types, and it 
incorporates composite clinical measures to capture 
risks for a wide range of age-related outcomes. Two of 
the most recent and promising DNAm age algorithms 
are “DNAm PhenoAge” [3] and “DNAm GrimAge” 
[4]. DNAm PhenoAge was developed to predict 
multifactorial phenotypic age, while DNAm GrimAge 
was developed to study aging and age-related traits. 
Both algorithms have been shown to be strongly 
associated with mortality and other age-related health 
outcomes. DNAm age is a valuable tool for 
researchers and clinicians alike. It can be used to 
study the aging process, identify individuals at risk 
for age-related diseases, and develop personalized 
interventions to promote longevity. 

Metabolic syndrome [5], a cluster of metabolic 
abnormalities, is age-related and regulated by key 
metabolic proteins such as mechanistic target of 
rapamycin (mTOR), AMP-activated protein kinase 
(AMPK), and insulin/insulin growth factor (IGF) [6, 
7]. Dysregulated metabolic control is a long-term 
cause of aging and increases the risk of chronic 
diseases. Metabolomic age models [8, 9], developed 
with unprecedented high-resolution metabolome 
coverage, assess biological age. Metabolomic [9] and 
epigenetic [10] aging clocks use different biomarkers, 
but both correlate with chronological age. 

Age is the strongest risk factor for cancers, 
including advanced precancerous lesions (APL) and 
colorectal cancer (CRC). As people age, their risk of 
developing advanced polyps and CRC increases [11, 
12]. In this study, we used a deep metabolomic 
analysis of over 3,000 healthy individuals to 
investigate how the metabolome changes with age. 
We hypothesized that high-resolution metabolomic 
profiling could reveal unique age-associated patterns 
that could precisely predict chronological age. We 
also hypothesized that a metabolomic aging blood test 
could have clinical applications, such as assessing 
aging and detecting CRC early. 

Results 
Shanghai General Population and Cancer 
Center CRC Cohort Study 

The study design and methods are outlined in 
Figure 1. We collected pretreatment serum samples 
(Supplementary Material 1) from 3,002 healthy 
individuals from the Shanghai Centers for Disease 
Control and Prevention (CDC), 715 patients with 
advanced precancerous lesions (APL), and 1,932 CRC 
patients without known contribution from germline 

causes or significant family history of cancer or 
inflammatory bowel disease (i.e., patients whose CRC 
is not thought to be caused by a genetic mutation or a 
strong family history of cancer). Demographic data 
are summarized in Table 1. 

Table 1. Demographics showing sample distributions across age 
and sex in normal and CRC populations.  

 Normal APL CRC - 
stage I 

CRC - 
stage II 

CRC - 
stage III 

Total 3002 715 1088 427 417 
Age group, N 
(%) 

     

(30,40] 21 (0.7) 14 (2) 12 (1.1) 9 (2.1) 17 (4.1) 
(40,50] 503 (16.8) 105 (14.7) 148 (13.6) 55 (12.9) 60 (14.4) 
(50,60] 1124 (37.4) 219 (30.6) 295 (27.1) 104 (24.4) 123 (29.5) 
(60,70] 851 (28.3) 268 (37.5) 426 (39.2) 161 (37.7) 138 (33.1) 
(70,80] 387 (12.9) 90 (12.6) 175 (16.1) 80 (18.7) 66 (15.8) 
(80,90] 116 (3.9) 19 (2.7) 32 (2.9) 18 (4.2) 13 (3.1) 
Sex, N (%)      
Male 1312 (43.7) 410 (57.3) 623 (57.3) 272 (63.7) 234 (56.1) 
Female 1690 (56.3) 305 (42.7) 465 (42.7) 155 (36.3) 183 (43.9) 

 

Unique Metabolomic Patterns Predict 
Chronological Age 

Using high-resolution mass spectrometry 
(Supplementary Material 2) to profile blood 
metabolomes, we identified 1,603 metabolic features. 
Of these, 157 were associated with aging (Pearson 
correlation, |𝑟𝑟| ≥ 0.3 ). We aggregated the aging 
associated features into KEGG pathways and 
calculated the value of each pathway as the weighted 
sum of the normalized measurement values of aging 
associated metabolites on the pathway divided by the 
number of mapped metabolites (Supplementary 
Material 3). Using an elastic net approach, we 
regressed these 59 pathways on chronological age and 
found that 42 of them contributed to the multivariate 
regression with positive importance scores. 

