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We thank Kovacs et al. for their editorial [15] on 

our recent publication [1] regarding the influence of 
microbubble (MB) dose on acute inflammatory 
response (AIR) following focused ultrasound 
(FUS)-induced increases in blood-brain barrier (BBB) 
permeability. We wish to address key points of 
disparity in interpretations of the data presented by 
us and in a previous report from Kovacs et al [2]. 

All data published to date indicate that an AIR 
follows increased BBB permeability induced by FUS + 
MBs [1–5]; however, there are discrepancies in the 
reported magnitude and duration of this response. To 
address this, we approximated sonication parameters 
shown by Kovacs et al. in PNAS to induce a 
substantial AIR [2] and compared this to parameters 
that better reflect those used in ongoing clinical trials 
(ClinicalTrials.gov identifiers: NCT02343991, 
NCT02986932, NCT03119961) and previous 
preclinical research [6–10]. Results indicated that MB 
dose and acoustic pressure impacts the degree of AIR, 
as measured by changes in the expression of NFκB 
pathway-related genes. We demonstrated a high 
degree of correlation between gene expression 
changes reported by Kovacs et al. and those measured 
in the sonication scheme designed to approximate this 
work (r2 = 0.84; p = 0.00001). Importantly, when MB 
dose was reduced, and peak negative pressure was 
calibrated to avoid inertial cavitation, a substantial 
reduction in the magnitude of AIR was observed. We 
believe this demonstrates that the permeability of the 

BBB can be transiently increased using FUS + MBs 
with a minimal AIR, as well as highlights the need for 
both careful attention to sonication parameters and 
the use of acoustic feedback control. 

In their editorial, Kovacs et al. discuss differences 
in sonication parameters between the two studies [1,2] 
and conclude that these differences preclude a direct 
comparison of results. The first major difference is in 
MB dose. To approximate equivalent doses, 
necessitated by a disparity in MB type between the 
two studies, we used clinical imaging dose as a 
normalizing factor. Optison was administered at ~500 
µL/kg versus Definity administered at 100 µL/kg, in 
Kovacs and McMahon, respectively. Both doses 
equate to 10 times the clinical imaging dose of their 
respective MB type. Kovacs et al. correctly highlight 
differences in MB number/kg between studies. 
However, using MB number as a method of 
comparing doses of different MB types necessarily 
considers all cavitation nuclei as equivalent; the 
assumption that each Definity MB will respond like 
an Optison MB, or vice versa, is somewhat over 
simplistic since differences in their shell properties 
and size alter their response to ultrasound [11,12]. 
Additionally, McDannold et al. have previously 
demonstrated that the probability of increased 
blood-brain barrier (BBB) permeability following FUS 
is approximately equivalent for Definity and Optison 
at their respective clinical imaging doses over a range 
of pressures [6]. 
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Kovacs et al. also point out differences in 
anesthesia carrier gases and infusion rates between 
studies, both of which affect the number of MBs 
present in circulation while FUS is delivered. Using 
this as a metric to compare experimental conditions, 
they conclude that the number of MBs/kg present in 
circulation is lower in Kovacs et al. than in McMahon 
and Hynynen (scheme 2; designed to approximate 
conditions in Kovacs et al.). Again, this analysis 
considers every cavitation nuclei as equivalent; 
however, the smaller mean diameter of Definity MBs 
would contribute to a reduced impact on BBB 
permeability at this frequency relative to Optison MBs 
[12,13]. 

While it is important to note that there are 
several differences in experimental parameters, 
ultimately, the high degree of correlation in 
differential gene expression measured in the two 
studies suggests that the biological responses were 
very similar. We believe that the work presented in 
both Kovacs et al. [2] and McMahon and Hynynen [1] 
highlight the importance of optimizing sonication 
parameters for the desired effect with careful analysis 
of AIR especially for repeated treatments, as well as 
the necessity of using acoustic emissions to calibrate 
and control the applied ultrasound pressure. The 
continued development, refinement, and careful 
study of FUS + MBs for increasing BBB permeability is 
an important endeavor for advancing this technique 
into clinical implementation and for assessing the 
spectrum of its safety profile.  
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