Supplementary Figure 1. (**A-E**) GSEA of microarray data from S18, S26, CNE2 WT and CNE2 OVOL2-KO cells. (**F**) qPCR analysis of EMT makers in S18 and S26 cells. (**G**) GSEA plot of microarray data from CNE2 WT and OVOL2-KO cells reveals an enrichment of gene signatures associated with invasion.

Supplementary Figure 2. (**A**) T7E1 assay to determine the cleavage efficiency of sgRNAs targeting the human *OVOL2* locus. (**B** and **C**) CRISPR-induced indels in HNE1 and CNE2 OVOL2-knockout cells were identified by direct Sanger sequencing.

Supplementary Figure 3. (**A**) Correlation analysis of OVOL2 and EMT-related proteins in 1036 cell lines from the CCLE database (two-tailed Pearson correlation), *P*<0.001. (**B**) Pearson correlation between ZEB1 and OVOL2 mRNA levels in 1036 cancer cell lines from the CCLE database. (**C**) CNE2 WT, CNE2 OVOL2-KO and S18 cells were transfected with control or ZEB1-specific siRNA; after 72 h, the cells were harvested to analyze the expression of EMT-related proteins. (**D**) qPCR of EMT-related markers in the cells in **c**. (**E**) Overexpression of OVOL2 in NIH-3T3 cells was not able to restore E-cadherin expression. NIH-3T3 cells were infected with control lentivirus or lentivirus carrying OVOL2, and EMT marker expression and cell morphology were examined 72 h post-infection. GFP was used to indicate the transduction efficiency.

Supplementary Figure 1

Α

Gene Set Enrichment Analysis in S18 vs. S26: Hallmarks

RANK	NAME	NES	FDR q-val	FWER p-val	
1	HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION	2.5778787	0	0	
2	HALLMARK_TNFA_SIGNALING_VIA_NFKB	2.1917176	0	0	
3	HALLMARK_HYPOXIA	2.0717003	0	0	
4	HALLMARK_UV_RESPONSE_DN	2.0534444	0	0	
5	HALLMARK_IL6_JAK_STAT3_SIGNALING	2.0296838	0	0	

В

Gene Set Enrichment Analysis in CNE2 OVOL2 KO vs. WT: EMT

RANK	NAME	NES	FDR q-val	FWER p-val
1	ANASTASSIOU_MULTICANCER_INVASIVENESS_SIGNATURE	1.873348	0.003653846	0.003
2	JECHLINGER_EPITHELIAL_TO_MESENCHYMAL_TRANSITION_UP	1.8166465	0.003044456	0.005
3	LIEN_BREAST_CARCINOMA_METAPLASTIC_VS_DUCTAL_UP	1.8087697	0.002029637	0.005
4	LEF1_UP.V1_DN	1.7329576	0.006408124	0.022
5	LEF1_UP.V1_UP	1.6925118	0.007035764	0.029

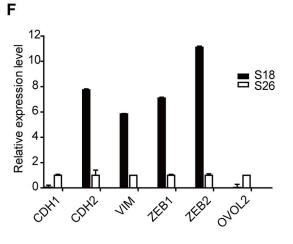
C

Gene Set Enrichment Analysis in CNE2 OVOL2 KO vs. WT: Hallmarks

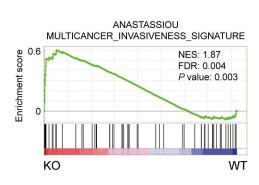
RANK	NAME	NES	FDR q-val	FWER p-val
1	HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION	2.3770862	0	0
2	HALLMARK_INTERFERON_ALPHA_RESPONSE	2.3119333	0	0
3	HALLMARK_TNFA_SIGNALING_VIA_NFKB	2.1534803	0	0
4	HALLMARK_HYPOXIA	2.119335	0	0
5	HALLMARK_INTERFERON_GAMMA_RESPONSE	2.0551329	0	0

D

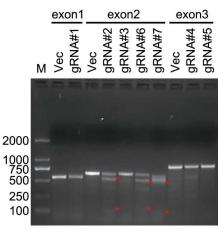
Gene Set Enrichment Analysis in S18 vs. CNE2 OVOL2 KO: Hallmarks


RANK	NAME NES		FDR q-val	FWER p-val
1	HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION	2.079954	0	0
2	HALLMARK_TNFA_SIGNALING_VIA_NFKB	2.0743127	0	0
3	HALLMARK_TGF_BETA_SIGNALING	2.0352209	0	0
4	HALLMARK_INFLAMMATORY_RESPONSE	1.9631493	3.13E-04	0.001
5	HALLMARK_UV_RESPONSE_DN	1.9050014	2.50E-04	0.001