The 42 pathways collectively achieved improved 
regression on chronological age (Figure 2A, 
Supplementary Figure 1): training, 𝑟𝑟 = 0.88 , 95%CI 
0.88-0.89, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 0.98, 95%CI 0.95-1.00; testing, 𝑟𝑟 =
0.81, 95%CI 0.80-0.83, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 0.96, 95%CI 0.90-1.01. 
The top 10 metabolic pathways, ranked by Pearson 
correlation to chronological age, were steroid 
hormone biosynthesis, bile secretion, ABC 
transporters, histidine metabolism, metabolism of 
xenobiotics by cytochrome P450, riboflavin 
metabolism, chemical carcinogenesis, phenylalanine 
metabolism, citrate cycle, and pyrimidine metabolism. 

We performed the pathway-based multivariate 
regression analysis with men, and women separately. 
Using the same statistical pipeline for the general 
population (Figure 2A, 42 pathways), we identified 70 
and 48 metabolic pathways (Figure 2B/2C) for the 
multivariate analyses of men and women 
populations, respectively. The Pearson correlation 
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coefficients were 0.90/0.91 (men/women) in training 
and 0.78/0.87 (men/women) in testing respectively 
(Figure 2B/2C). The Pearson correlation coefficients 
among these three populations, all/men/women 
were statistically significant (p-value = 0.0001). The 
rankings of the importance scores of the significant 
aging-correlating pathway features were similar 
among all, men, and women (Figure 2A/2B/2C). For 
example, the steroid hormone biosynthesis pathway 
ranked top 1 in both the all’s and men’s models and 
ranked top 3 in the women’s model. 

Nine-Metabolite Metabolic Aging Clock 
Linear modeling links metabolic pathways to 

aging. We selected from the significant aging- 
associated metabolic features to identify a panel of 
metabolite biomarkers, called the "metabolic aging 
clock," to assess aging. The nine metabolites in the 
metabolic aging clock were identified (Supplementary 

Material 4) using a combination of level 1 compound 
identification and multivariate regression (Supple-
mentary Figure 3). The nine metabolites are shown in 
Figure 3A. The results of both the multivariate 
analysis (importance scores, IS, Figure 3B) and 
univariate analysis (Pearson correlation coefficient, r, 
Figure 3C) are summarized in Figure 3D. The 
metabolic aging clock achieved improved regression 
on chronological age, with a Pearson correlation 
coefficient 𝑟𝑟 0.95  (95%CI 0.946-0.954) and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 1.00 
(95%CI 0.97-1.03) in the training, and 𝑟𝑟 0.87, 95%CI 
0.85-0.89, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 0.96, 95%CI 0.90-1.03 in the testing set 
(Figure 3E). The results were similar for all subjects, 
men, and women (Figure 3E-G): the Pearson 
correlation coefficient (r) 0.95/0.97/0.97  (all/men/ 
women, p-value, 0.24) in training and 0.87/0.81/
0.89 (all/men/women, p-value < 0.0001) in testing 
respectively. 

 
 

