1 Supplementary Data

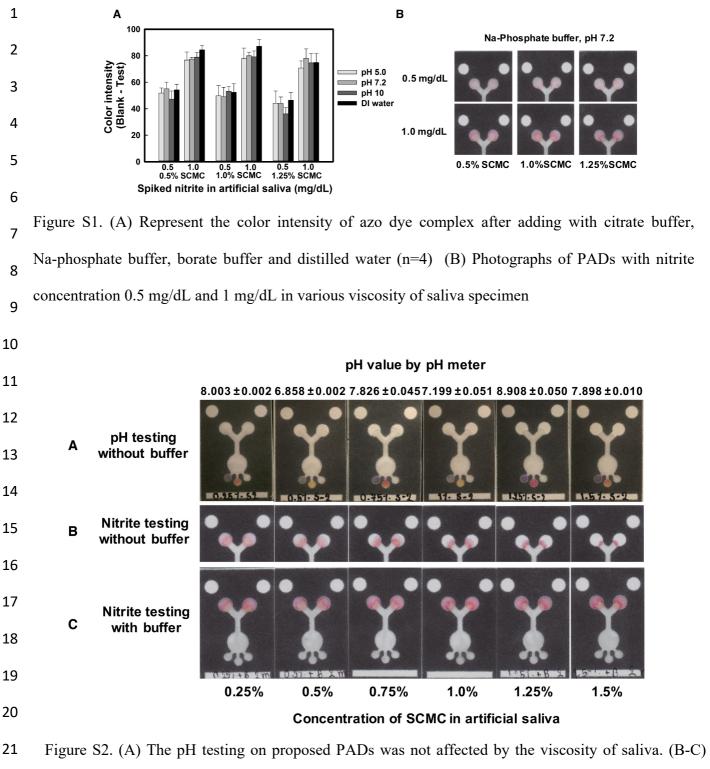
% SCMC	Shear rate,1/s	True Visc, mPa-s		Mean	SD	
0.25%	7000	1.53	1.538	1.541	1.54	0.0035
0.50%	6000	1.871	1.866	1.872	1.87	0.0032
0.75%	4000	2.174	2.181	2.178	2.18	0.0035
1.00%	4000	2.721	2.734	2.721	2.73	0.0075
1.25%	3000	4.181	4.169	4.165	4.17	0.0083
1.50%	2000	5.036	5.199	5.054	5.10	0.0894
SCMC: sodi	ium carboxyme	thylcellulose,	Visc: Viscos	sity		
i						
1						
1						