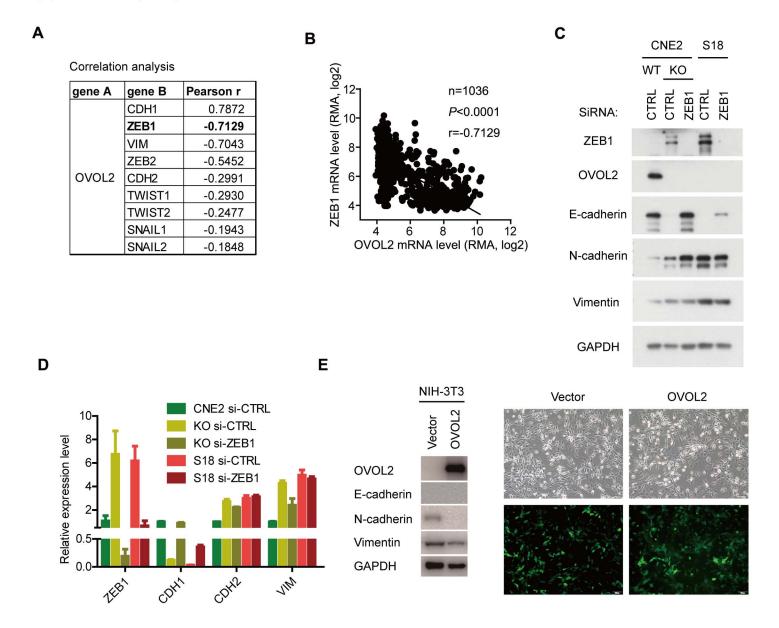
Ε


Gene Set Enrichment Analysis in CNE2 vs. S26: Hallmarks

RANK	NAME	NES	FDR q-val	FWER p-val	
1	HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION	1.663294	0.03123561	0.029	
2	HALLMARK_MYC_TARGETS_V2	1.5866247	0.03354433	0.062	