 
Figure 1. Metabolomics data workflow. In this study, 3,002 healthy volunteers and 2,647 patients with colorectal advanced precancerous lesions (APL) or colorectal cancer 
(CRC) were enrolled, and their serum samples were collected. High-resolution mass spectrometry was used for serum global metabolomics data acquisition, and 1,603 metabolic 
features were identified after data processing. After metabolic feature analysis, aging associated metabolic pathways were found to regress to chronological age. Further 
exploration of the metabolic features identified nine metabolites as the metabolic aging clock. Comparing actual chronological age and metabolic aging clock predicted age of 
healthy people using a 95% confidence interval (CI, 2.5%~97.5%) defined hyper, normal and hypo subgroups. Compared with healthy people, APL and CRC patients usually 
bearing somatic genetic mutations significantly fell into the hypo subgroup. At last, the underlying metabolic patterns associated with aging were revealed. 
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Figure 2. A pathway based metabolic aging clock from the general population. Importance scores of underlying pathways from untargeted metabolic profiling 
(training set:75%; testing set:25%). (A). Prediction of metabolic ages from all normal population (both sexes). (B). Prediction of metabolic ages from male normal population. 
(C). Prediction of metabolic ages from female normal population. The pathway IDs in the figure are as follows: P1, Steroid hormone biosynthesis; P2, Bile secretion; P3, 
Phenylalanine metabolism; P4, ABC transporters; P5, Metabolism of xenobiotics by cytochrome P450; P6, 2-Oxocarboxylic acid metabolism; P7, Lysine degradation; P8, 
Biosynthesis of amino acids; P9, Pyrimidine metabolism; P10, Chemical carcinogenesis; P11, Histidine metabolism; P12, Amino sugar and nucleotide sugar metabolism; P13, 
Protein digestion and absorption; P14, Riboflavin metabolism; P15, Pentose and glucuronate interconversions; P16, Arginine biosynthesis; P17, Ascorbate and aldarate 
metabolism; P18, Glyoxylate and dicarboxylate metabolism; P19, Carbon metabolism; P20, Taste transduction; P21, Ferroptosis; P22, Proximal tubule bicarbonate reclamation; 
P23, D-Glutamine and D-glutamate metabolism; P24, Neomycin, kanamycin and gentamicin biosynthesis; P25, Nitrogen metabolism; P26, FoxO signaling pathway; P27, 
Phospholipase D signaling pathway; P28, Gap junction; P29, Circadian entrainment; P30, Long-term potentiation; P31, Synaptic vesicle cycle; P32, Retrograde endocannabinoid 
signaling; P33, Glutamatergic synapse; P34, GABAergic synapse; P35, Long-term depression; P36, Amyotrophic lateral sclerosis; P37, Huntington disease; P38, Spinocerebellar 
ataxia; P39, Cocaine addiction; P40, Amphetamine addiction; P41, Nicotine addiction; P42, Alcoholism; P43, Sulfur relay system; P44, Valine, leucine and isoleucine degradation; 
P45, Glutathione metabolism; P46, Butanoate metabolism; P47, Antifolate resistance; P48, Valine, leucine and isoleucine biosynthesis; P49, Fatty acid degradation; P50, Vitamin B6 
metabolism; P51, Pantothenate and CoA biosynthesis; P52, Porphyrin and chlorophyll metabolism; P53, Adrenergic signaling in cardiomyocytes; P54, Taurine and hypotaurine 
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metabolism; P55, Sulfur metabolism; P56, Neuroactive ligand-receptor interaction; P57, Ubiquinone and other terpenoid-quinone biosynthesis; P58, Pentose phosphate pathway; 
P59, Tryptophan metabolism; P60, beta-Alanine metabolism; P61, Arginine and proline metabolism; P62, Central carbon metabolism in cancer; P63, Aminoacyl-tRNA 
biosynthesis; P64, Mineral absorption; P65, Glycolysis / Gluconeogenesis; P66, Pyruvate metabolism; P67, Glycine, serine and threonine metabolism; P68, Citrate cycle (TCA 
cycle); P69, Insulin resistance; P70, Sphingolipid metabolism; P71, Sphingolipid signaling pathway; P72, Nicotinate and nicotinamide metabolism; P73, Alanine, aspartate and 
glutamate metabolism; P74, Serotonergic synapse; P75, Drug metabolism – cytochrome P450; P76, D-Arginine and D-ornithine metabolism; P77, Purine metabolism; P78, Biotin 
metabolism; P79, Cysteine and methionine metabolism; P80, Phenylalanine, tyrosine and tryptophan biosynthesis; P81, Steroid biosynthesis; P82, Dopaminergic synapse; P83, 
Galactose metabolism; P84, Fructose and mannose metabolism; P85, Caffeine metabolism; P86, Drug metabolism - other enzymes; P87, Phosphonate and phosphinate 
metabolism; P88, Glycosaminoglycan biosynthesis - heparan sulfate / heparin; P89, Cholinergic synapse; P90, Folate biosynthesis; P91, Propanoate metabolism; P92, Primary bile 
acid biosynthesis; P93, Glucagon signaling pathway; P94, Tyrosine metabolism. 

