Supplementary Information

Supplementary Methods

Hematoxylin and eosin (HE) staining

Prepared sections of various organs and tissues of mice were individually dewaxed in xylene three times for 20 min, sequentially soaked in 100% ethanol for 5 min, 95% ethanol for 5 min, 80% ethanol for 5 min, and three times in PBS for 5 min. Stained with hematoxylin for 5 min, washed with tap water for 1 min, 1% hydrochloric acid alcohol solution for 10 s, and once again with tap water for 1 min, then distilled water for 15 min. Finally, after soaking in 0.5% eosin dye for 2 min and rinsing with water for 2 min, the dehydrated slices were observed under an optical microscope.

Supplementary Results Supplementary Figure 1

Scheme 1. Conjugation of ENG-Aptamer-PEG2000-DSPE using Thiol-Maleimide click reaction

Supplementary Figure 1: Conjugation of ENG-Aptamer-PEG₂₀₀₀-DSPE using Thiol-Maleimide click reaction.

1:5 ratio of ENG-aptamer sequence and maleimide-PEG₂₀₀₀-DSPE was incubated at 4 °C under N_2 for 24 h in darkness to obtain ENG-Aptamer-PEG₂₀₀₀-DSPE.

Supplementary Figure 2: Nitrogen/phosphate(N/P) ratio optimization shown by 1% agarose gel electrophoresis. 80 µg, 40 µg, 20 µg, 10 µg, and 5 µg plasmids were respectively set in 5 of 100 µL blank LP tubes, then ENG-Apt/mIP-10-LP with a N/P ratio of 1:4, 1:2, 1:1, 2:1, and 4:1, were respectively added. M: marker, Lane 1: GV143 mIP-10, Lane 2-7: ENG -Apt/mIP-10-LP at different N/P ratios (1:4, 1:3, 1:2, 1:1, 2:1 and 4:1).

Supplementary Figure 3: ENG-Apt/mIP-10-LP nanoparticles stability.

ENG-Apt/mIP-10-LP (20 μL) was respectively added into high-glucose DMEM medium alone, 100% human serum, or high glucose DMEM containing 20% fetal bovine serum, with an incubation time frame of 10 min, 0.5 h, 2 h, 4 h, 6 h, 8 h. In accordance with DNA Marker, mIP-10 plasmid was incubated with three kinds of culture media for 10 min, 0.5 h, 2 h, 4 h, 6 h, 8 h, in this order. **A:** DMEM alone: ENG-Apt/mIP-10-LP at 37 °C in DMEM and observed for 10 min, 0.5 h, 1.5 h, 4 h, 6 h and 8 h showing almost zero plasmid release. **B:** human serum: ENG-Apt/mIP-10-LP at 37 °C in human serum for 10 min, 0.5 h, 1.5 h, 4 h, 6 h and 8 h showing a similar small plasmid release. **C:** high glucose DMEM containing 20% FBS: ENG-Apt/mIP-10-LP at 37 °C in 20% FBS high glucose DMEM for 10 min, 0.5 h, 1.5 h, 4 h, 6 h and 8 h showing low plasmid release.

Supplementary Figure 4: Cytotoxicity of ENG-Apt/mIP-10-LP and LP-mIP-10 at different N/P ratios. A: Cytotoxicity of ENG-Apt/mIP-10-LP at different N/P ratios (1:4, 1:2, 1:1, 2:1, and 4:1). B: Cytotoxicity of LP-mIP-10 at different N/P ratios (1:4, 1:2, 1:1, 2:1, and 4:1). The mean ± SE of three independent experiments is shown.

293T-mE cells presenting strong fluorescence after FITC/DiI-labeled ENG-Apt/mIP-10-LP nanocapsules culture, in contrast 293T cells presenting weak fluorescence. Similarly, significantly decreased fluorescence of 293T-mE cells covered with excess unlabeled ENG-Aptamer. Fluorescence intensity of 293T-mE cells cultured with DiI-labeled ENG-Apt/mIP-10-IP was significantly higher compared to that of 293T cells, indicating superiorl internalization of ENG-Apt/mIP-10-LP nanocapsules into 293T-mE cells.

Supplementary Figure 5: Targeting specificity of ENG-Apt/mIP-10-LP to CD105-positive cells. A, B: ENG-Apt/mIP-10-LP nanocapsules specifically bind to 293T-mE through ENG receptors as is evident by the fluorescence of DiI-labeled liposomes (red), DAPI-stained nuclei (blue), and FITC-labeled ENG-Aptamer (green), at a magnification of 400×. C: the fluorescence intensity analysis in 293T-mE and 293T after binding of ENG-Apt/mIP-10-LP nanocapsules. D: the fluorescence intensity analysis in 293T-mE after binding of ENG-Apt/mIP-10-LP nanocapsules is much greater than that with mIP-10-LPs. The mean \pm SE of three independent experiments is shown. ** p < 0.01 for the comparison of ENG-Apt/mIP-10-LP group to control groups.

