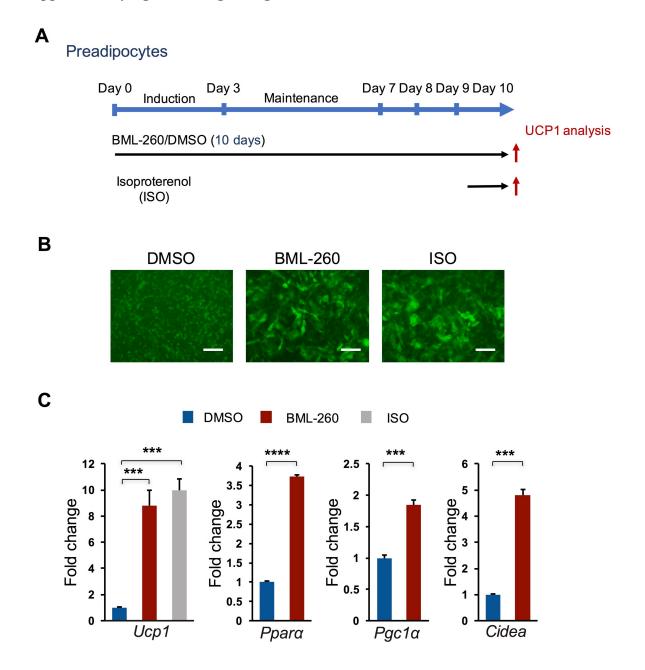
Supplementary Information

Identification of a rhodanine derivative BML-260 as a potent stimulator of UCP1 expression

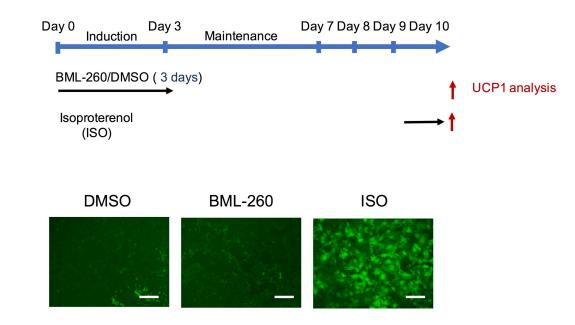

Zhuanghui Feng, Yuda Wei, Yongxian Zhang, Yan Qiu, Xiaojian Liu, Li Su, Ningning Liang, Huiyong Yin, Qiurong Ding

CATALOG #	CAS #	COMPOUND	M.W.	Molecular Formula
PR-106	28874-45-5	Cantharidic acid	214.2	$C_{10}H_{14}O_5$
PR-105	56-25-7	Cantharidin	196.2	$C_{10}H_{12}O_4$
PR-107	145-73-3	Endothall	186.2	$C_8H_{10}O_5$
EI-244	6881-57-8	Benzylphosphonic acid	172.1	C ₇ H ₉ O ₃ P
T-100	62284-79-1	L-p-Bromotetramisole oxalate	373.2	$C_{13}H_{13}BrN_2O_4S$
PR-112	150627-37-5	RK-682	368.5	$C_{21}H_{36}O_5$
PR-109	n.a.	RWJ-60475	404.1	C ₁₃ H ₁₁ BrNO ₇ P
PR-110	n.a.	RWJ-60475 (AM)3	620.3	$C_{22}H_{23}BrNO_{13}P$
AC-1102	16595-80-5	Levamisole HCl	240.8	$C_{11}H_{13}CIN_2S$
AC-1104	5086-74-8	Tetramisole HCl	240.8	$C_{11}H_{13}ClN_2S$
PR-100	52315-07-8	Cypermethrin	416.3	$C_{22}H_{19}Cl_2NO_3$
PR-101	52918-63-5	Deltamethrin	505.2	$C_{22}H_{19}Br_2NO_3$
PR-102	51630-58-1	Fenvalerate	419.9	C ₂₅ H ₂₂ ClNO ₃
PR-113	3785-90-8	Tyrphostin 8	160.2	$C_{10}H_6N_2O$
PR-114	n.a.	CinnGEL	490.5	$C_{23}H_{30}N_4O_8$
PR-115	n.a.	CinnGEL 2 Me	518.6	$C_{25}H_{34}N_4O_8$
PR124	396073-89-5	BN-82002	359.4	$C_{19}H_{25}N_{3}O_{4}$
CT115	517-89-5	Shikonin	288.3	$C_{16}H_{16}O_5$
PR-116	383907-43-5	NSC-663284	321.8	C ₁₅ H ₁₆ ClN ₃ O ₃
A-105	59865-13-3	Cyclosporin A	1203	$C_{62}H_{111}N_{11}O_{12}$
PR-118	100-33-4	Pentamidine	340.4	$C_{19}H_{24}N_4O_2$
PR-125	39674-97-0	BVT-948	241.2	$C_{14}H_{11}NO_3$
PR-126	n.a.	B4-Rhodanine	485.2	n.a.
PR-127	n.a.	BML-268	741.5	n.a.
PR-128	n.a.	Dioxophenanthrene	307.3	C ₁₉ H ₁₇ NO ₃
PR-119	101439-76-3	BML-260	341.4	$C_{17}H_{11}NO_3S_2$
PR-120	148550-96-3	PD-144795	281.3	$C_{13}H_{15}NO_4S$
PR-121	n.a.	BML-267	284.4	$C_{11}H_{12}N_2O_5S$
PR-129	n.a.	BML-267 Ester	340.4	n.a.
PR-122	n.a.	OBA	209.2	C ₉ H ₇ NO ₅
PR-130	n.a.	OBA Ester	251.2	n.a.
EI-130	303-45-7	Gossypol	518.6	C ₃₀ H ₃₀ O ₈
PR-123	121268-17-5	Alendronate	325.1	$C_4H_{18}NNaO_{10}P_2$