 
Figure 3. Structural identification of aging metabolite biomarkers and nine-metabolite-based metabolic aging clock. (A). Confirmation of the metabolites 
predicting chronological age by standard compounds. (B). Importance scores of the identified biomarkers in a biomarker-based metabolic aging clock. (C). Univariate 
trajectories of aging biomarkers as a function of the chronological age. (D). Nine compound biomarkers ranked by the importance scores in the aging clock model. KEGG: Kyoto 
Encyclopedia of Genes and Genomes; HMDB; Human Metabolome Database; R: Pearson Correlation Coefficient for regressing on the chronological age; IS: importance score 
in the multivariate model. (E-G). Prediction of metabolic ages in the training (75%) and testing (25%) sets from all the healthy general population (both sexes), from the male 
healthy population, and from the female healthy population. 
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Hypo-aging phenotypes in CRC patients 
We used a metabolic clock to assess the 

metabolic ages of healthy people. We defined the "Δ 
metabolic aging" as the difference between the 
predicted and actual chronological ages. We used a 
95% confidence interval (CI, 2.5%~97.5%) to define 
the "normal" (within the 95% CI), "hyper" (above the 
97.5%), and "hypo" (below the 2.5%) Δ metabolic 
aging subgroup membership. 

Compared to healthy people, individuals with 
"hypo" membership (Figure 4A) were more likely to 
have APL or CRC, regardless of the specific CI 
thresholds used to define the "normal", "hyper", and 
"hypo" Δ metabolic aging subgroups (Figure 4B, 4D-E, 
4G-H). This suggests that a "hypo" metabolic aging 
phenotype is associated with an increased risk of APL 
and CRC (Supplementary Material 5, Supplementary 
Table 1, 2, and 3). 

Hypo-Aging Phenotypes and Their Potential 
Clinical Utility for Improving Colorectal 
Cancer Diagnosis 

The prevalence of APL and CRC in the general 
population is 7.6% and 0.7% [13], respectively. 
Because there were many more APLs and CRCs in the 
hypo Δ metabolic aging subgroup, we investigated 
whether the metabolic aging clock could be used to 
detect CRC. 

Specifically, we used hypo Δ metabolic aging 
subgroup membership to diagnose CRC status. After 
adjusting for the true incidence rate of CRC in the 
general population, the positive predictive values 
(PPVs, Table 2, Supplementary Table 2C) for APL and 
all CRC stages were 65.5% (62.3-68.5%) and 12.7% 
(10.0-15.9%), respectively. 

 

Table 2. Comparison of positive predictive values (PPVs) of tests 
for CRC diagnosis. 

 APL CRC - all stages 
Metabolic clock panel a 65.5% (62.3%, 68.5%) 12.7% (10.0%, 15.9%) 
Multi-target panel b 68.4% (64.3%, 72.2%) 21.4% (17.8%, 25.9%) 
CEA 5.2% (4.6%, 5.7%) 0.4% (0.3%, 0.7%) 
Cologuard c 20.0% (18.0%, 22.0%) 3.72% (2.85%, 4.76%) 
Septin 9 methylation d 9.5% (9.1%, 9.9%) 2.3% (1.8%. 2.9%) 

a. Contains the 9 metabolic biomarkers. 
b. Contains the 9 metabolic biomarkers and carcinoembryonic antigen (CEA). 
c. Data cited from reference [68]. 
d. Data cited from external source reference [28]. 

 
Although serum carcinoembryonic antigen 

(CEA) does not have sufficient sensitivity or 
specificity to diagnose CRC (Table 2 PPV: APL, 5.2% 
(4.6-5.7%); CRC, 0.4% (0.3-0.7%)), it is still considered 
the most important biomarker for detecting CRC. 