2 Table S1. Viscosity Measurement

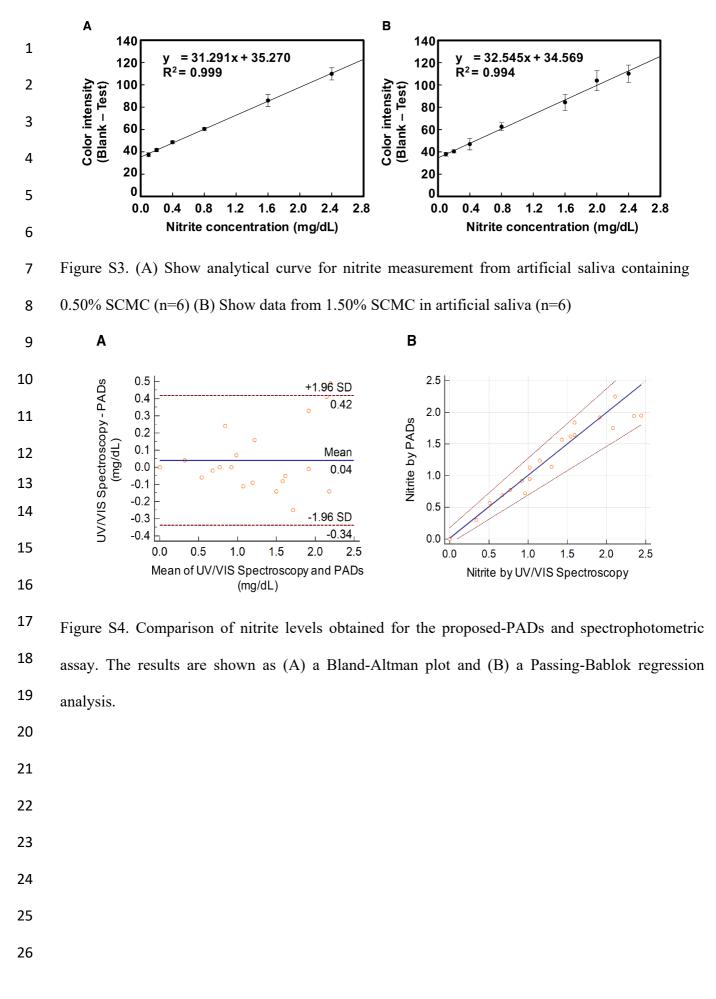
17

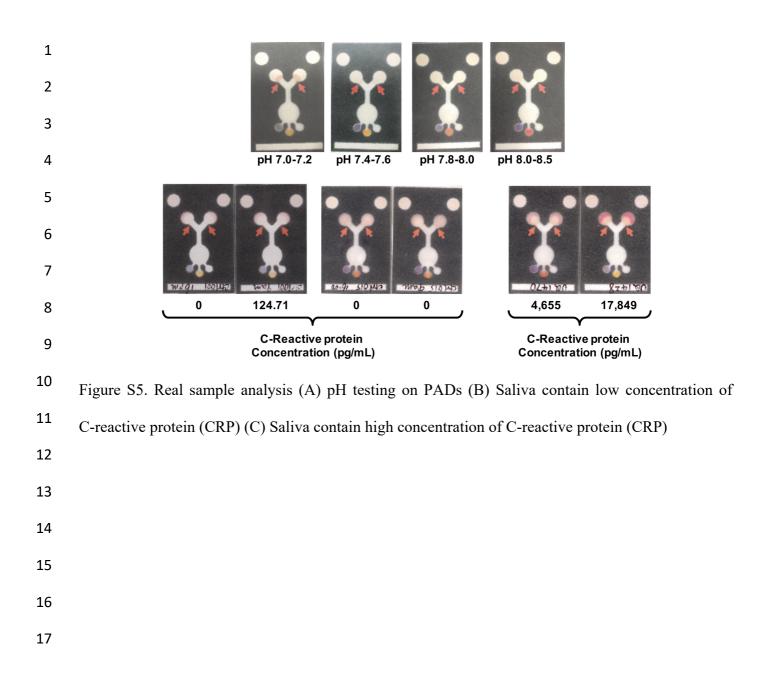
No.	%SCMC	Color change on PADs			pH on	pH meter
		1	2	3	PADs	
1	0.25	ar.	N	See.	6.6-6.8	6.401 ± 0.018
2	0.25	S.		5	8.0	8.003 ± 0.002
3	0.50	S.		-	7.2-7.4	7.284 ± 0.037
4	0.50	S.	ale	1	6.8-7.0	6.858 ± 0.002
5	0.75		300	a lo	5.8	5.700 ± 0.060
6	0.75	300	S.	de la	7.8 - 8.0	7.826 ± 0.045
7	1.00	de la	are .	are .	7.8 - 8.0	8.252 ± 0.001
8	1.00	000	ale	an	7.0	7.199 ± 0.051
9	1.25	a lo	are	alle a	7.0	7.107 ± 0.019
10	1.25	allo	S.	ans.	8.5	8.908 ± 0.049
11	1.50	de la	er.		6.6	6.552 ± 0.021
12	1.50	ST.	a to	ST.	7.8	7.896 ± 0.010

3 SCMC: sodium carboxymethylcellulose, PADs: paper-based analytical devices


Days	Spiked	Condition	PADs		pH on PADs	
	concentration		(mg/dL)			
	(mg/dL)		(n=6)	Low	Normal	High
				(5.651)	(7.132)	(10.186)
2	1.00	RT	0.94 ± 0.23	er.	de la	3
		4 °C	0.90 ± 0.13	315	and a	336
4	1.00	RT	0.81 ± 0.12	àns	de la	3
		4 °C	0.96 ± 0.19	310	de la	000
7	1.00	RT	0.99 ± 0.09	de la	de la	3
		4 °C	1.02 ± 0.10	er.	are .	ar
10	1.00	RT	0.97 ± 0.13	an	an	ar
		4 °C	1.07 ± 0.17	5	are -	de la
14	1.00	RT	0.68 ± 0.15	a		S.
		4 °C	1.07 ± 0.13	an.	an .	de la
21	1.00	RT	0.72 ± 0.18	and a	der.	- A
		4 °C	1.03 ± 0.31	en o	su.	S.
30	1.00	RT	0.92 ± 0.20		S.	
		4 °C	1.04 ± 0.08		3	S.

1 Table S3. Reagent stability


2 Day 30 Spectrophotometer Nitrite concentration $1.01 \pm 0.01 \text{ mg/dL}$


1 1. pH color index preparation

2	For preparation the pH color scale, The PADs design with diameter 4 mm of detection
3	area was fabricated using wax printing technique and 0.3 μ L of each indicator was deposited
4	in to pH sensing area. Phenol red indicator was required 0.6 μL or 2 drops of solution. The
5	PADs were allowed to dry at room temperature for 5 min. The scale for reading of pH was
6	conducted as follows: 0.5 μ L of buffer solution or saliva sample containing a various of pH
7	in range 5 to 10 were added on top of sensing area. The change of color on PADs was
8	recorded within 1-2 min via smartphone.
9	
10	2. Optimization the optimum types and pH of washing buffer
11	To investigate the effect of pH on the formation of azo dye complex, citrate buffer
12	with pH 5, Na-phosphate buffer with pH 7.2, borate buffer with pH 10 and distilled water
13	were prepared and tested on proposed device. In this study, 0.7 μ L of Griess reagent was
14	immobilized into detection areas and control area and left to dry in the dark plate for 10 min.
15	Then,13 μ L of saliva specimen containing 0.5 or 1.0 mg/dL of nitrite was added into sample
16	area. The fluid can be directly absorbed into sample area and flowed through the channel.
17	Finally, each buffer was applied into sample area and waiting until saliva fluid was spread
18	out into detection areas, approximately 5-7 min. Figure S1 represents the color signal of each
19	buffer and the photographs of PADs after adding Na-phosphate buffer.
20	
21	
22	
23	
24	
25	

Prigure 32. (A) The priviesting on proposed PADs was not affected by the viscosity of saliva. (B-C)
Nitrite measurement was effected by the viscosity of solution and the accuracy for nitrite
quantification was improved by added the washing buffer to spread out saliva solution.

