Supplementary information for " Anti-tumor Effects and Potential Therapeutic Response Biomarkers in α-Emitting *meta*-²¹¹At-Astato-Benzylguanidine Therapy for Malignant Pheochromocytoma Explored by RNA-sequencing "

Supplementary materials and methods

PC12 cell culture

PC12 cells were cultured in RPMI1640 (Wako Pure Chemical Industries, Osaka, Japan) containing 10% heat-inactivated horse serum (Thermo Fisher Scientific, Inc., Waltham, MA), 5% heat-inactivated fetal bovine serum (AusGeneX, Loganholme, OLD, Australia), penicillin (100 units/ml) and streptomycin (100 μg/ml) and L-glutamine (2 mM). Incubation conditions of PC12 were 37°C, 5% CO₂ and 95% air.

Cell survival assay

Cells treated with ²¹¹At-MABG or irradiated with γ-rays were washed with phosphate buffered saline (PBS), suspended in growth medium, and seeded at 400 cells/well in a 96-well plate for 2 weeks incubation. After incubation, cell survival was evaluated by the

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay as previously reported [1].

Absorbed dose for ²¹¹At-MABG treatment

Absorbed dose of ²¹¹At-MABG treated cells was estimated from the cellular uptake and release experiments. For uptake, 10⁵ cells were incubated with 5.0 kBq of ²¹¹At-MABG in 5 mL growth medium (1.0 kBq/mL) for 0, 1, 3, 6 and 12 h. Just after incubation, cells were washed with ice-cold PBS, and dissolved in 0.1 N NaOH. Radioactivity of ²¹¹At in the solution was measured by γ -counter. On the other hand, the cellular release was examined as follows: (i) Cells were treated with ²¹¹At-MABG for 1 h, (ii) after ²¹¹At-MABG exposure, cells were washed by PBS and (iii) cells were incubated in growth medium for 1, 3, 6, 12 and 24 h. Cells were washed by PBS after incubation, and ²¹¹At radioactivity of cells was measured.

Absorbed dose of ²¹¹At-MABG treated cells was basically estimated by the published method [2] with some modifications. Time activity curves (TACs) of cellular uptake and release experiments were fitted by the following functions using real-coded genetic algorithm (Real-GA) [3] (**Figure S1A**):

$$\Delta (\% AD_1) = -k_{12} * \% AD_1 * \Delta t + k_{21} * \% AD_2 * \Delta t$$
 (a1) and

$$\Delta (\% AD_2) = -k_{21} * \% AD_2 * \Delta t + k_{12} * \% AD_1 * \Delta t$$
 (a2)

Here, $\% AD_1$ and $\% AD_2$ are the percent applied dose of growth medium (5 mL) and cells (10⁵), respectively. k_{12} and k_{21} are transport coefficients in s⁻¹. Δ indicates the difference and Δt is the time step of 1 s. For uptake, when the calculation time was 0, $\% AD_2$ was set to be 0, and $\% AD_1$ was 0 for release. Using the estimated values of k_{12} (1.50×10⁻⁵) and k_{21} (4.18×10⁻⁵), we simulated well both uptake and release experiments (**Figure S1B-C**).

These parameters made our model simulate TAC in the survival experiment. **Figure S2A-B** show the TACs during the incubation for ²¹¹At-MABG exposure (1.0 kBq/ml at the start time) and 10 times of half-life in ²¹¹At (7.2 * 10 = 72 h).

Western blot analysis

Cells were dissolved in sample buffer and incubated at 95°C for 15 min. Aliquots of samples containing 40 µg protein were analyzed by 10% SDS-PAGE and transferred onto a polyvinylidene fluoride membranes. Blots were incubated at 4°C overnight in tris-buffered saline and 0.1% polysorbate-20 (TBST) containing 5% w/v milk. Blots were then incubated with rabbit anti-TSPO antibody (1/200, Biorbyt, Cambridge, UK) or rabbit anti- β -actin

antibody (1/1000, Cell Signaling Technology, Beverly, MA) at room temperature for 2.5 h. After washing with TBST, the blots were incubated with horseradish peroxidase conjugated anti-rabbit IgG antibody for 1.5 h at room temperature. The blots were further washed with TBST, and specific proteins were visualized by using ECL Western blotting detection reagents (GE Healthcare, Piscataway, NJ).

MIBG-control experiment

Since there is no stable isotope in astatine, nonradioactive MIBG which shows a similar biological kinetics to ²¹¹At-MABG was used for the control experiments [1]. The radionuclidic purity of ²¹¹At was over 99% in our study. Therefore, molar concentrations of ²¹¹At-MABG were 49.7 fM for 10% survival dose (0.8 kBq/ml) and 6.2 fM for 80% survival dose (0.1 kBq/ml) according to the following formula; A=0.693/T×6.02×1023×M (A: radioactivity, T: half-life (sec), M: molar concentration). PC-12 cells were treated with culture medium or 80% and 10% survival equivalent dose of MIBG for 0, 3, 6, 12 h. After harvesting cells, RNA extraction, sequencing, differential expression analysis were performed according to Materials and Methods.