By removing samples with normal CEA 
measurements from the positives predicted by the 

metabolic clock classifier, we created a multi-target 
panel (nine metabolites plus CEA) that improved the 
PPVs to 68.4% ((64.3%, 72.2%), p=1.3x10-5) for APL, 
and 21.4% (17.8%-25.9%), p= 1.2x10-10) for CRC. This 
suggests that CEA and the metabolic clock work 
together to improve APL/CRC diagnosis. 

Metabolic Aging and CRC Mutation Profiles  
To study the genomic mutation patterns of 

colorectal cancers (CRCs) in the metabolic Δ aging 
subgroups, we profiled 412 samples from patients 
with stage I CRC (Supplementary Table 3A). Among 
the 164/412 (39.8%) patients with KRAS, 14/412 
(3.4%) with NRAS, and 18/412 (4.4%) with BRAF 
mutations/stage I CRCs (Supplementary Table 3B), 
78.0% (71.3%, 84.2%) KRAS, 57.1% (28.8%, 85.7%) 
NRAS, and 100.0% (100.0%, 100.0%) BRAF mutants 
were found to be in the "hypo" metabolic age group 
(Figure 4C, 4F, and 4I). For reference, 66.1% of stage I 
CRC patients fell into the "hypo" subgroup (Figure 5). 

Discussion  
In this study, we used high-resolution mass 

spectrometry to identify key metabolic changes that 
correlate with chronological age in a healthy general 
population. We also developed a metabolic aging 
clock, a predictive model based on nine blood 
metabolites, to depict the age clock in the general 
population and in patients with colorectal cancer. 

 Previous studies have shown that certain 
biomarkers in our metabolic aging clock are 
associated with the aging process. Levels of 
kynurenine and phenylalanine increase with age, 
while levels of dehydroepiandrosterone (DHEAS) 
sulfate decrease. Kynurenine is produced by 
indoleamine 2,3-dioxygenase and tryptophan 
2,3-dioxygenase from tryptophan. High levels of 
circulating kynurenine are thought to be a primary 
driver of aging [14-18], linked to increased frailty and 
mortality in humans. DHEAS peaks around age 20 
and then gradually declines over time. By age 70, 
DHEA-S levels are about 20-30% lower than in 
younger adults [19-22]. Recently, researchers have 
reported that circulating phenylalanine also increases 
with age and is closely related to heart aging [23]. 
Older people also have a slower plasma clearance rate 
of phenylalanine, resulting in age-dependent 
increases [24]. Metabolites such as citrulline and 
ornithine are involved in the L-arginine/nitric oxide 
pathway and are thought to have anti-aging effects. 
The upregulation of circulating citrulline and 
ornithine could be a homeostatic response to the 
aging vesicular system in healthy individuals. Citrate, 
3-(4-hdyroxyphenyl) lactate, and gulonate are closely 
related to cellular energy metabolism.  
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Figure 4. APL and CRC (all stages) samples have significantly higher fractions, and stage I CRC patients with gene mutations are more likely to have 
“hypo” metabolic age. (A, D, G). XY plot of the prediction of metabolic ages as a function of the chronological age in the normal general and CRC populations. (B, E, H). 
Sample fractions of the total in the hypo or hyper metabolic age subgroups. (C, F, I). KRAS, NRAS and BRAF mutations were significantly enriched in the hypo Δ age group (p 
< 0.01). The percentages were fractions of stage I CRC samples with corresponding mutations. (A-C): Quantile 2.5%, 50%, 97.5%. (D-F): Quantile 5%, 50%, 95%. (G-I): 
Quantile 10%, 50%, 90%. 



Theranostics 2024, Vol. 14, Issue 4 
 

 
https://www.thno.org 

1609 

 
Figure 5. Metabolic clock analysis of APL and stage I CRC subjects. (A). XY plot of the predicted metabolic ages as a function of chronological ages. Samples below the 
2.5% quantile line were defined as hypo Δ metabolic age subgroup and those above the 97.5% one as hyper Δ metabolic age subgroup. (B). Enrichment of APL and CRC stage I 
subjects in Δ metabolic age “hypo” subgroup. (C). XY plot of the prediction of metabolic ages as a function of the chronological age in the normal general and CRC populations. 
(D). Sample fractions of the total in the hypo or hyper Δ metabolic age subgroups. 