ENG-Apt/mIP-10-LP increased IP-10 expression in mTEC and 293T-mE cells (Figure S6A). Flow cytometric analysis showed that the expression efficiencies in mTEC and 293T-mE cells transfected with ENG-Apt/mIP-10-LP nanocapsules were 62% and 78.6%, respectively, and these efficiencies were significantly higher than the 17% and 26.7% for these cells transplanted with non-targeting mIP-10-LPs. In comparison, the efficiencies with Lipofectamine 2000 were 71.5% and 84.3%, respectively, as shown in Figure S6B.

Supplementary Figure 6: ENG-Apt/mIP-10-LP increased IP-10 expression in mTEC and 293T-mE cells. IP-10-EGFP expression in mTEC and 293T-mE cells were observed by fluorescence microscopy. A: fluorescence micrographs after ENG-Apt/mIP-10-LP, LP-mIP-10 and Lipofectamine transfection into CD105-positive cells. B: transfection efficiency analysis of the three nanoparticles by flow cytometry.

Supplementary Figure 7: HE staining (200×)

Heart, liver, spleen, lung and kidney of mice present no inflammatory cell infiltration or toxicity damage based on the results of HE staining.

A, B: Frequency of $CD8^+$ T cells in the TIL of melanoma-bearing mice by flow cytometric analyses, and the numbers of $CD8^+$ T cells in tumor tissues with high expression of IP-10 after treatment with ENG-Apt/mIP-10-LP were significantly more than that after treatment with mIP-10-LPs.

C, **D**: ELISPOT detection showed that after treatment with ENG-Apt/mIP-10-LP nanocapsules significantly more IFN- γ -secreting cells were observed among the TILs than after mIP-10-LP treatment, with significantly fewer positive spots appearing in the PBS-treated group and the mIP-10-treated group.

Supplementary Figure 8: ENG-Apt/mIP-10-LP targets tumor sites and can effectively chemotaxis CD8⁺ T to tumor sites.

A: the percentage of infiltrating $CD8^+$ T cells in TIL was analyzed by flow cytometry. **B:** quantitation of $CD8^+$ T cells in TIL; **C:** the number of IFN- γ -positive spots in splenocytes by ELISPOT. **D:** comparison of statistics dots in each group and controls. The mean \pm SE of three independent experiments is shown. ** p < 0.01 for the comparison of ENG-Apt/mIP-10-LP group to control groups.

Flow cytometry was used to detect myeloid-derived suppressor cell (MDSCs) in bone marrow, spleen, as well as isolated tumor-infiltrating lymphocytes (TILs) after treatment. The results showed that the percentage of MDSCs in vivo after treatment with ENG-Apt/mIP-10-LP significantly decreased, likewise, Tregs in the spleen as well as tumor infiltrating lymphocytes showed similar trends.

Supplementary Figure 9: The percentage of MDSC and Treg cells. A, C, E: the percentage of MDSC (CD11b⁺Gr1⁺) in marrow, splenocytes and tumor were analyzed by flow cytometry. B, D, F: quantitation of MDSC in marrow, splenocytes and tumor. G: the percentage of Treg (CD4⁺ CD25⁺ FoxP3⁺) in splenocytes. H: quantitation of Tregs in splenocytes. All experiments were performed in triplicates and mean \pm SE is shown. * p < 0.05; ** p < 0.01 for the comparison of ENG-Apt/mIP-10-LP group to control groups.

Changes in the expression of proliferating cells nuclear antigen (PCNA) were detected via immunohistochemical staining, and the results showed that the group treated with ENG-Apt/mIP-10-LP had significantly fewer PCNA-positive cells than the group treated with mIP-10-LPs (A, C). Apoptosis in tumor tissues after treatment was further investigated by TUNEL method. Apoptosis among tumor cells after treatment with ENG-Apt/mIP-10-LP nanocapsules significantly increased and was greater than that after treatment with mIP-10-LPs (B, C).

Supplementary Figure 10: Proliferation and apoptosis of tumor cells. A: tumor PCNA positive cells after treatment. PCNA-positive cells in each group, 400×. B: TUNEL assay on tumor cells' apoptosis. Apoptotic cells (green), cell nuclei labeled with DAPI (blue), 200×. Apoptotic -positive cells in each group. C: PCNA-positive and apoptotic-positive cells in each group. The mean \pm SE of three independent experiments is shown. ** *p* < 0.01 for the comparison of ENG-Apt/mIP-10-LP group to control groups.

Immunohistochemical staining of tumor tissues for CD31 expression illustrated a remarkably reduced tumor vascular density after treatment with ENG-Apt/mIP-10-LP nanocapsules, which was positively correlated with mIP-10 expression. The vascular density in the tumor was also lower than that in the mIP-10-LP group and 5-6 times lower than the densities in the PBS and mIP-10 groups.

Supplementary Figure 11: Vascular density in tumor tissue.

A: Anti-CD31 immunohistochemical staining for tumor vascular density. A: tumor vascular density in tumor tissue, $100 \times$. B: statistical comparison of CD31 positive vessels in each group. The mean \pm SE of three independent experiments is shown. ** p < 0.01 for the comparison of ENG-Apt/mIP-10-LPgroup to control groups.