Supplementary result

Low fluence rate

The doses for 10% survival were 10 Gy and 3.5 Gy for γ -ray and ²¹¹At-MABG, respectively. The relative biological effectiveness (RBE) at 10% survival was thus approximately 2.9, suggesting the strong anti-tumor effect of the α -particles emitted from ²¹¹At-MABG. Because nuclear DNA damage is the main cause of IR-induced cell death, the number of α -particles passing through the nucleus is an important concern [4]. The maximum number of α -particles emitted was approximately 25 per cell (Figure S2D), and 10 α -particles passing through the nucleus can induce 10% survival in mammalian cells [5]. Overall, the number was one-third to one-half of the maximum α -particles emitted by ²¹¹At-MABG. Thus, adjacent cellular ²¹¹At-MABG may contribute to nuclear-penetrating α -particles because the probability of α -particles emitted in all directions by ²¹¹At-MABG passing through the nucleus is expected to be slightly lower than one-third. Taken together, the number of α -particles derived from 0.8 kBq/mL of ²¹¹At-MABG-exposure would be sufficient for 10% survival in PC12 cells.

Supplementary references

- Ohshima Y, Sudo H, Watanabe S, Nagatsu K, Tsuji AB, Sakashita T, et al. Antitumor effects of radionuclide treatment using α-emitting meta-²¹¹At-astato-benzylguanidine in a PC12 pheochromocytoma model. Eur J Nucl Med Mol Imaging. 2018; 45(6): 999-1010.
- 2. Shinohara A, Hanaoka H, Sakashita T, Sato T, Yamaguchi A, Ishioka NS, et al. Rational evaluation of the therapeutic effect and dosimetry of auger electrons for radionuclide therapy in a cell culture model. Ann Nucl Med. 2018; 32(2): 114-122.
- 3. Herrera F, Lozano M, Verdegay JL. Tackling real-coded genetic algorithms: operators and tools for behavioural analysis. Artif Intell Rev. 1998; 12(4): 265–319.
- Maier P, Hartmann L, Wenz F, Herskind C. Cellular Pathways in Response to Ionizing Radiation and Their Targetability for Tumor Radiosensitization. Int J Mol Sci. 2016; 17(1). pii: E102.
- Zhou H, Randers-Pehrson G, Waldren CA, Vannais D, Hall EJ, Hei TK. Induction of a bystander mutagenic effect of alpha particles in mammalian cells. Proc Natl Acad Sci U S A. 2000; 97(5): 2099-104.

Rank	Gene name	LogFC	Rank	Gene name	LogFC	Rank	Gene name	LogFC
1	Snrpg	4.075	56	Erolb	1.615	111	Nup93	1.311
2	Mien1	3.665	57	Csrp2	1.612	112	Slirp	1.306
3	Hnrnpa3	2.925	58	Shfm1	1.606	113	Timm8b	1.304
4	Vdac1	2.897	59	Dbi	1.587	114	Siva1	1.304
5	Otub1	2.697	60	Sass6	1.584	115	Hnrnpf	1.3
6	Ppial4d	2.672	61	Cdkn2aipnl	1.563	116	Map1s	1.287
7	Gm5471	2.644	62	Сохбс	1.562	117	Ankfy1	1.286
8	Tubala	2.623	63	Btf3	1.556	118	Slbp	1.285
9	Sos2	2.551	64	App	1.555	119	Hdac11	1.282
10	Dmap1	2.443	65	Fkbp5	1.539	120	Txn1	1.28
11	Snrpf	2.377	66	Uap1	1.535	121	Rbx1	1.261
12	Usmg5	2.339	67	Slc16a1	1.51	122	Med21	1.261
13	Vegfa	2.328	68	Ercc4	1.51	123	Bre	1.259
14	Uqcrb	2.305	<u>69</u>	Epm2a	1.506	124	Paip2b	1.252
15	Fam222b	2.305	70	Snrpe	1.498	125	<u>Gtf2f2</u>	1.242
10		2.299	71	Fkbp11	1.491	126	Atg14	1.241
1/	Adk	2.279	72	Sgol2	1.49	12/	Pole4	1.24
18	LSM3	2.211	73		1.489	128	Aacki	1.231
- 19	Elfon Vlastare2	2.24	74	Zanne15	1.48	129	Morf411	1.223
20	TDX1-ps5	2.22	75	<u>Fumosu</u> Ditanh	1.477	130	Bas7	1.217
$\frac{21}{22}$	reni Sloba 17	2.210	70	7 Sep	1.470	131	Hurupa2b1	1.217
22	Zhed5	2.208	78	Froch	1.474	132	Kntcl	1.214
23	Atn5i	2.175	70	SNOR444	1.473	134	Chchdl	1.200
25	Cdk5r2	2.17	80	Trmt112	1.402	135	Ahcyl?	1 197
26	Atn5i2	2.070	81	Fam64a	1.437	136	Sdhaf3	1 194
27	Ska2	1.978	82	Cdca5	1.44	137	Mb21d1	1.191
28	Msh2	1.975	83	Nuf2	1.436	138	Rtcb	1.187
29	Atp5e	1.97	84	Galnt2	1.436	139	Ddx19b	1.187
30	Acpl	1.93	85	Ncam1	1.434	140	Srsf7	1.177
31	Chmp6	1.928	86	Abil	1.427	141	Ccne2	1.175
32	Tubg1	1.865	87	Cox7b	1.417	142	Rell1	1.168
33	Cwc22	1.864	88	Vrk2	1.406	143	Slc36a1	1.145
34	Lin9	1.857	89	Dazap 1	1.406	144	Ndufb3	1.141
35	Ddx6	1.848	90	Clspn	1.402	145	Parp2	1.135
36	Csde1	1.832	91	Ppih	1.399	146	Cox7c	1.133
37	Ptma	1.812	92	Exosc8	1.399	147	Actr2	1.129
38	Lims1	1.808	93	Gabpb11	1.39	148	Atp11b	1.124
39	MGC95208	1.795	94	Tubala	1.388	149	Gins3	1.116
40	Phb	1.794	95	SNORA24	1.377	150	Osbpl8	1.112
41	Zwilch	1.774	96	Nt5c3b	1.377	151	Strbp	1.11
42	Matr3	1.766	9/	Usp12	1.368	152	Dhx40	1.108
43	Map4	1.764	98	<u>Mpv1/l</u>	1.365	153	<i>Etf4n</i>	1.106
44	Glisz Magt2	1.751	<u>99</u> 100	<u> </u>	1.302	154	<u>Dpy1911</u>	1.105
45	Mgsi5	1.731	100		1.302	155	Bassan 1	1.094
40	Breal	1.720	101	Shf?	1.333	150	Cnd	1.07
47	 	1.710	102	 Magobb	1.349	157	Smim20	1.07
40	Pnil?	1.705	103	Tode	1 343	159	Crv?	1.000
50	Set	1 661	105	Arhoanlla	1 341	160	Smarce1	1.000
51	Eif3i	1.647	106	Crnkll	1.328	161	Cor8a	1.064
52	Mboat1	1.646	107	Tipinl1	1.327	101	201104	1.001
53	S100a6	1.643	108	Arhgef3	1.324			
54	Ndufab1	1.631	109	Selk	1.321			
55	Sap18	1.625	110	Suclg2	1.316			