 
An accumulation of these metabolites could 

indicate a shift in cellular metabolism between either 
glycolysis or mitochondrial respiration. Prolylleucine 
is associated with muscle tone, type 2 diabetes, and 
insulin resistance, conditions that are highly 
associated with age [25, 26]. Prolylleucine levels are 
upregulated in males with insulin resistance and are 
significantly upregulated in people with type 2 
diabetes, regardless of sex [25]. Prolylleucine has been 
proposed as a biomarker for type 2 diabetes [25]. 

 Our findings that patients with CRC have a 
hypo metabolic age are consistent with a recent study 
of the PhenoAge clock (CpG markers: n=513), which 
showed a similar hypo-aging trend among high-risk 
CRC patients [27]. To develop a binary classifier for 
CRC assessment, we applied a random forest method 
to nine metabolite aging biomarkers. This improved 
the performance of the metabolic aging clock 

predictor of CRC status modestly: APL, 65.5% (62.3%, 
68.5%); CRC, 12.7% (10.0%, 15.9%) (Table 2). The nine 
metabolic aging clock markers were originally 
discovered to regress to chronological age, but they 
can also be used directly with a more classical 
approach (a random forest method) to train a cancer 
binary classifier. This provides direct evidence to 
support the application of the metabolic aging clock in 
cancer assessment. 

In this study, we validated our hypothesis that 
the metabolic aging clock and its hypo-aging 
membership could improve the early diagnosis of 
colorectal cancer (CRC). Our metabolic clock panel 
results significantly outperformed previous findings, 
with a much-improved positive predictive value 
(PPV) for APL (65.5%) and CRC (12.7%) (Table 2) than 
CologuardTM [18] (20.0% for APL and 3.72% for CRC) 
and Septin 9 methylation tests (9.5% for APL and 2.3% 
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for CRC) [28]. We further demonstrated that the CRC 
marker CEA could work together with our aging 
clock to improve the PPVs to identify APL (68.4%) 
and all stages of CRC cases (21.4%) (Table 2). 
Therefore, our models achieved higher PPV values to 
identify APL and stage I CRC subjects than current 
clinically available diagnostic methods, using either 
the metabolic aging clock panel or the panel plus 
CEA. A good disease marker usually becomes more 
relevant with the severity of the disease, as it should 
accurately measure the presence and progression of 
the disease. However, our predictive performance 
with precancerous lesions and different CRC stages is 
counterintuitive. We hypothesize that this may be due 
to the different mechanisms of action between tumor 
genesis and later tumor progression. Tumor genesis is 
the process by which a normal cell transforms into a 
cancer cell, while tumor progression is the process by 
which cancer cells grow and spread throughout the 
body. Future research is needed to address this. 

Clinically, KRAS and BRAF mutations are 
associated with a poor prognosis [29, 30]. Patients 
with CRC and BRAF mutations do not respond to 
cetuximab, and all but one patient with any of the 
three mutations did not respond [31]. Patients with 
any of the three mutations had a poor response rate 
(7.1%) and reduced survival (progression-free 
survival = 8 months) compared with wild-type 
counterparts (74.4% and 11.6 months). Our study 
showed that hypo-aging individuals were also highly 
enriched in the stage I CRC patient population with 
KRAS and BRAF mutations. A hypo-aging phenotype 
is typically associated with a less differentiated CRC 
phenotype and is usually less responsive to 
chemotherapeutic agents [32]. Epigenetic data 
suggests that decelerated epigenetic aging is 
associated with a poorer prognosis and lower overall 
survival rate in CRC [33]. Our study bridges the gap 
between clinical observations and epigenetic studies 
of CRC patients with KRAS and BRAF mutations in 
stage I CRC through a metabolic aging clock, 
illustrating a spectrum of malignancy with metabolic 
aging deviations in this stage. 