G


Supplementary Figure 2

	1000 750 500 250 100		
В			
		PAM	
HNE1	WT	GCGTGCGGGGGCTCTCGCTTTGGGGGCCCGCTGCGGCCCCCGGGGC	
KO #1	_	GCGTGCGGGGGCTCTCGCTTTGGGGGCCCGCGCGCGCAACCCACCTCTCCGATAAGCCGATACTGACCCGTGTTGTCTGTTA GCCGACGAGACTACGGCGGCACAAGGCCGACAGTCGCGTCCCCGCGGGCCAAGAAAAACAGTTCTGGCTGG	+188 bp
	Allele_2	GCGTGCGGGGGCTCTCGCTTTGGGGGCTCGGGCCGCGCGCAACCCACCTCTCCGATAAGCCGATACTGACCCGTGTTGTCTGTTA GCCGACGAGACTACGGCGGCACAAGGCCGACAGTCGCGTCCCCGCGGGCCAAGAAAAACAGTTCTGGCTGG	+188 bp
	WT	AGCAGCAGCGGGGGGAGCCTGGAGGAGCAGAGAGCAGCTCGTCCCCGCACGCCCCCGAGAGCGAAACCCCCGAGCCCGGCGAGAGCCCCGAGAGCCCCGAGAGCCCCGAGAGCCCCGAGAGCCCCGAGAGCCCCGAGAGCCCCGAGAGCCCCGAGAGCCCCGAGAGCCCCGAGAGCCCCGAGAGCCCCGAGAGCCCCGAGAGCCCCGAGAGCCCCGAGAGCCCCGAGAGCCCCGAGAGCCCCGAGAGCCCCGAGACCCCCGAGACCCCGAGACCCCGAGACCCCGAGAGCCAGACCCCGAGAGCCAGACCCCGAGAGCCCCGAGAGCCAGACCCCGAGAGCCAGACCCCGAGAGCCAGACCCCGAGAGCCAGACCCCGAGAGCCCCCGAGAGCCCCCGAGAGCCCCCGAGAGCCCCCGAGACCCCCGAGACCCCCGAGACCCCCGAGACCCCCGAGACCCCCGAGACCCCCGAGACCCCCGAGACCCCCGAGAGCCAGACCCCCGAGAGCCCCCGAGAGCCAGACCCCCGAGAGCCAGACCCCCGAGAGCCAGACCCCCGAGAGCCAGACCCCCGAGAGCCAGACCCCCGAGAGCCAGACCCCCGAGAGCCAGACCCCCGAGAGCCAGACCCCCGAGACCCCCGAGACCCCCGAGACCCCCGAGACCCCCGAGACCCCCGAGACCCCCGAGACCCCCGAGACACCCCCGAGACCCCCGAGACCCCCGAGACCCCCGAGACCCCCGAGACCCCCGAGACCCCCGAGACCCCCGAGACCCCCGAGACCCCCGAGACCCCCGAGACCCCCGAGACCCCCGAGACCCCCGAGACACCCCCGAGACCCCCGAGACCCCCGAGACCCCCGAGACCCCCGAGACCCCCGAGACCCCCGAGACCCCCGAGACCCCCGAGACCCCCGAGACCCCCC	
KO #2	Allele_1	AGCAGCAGCGGGGGGAGCCTGGAGGAGCAGAGAGCAGCTCGTCCCCGCAAGCGAAACCCCCGAGCCCGGCGACCCGGCGACCCGAGGCCCGAGGCCCGAGGCCCGAGGCCCGAGGCCCGAGGCCCGAGGCCCGAGGCCCGAGGCCCGAGGCCCGAGGCCCGAGGCCCGAGGCCCGAGGCCCGAGCCCCGAGCCCCGAGCCCCGAGCCCCGAGCCCCGAGCCCCGAGCCCCGAGCCCCGAGCCCGAGCCCCGAACCCCCGAACCCCCGAACCCCCGAACCCCCGAACCCCCGAACCCCCGAACCCCCGAACCCCCGAACCCCCGAACCCCCC	-10 bp
	Allele_2	AGCAGCAGCGGGGGAGCCTGGAGGAGCACGCCCCGAGAGCGAAACCCCCGAGCCCGGCGAGCCCGGCGAGCCCGAGGCCCGAGCCCGAGCCCGAGCCCGAGCCCGAGCCCGAGCCCGAGCCCGAGCCCGAGCCCGAGCCCGAGCCCGAGCCCGAGCCCGAGCCCGAGCCCGAGCCCGAGCCCGAGACCCCGAGCCCCGAGCCCCGAGCCCCGAGCCCCGAGCCCGAGCCCCGAGCCCCGAGCCCCGAGCCCCGAGCCCCGAGCCCCGAGCCCCGAGCCCGAGCCCAGACCCCCC	-20 bp
	WT	GCGGGCGTGCGGGTTGACGCCGAGTGTGTGTGTGCGGGGCGCCCCCCCC	
	Allele_1	GCG	-180 bp
KO #3		GCCCCGAGAGCGAAACCCCCGAGCCCGGCGACGCCGAGGGCCCCGATGGACAC	
	I Allele_2	GCGGGCGTGCGGGTTGACGCCGAGTGTGTGTGTGTGGGGGCGCGGCCCCTCCCT	-10 bp
С			
CNE2		PAM	
ONLZ	WT	TCGTCGAGCAGGGGCGTCCGGCTTTGGGGGCTC	
KO #1	Allele_1	TCGTCGAGCGGGGGCTCTCGCTTTGGGGGCTC	-10 bp
NO #1	Allele_2	TCGTCGAGCAGGGGGGCTCTCGCTTTGGGGGGCTC	-8 bp
		CTCTCGCTTTGGGGGCCCGCTGCGGCCTCCCGGGGC	
KO #2	Allele_1	CTCTCGCTTTGGGGGCCGCCGCGCGCGCGCAATTGGACTACAAGACCCCTTATATTTACAGTCCGTACTCTAATAGTTTTTCCTAGAAGTGGATCTAGGAAAAGTGCATCTTTCGGTCAGGCCGTCTTTGCCACGACTGGGGTGCGGCTCCCGGGGC	+117 bp
	Aliele_2	CTCTCGCTTTGGGGGCTCGGGCCGCTATATTGGACTACAAGACCCCTTATATTTACAGTCCGTACTCTAATAGTTTTTCCTAGAAGTGGATCTAGGAAAAGTGCATCTTTCGGTCAGGCGTCTTTGCCACGACTGGGGTGCGGCTCCCGGGGC	+117 bp
	WT	CTCGTCCCCGCACGCCCCCGAGAGCCGAAACCCCCGAGCCCGAGGCCCGAGGGCCCCGATGGACAC	
KO #3	Allele_1	CTCGCCCCGAGAGCGAAACCCCCGAGCCGGGGGCCGAGGGCCCGATGGACAC	-10 bp
	Allele_2	CTCGTCCCCCGAGAGCGAAACCCCCGAGCCCGGCGACGCCGAGGGCCCCGATGGACAC	-9 bp

Supplementary Figure 3