Table S1Representative DEGs between 211 At-MABG treatment and γ -irradiation.

Supplementary figure legends

Figure S1 Pharmacokinetics of *in vitro* ²¹¹At-MABG treatment. (A) 2 compartment model which consists of "growth medium" and "cells" compartments. k_{12} and k_{21} parameters are transport coefficients in h. %*AD*₁ and %*AD*₂ indicate the percent applied dose. (**B**) Cellular uptake simulation of ²¹¹At-MABG. (**C**) Cellular release simulation of ²¹¹At-MABG.

Figure S2 Time activity curves (TACs) of *in vitro* ²¹¹At-MABG treatment. (A) %

Applied dose of the "cells" compartment. (**B**) TAC of the "cells" compartment in kBq treated with the applied dose of 1.0 kBq/mL. (**C**) Dose rate in 10^{-5} Gy/s for ²¹¹At-MABG treatment and γ -ray irradiation. (**D**) Cumulated activity in Bq s per cell for 0.8 kBq/mL ²¹¹At-MABG treatment.

Figure S3 Vastly different transcriptional profiles. A pair comparison of all treatment conditions was performed to test the correlation. There were similar expression levels among γ -ray irradiated samples, in which early (3 h) response of weak irradiation (80% survival) showed very weak correlation (around 0.2 in pearson correlation) to 3 h control conditions Figure S4 Number of DEGs of γ -ray irradiation and ²¹¹At-MABG treatment. Number of DEGs was summarized in each condition, 80% and 10% survival rates, 3, 6 and 12 h post treatments. Yellow and purple circles with light or dark filled color indicate the conditions compared for DEGs. Here the DEGs are FDR < 0.05. Number with a gray bar demonstrates the number of DEGs significantly expressed in all selected conditions.

Figure S5 Heatmap of clustered correlations between MIBG-control experiments. The expression level of all genes with log-normalized TPM (Transcript Per Million, +1 to avoid taking log of zero) is used to cluster samples according to overall Pearson correlation. Regardless of the time point or survival rate, the two conditions (control, stable-iodine labeled MIBG treatment) showed similar expression pattern.

Figure S6 Number of DEGs of stable-iodine labeled MIBG treatment. Number of DEGs was summarized for each comparisons, where DEGs > two fold change (FC) shown in orange, and those below in blue. Actual numbers are displayed above the bars. Overall, comparison between control conditions and MIBG treatment resulted in extremely low number of DEGs exceeding FC > 2, indicating very limited effects of the compounds themselves.

Figure S7 Gene expressions of the regulatory network for cell cycle checkpoints.

Expressions (FPKM) of all genes configured at the pathway map of Figure 4A are shown at

15 panels. Error bars represent standard deviation among the three replicates, and median

values are represented by the symbols.

Α

Figure S7