Our study has several potential limitations:1. 
Enrolled patients were not required to take a germline 
mutation test, so it is possible that a small number of 
patients without a family history of CRC had 
germline mutations; 2. Our metabolic clock analytics 
for early CRC detection may have been confounded 
by pre-analytic variables and cohort differences in sex 
and age, which differed between the general 
population and CRC cohorts. A stronger single-site 
study design would help rule out the possibility of 
systematic confounding related to differences in 
blood collection and processing. In a subset of our 

cohort enrolled at Shanghai CDC, identical blood 
collection was performed in healthy controls and CRC 
patients (n=55) who were identified as part of the 
CDC screening. Similar hypo-aging membership 
patterns were observed in this subgroup of CRC 
patients (Figure 5C-5D), which supports the validity 
of our CRC results (Figure 4A-4B) from Fudan 
University Shanghai Cancer Center. In addition, we 
built 100 random models (Supplementary Material 6) 
using the statistical pipeline already established and 
compare if the deviation of the CRC/APL cohort from 
the CI derived from the general population is 
immanent/systematic (=bias) or specific for the 
age-related signature. Supplementary Figure 4A/B 
showed that our results are biologically meaningful 
and statistically significant. Our findings are unlikely 
to be due to technical bias; 3. This study is not 
designed to test the hypothesis that KRAS, NRAS, and 
BRAF mutations in other tumors cause hypometabolic 
age, or vice versa. Future studies with multi-cancer 
detection cohorts that include both pretreatment 
liquid and tissue biopsy samples could test these 
hypotheses, but they are beyond the scope of this 
study and is a limitation of the current study. 4. This 
study cannot test whether any metabolic age 
biomarkers change specifically in colorectal cancer 
(CRC). Although we plan to explore the metabolic 
aging clock's clinical utility in other high-impact 
diseases, including other cancers, the generalizability 
of this approach needs to be validated with additional 
independent cohorts that can demonstrate minimal 
false positives and localization, evaluate the 
implementation and real-world performance of the 
test in clinical practice, confirm the results in a 
population with no known diagnosis, and validate the 
clinical utility in a high-risk population. 

Conclusions 
Our global metabolomic analysis revealed 

high-resolution metabolomic pattern changes (Figure 
6) associated with aging progression and colorectal 
cancer (CRC) status. Our findings could lead to new 
approaches to longevity medicine and early detection 
of CRC, but further validation is needed in large, 
blinded clinical trials. 

Methods 
Study design and ethical approval 

This study (Figure 1) was approved by the 
Shanghai Municipal Center for Disease Control and 
Prevention Ethical Review Committee (No. 2019-4) 
and the Ethical Committee and Institutional Review 
Board of Fudan University Shanghai Cancer Center 
(No. 1902197-15). 
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Figure 6. Metabolic overview of the reference ageotype. With global metabolomics, many metabolites were quantified and identified, forming a metabolic network of 4 
clusters: amino acid metabolism (orange), biogenic amine metabolism (green), pentose/glucuronate conversions (purple) and steroid hormone biosynthesis (yellow). The names 
of the discovered biomarkers were highlighted in bold. Correlation between metabolites and aging was visualized with colored edges and fills in the nodes. 

 

Healthy general population subjects in the 
Shanghai CDC cohort 

To be eligible for the study, participants had to 
be at least 18 years old, not taking any medication for 
high-impact chronic diseases (such as cardiovascular 
diseases or diabetes mellitus) and have no history of 
tumors or cancers. Participants were followed for 
three years to identify any new cancer lesions or 
chronic diseases, and those who developed these 
conditions were excluded from the study. 