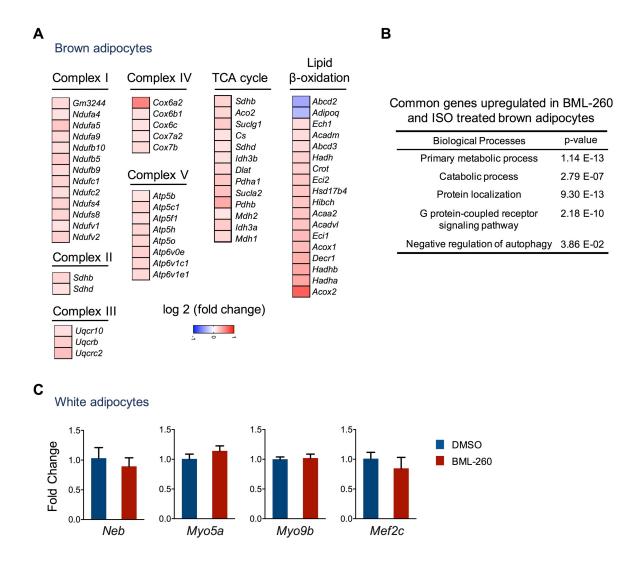
Supplementary table. Information of the phosphatase inhibitor library.

n.a., not available

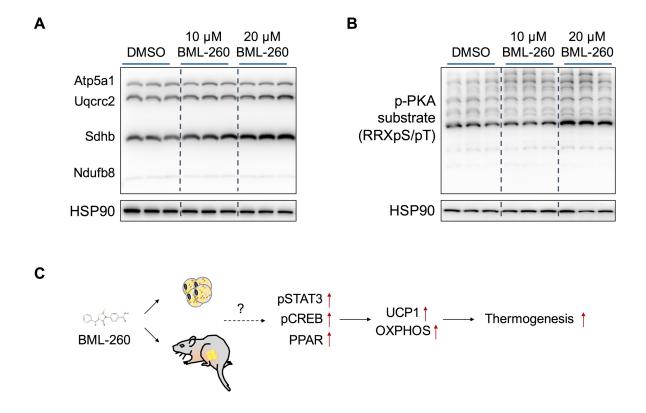
Supplementary figure and figure legends

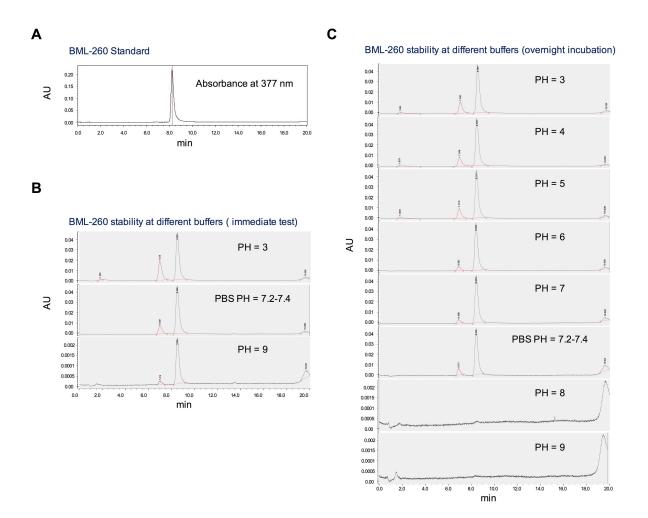


Supplementary figure 1. BML-260 treatment activates UCP1 expression in brown adipocytes. (A) Schematic view of the adipocyte differentiation procedure and compound treatment protocol. Red arrows indicate time points of cell collection for analysis. (B) Representative images of GFP intensity of cells upon treatment with BML-260, ISO or DMSO. Scale bar = 200 μ m. (C) mRNA expression analysis in above cells with ISO or BML-260 treatment. Data are represented as means with SEM. *** P<0.001, **** P<0.0001.


Α

В


Preadipocytes


Supplementary figure 2. BML-260 treatment at the differentiation induction stage only does not induce UCP1 expression in brown adipocytes. (A) Schematic view of the adipocyte differentiation procedure and compound treatment protocol. Red arrows indicate time points of cell collection for analysis. (B) Representative images of GFP intensity of cells upon treatment with BML-260 or ISO. Scale bar = $200 \mu m$.

Supplementary figure 3. BML-260 upregulates thermogenic genes. (**A**) Heatmap depicting of upregulated genes after BML-260 treatment in brown adipocytes identified in Gene Ontology analysis. (**B**) Gene Ontology analysis of commonly upregulated genes in brown adipocytes treated by BML-260 or ISO. (**C**) Expression levels of muscle program genes in *in vitro* cultured white adipocytes treated by BML-260 or DMSO.

Supplementary figure 4. BML-260 enhances PKA signaling pathway and OXPHOS proteins in white adipocytes. (A) Western analysis of OXPHOS proteins in *in vitro* cultured white adipocytes treated by BML-260 or DMSO. (B) Western analysis of PKA signaling pathway in *in vitro* cultured white adipocytes treated by BML-260 or DMSO. (C) The schematic diagram of the discoveries in this study. OXPHOS, oxidative phosphorylation.

Supplementary figure 5. HPLC analysis of BML-260 stability in buffers with different pH values. (A) HPLC profile of BML-260 standard at 377 nm absorbance. (B) Immediate tests of BML-260 dissolved in different buffers as indicated. (C) Tests of BML-260 dissolved in different buffers as indicated after overnight incubation.