Sporadic colorectal cancer (CRC) patients in 
Fudan University Shanghai Cancer Center 
cohort 

We excluded patients with Lynch syndrome and 
FAP, which account for 5-7% of all colorectal cases 
and are mainly characterized by early-onset colorectal 

cancer and multiple polyps. These conditions may 
result in unique aging features. Our CRC subjects 
were defined as those with cancers that arise from the 
colorectum without known contribution from 
germline causes, a significant family history of cancer, 
or inflammatory bowel disease. We constructed the 
cohort by screening cases to exclude patients with 
common familial colorectal cancer according to their 
family history and clinical profile. For example, we 
excluded patients with Lynch syndrome according to 
the Amsterdam II criteria. Thus, our study focused on 
the aging characteristics of sporadic colorectal cancer. 
We also excluded patients who were taking any 
medication for high-impact chronic diseases (such as 
cardiovascular diseases or diabetes mellitus). The 
collected samples were derived from the Department 
of Biobank, Fudan University Shanghai Cancer 
Center. 
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Sample preparation 
Our cohort sera were collected from cancer 

patients before chemotherapy or radiotherapy 
administration. We used 3,002 serum samples 
(Supplementary Material 1) from healthy general 
population subjects in the Shanghai CDC cohort, 715 
serum samples from patients with advanced 
precancerous lesions (APL), and 1,932 serum samples 
from CRC patients from Fudan University Shanghai 
Cancer Center in this study, after excluding ineligible 
participants. Demographic data are summarized in 
Table 1. We collected whole blood samples from 
patients and generated sera following the standard 
operating procedure (SOP) described in 
Supplementary Material 1 [34]. 

MS acquisition, QA/QC, annotation, structural 
identification 

The MS analytic pipeline for data acquisition, 
QA/QC, annotation, and structure identification was 
described in detail in Supplementary Material 2 
[35-61]. 

Identification of age associated metabolic 
pathways 

We were among the first groups to propose a 
pathway-based computational methodology for 
chronological event prediction with global 
metabolomics [62]. Detailed analyzing method was 
described in Supplementary Material 3 [47-65]. We 
provide a Supplementary Material 7 (Supplementary 
Table 5) describing aging associated KEGG metabolic 
pathways and their associated mapped metabolomic 
features.  

Construction of a metabolic aging clock with 
nine compounds 

Through an elastic net regularized regression 
(𝛼𝛼 = 0.125, and 𝜆𝜆 = 0.129), a metabolic aging clock 
was trained with the metabolite biomarker 
candidates. Detailed analyzing method was described 
in Supplementary Material 4 [42, 43]. Evidence to 
support the appropriateness to use of ElasticNet is 
described in Supplementary Material 8 and 
Supplementary Figure 5 in this study.  

Metabolic aging clock for CRC diagnosis 
To leverage the clinical utility for the 

chronological deviations observed in CRC subjects, 
our metabolic panel classifies all samples in the 
hypo-aging group as CRC. In addition, a multi-target 
panel was assembled by removing samples with 
normal carcinoembryonic antigen (CEA) 
measurements (≤ 2.5  μg/L for non-smokers and ≤
5.0 μg/L for smokers) from the positives assigned by 

the metabolic clock, since CEA is a known CRC 
biomarker [66]. To simulate CRC incidence in general 
population, predictions from the testing dataset and 
the CRC cohort were bootstrapped with replacement 
at 30x coverage to an incidence of 760/10,023 for CRC 
APL samples and 65/10,023 for all stages of CRC 
samples [13]. Positive predictive values (PPVs) were 
calculated with the ratio of true positive counts to 
total predictive positive counts. PPV CIs were 
calculated with logit transformation and central limit 
theorem assumption as previously published [67]. 

Metabolic clock in CRC mutation status 
A subpopulation of 412 subjects in CRC stage I 

group were profiled with KRAS, NRAS and BRAF 
mutations in the tumor tissue samples. All mutants 
were assigned into hypo-, normal and hyper-aging 
groups by the metabolite-based metabolic aging clock. 
Then, sample fractions of mutant samples in each 
group were calculated for each mutation to reveal 
enrichment trending. Finally, 95% CIs of sample 
fractions were calculated by bootstrapping the 
classification results of mutant samples with 
replacement at the same size for 10,000 times to derive 
the 2.5% and 97.5% quantiles. 

Aging metabolic network construction 
To visualize the metabolic network underlying 

the global metabolomic aging patterns, age 
correlating metabolites were annotated to various 
metabolic modules and pathways. 

Supplementary Material  
Supplementary methods, figures and tables. 
https://www.thno.org/v14p1602s1.pdf  
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