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Supplementary Methods 

The preprocessing step for transcriptome data 

For identifying tumor metabolism-associated gene coexpression network module, we 

made the training set with two microarray datasets from Gene Expression Omnibus database 

(https://www.ncbi.nlm.nih.gov/geo/) [1]. A microarray dataset with 18F-Fluorodeoxyglucose 

(FDG) positron emission tomography (PET) image data (accession number GSE28827 [2, 3]) 

was included in the training set. Because GSE28827 includes few lung adenocarcinoma 

(LUAD) samples for conducting gene coexpression network analysis, we merged additional 

microarray dataset (accession number GSE31210 [4, 5]). The normalized gene expression 

data of GSE28827 was downloaded using ‘GEOquery’ R package [6]. The raw gene 

expression data of GSE31210 was downloaded from the Gene Expression Omnibus data 

repository and called and normalized using the robust multichip average method using the 

‘affy’ R package [7]. Since two datasets included multiple histologic types of non-small cell 

lung cancer, only LUAD samples were extracted for further preprocessing step. On a study-

by-study basis, we removed invalid and duplicated probe sets by ‘featureFilter’ function in 

‘genefilter’ R package [8], and mapped array probe sets for the respective gene symbols. As 

we combined microarray data from different studies, we performed additional normalization 

using Combat algorithm in order to eliminate potential batch effect [9]. Lastly, to remove 

poor quality probes, we filtered out probe sets with low expression level (signal intensity < 

log2(100) in at least 25% of samples within at least one study) and low variability 

(interquartile range < 0.75). As a result, the training set contained 4010 genes from 246 

LUAD samples including 20 samples with available FDG PET image. 

For validation of the tumor metabolism-associated gene coexpression network modules, 

we used mRNA transcriptome data of LUAD from The Cancer Genome Atlas projects 

https://www.ncbi.nlm.nih.gov/geo/


 

3 

 

(TCGA) [10]. Using ‘TCGABiolinks’ R package [11], we downloaded the level three RNA 

sequence data of LUAD from TCGA data portal (https://portal.gdc.cancer.gov/), which 

consisted of 21022 genes from 515 samples obtained with Illumina HiSeq RNASeqV2 

(Illumina, San Diego, CA, USA). Clinical information, including vital status, follow-up time, 

and time of death was also collected in the same manner. We searched for possible outlier 

samples from the raw expression data by calculating array-array intensity correlation based 

on the Pearson’s correlation coefficient for all samples; consequently, twenty-five outliers 

were removed from the raw expression data. We then normalized mRNA transcripts using 

‘TCGAAnalyze_Normalization’ function and the expression data of 18323 genes from 490 

samples were included for the validation test. 

 

FDG PET/CT Data and Image Processing 

In this study, we used FDG-PET/CT data of both training and validation sets provided by 

The Cancer Imaging Archive [2, 12, 13]. We identified 20 and 17 patients having both 

transcriptome and FDG PET data available from the training and validation set, respectively. 

For the training set (GSE28827), FDG was injected with a dose between 370 and 629 MBq 

depending on patients’ weight. Scans were acquired by using a Discovery STE or LS PET/CT 

scanner (GE Healthcare) (section thicknesses, between 3 and 5 mm) with an iterative algorithm 

(ordered subset expectation maximization, OSEM). For the validation set (TCGA data), 

patients were administered mean 579.5 MBq (range: 518-724 MBq) FDG and images were 

acquired 60 minutes after administration. PET data were reconstructed by an iterative algorithm 

(OSEM). The acquisition and reconstruction parameters such as matrix size were different 

according to the imaging protocol of institute.  

To characterize tumor metabolism, the maximum standardized uptake value was calculated. 
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A manually drawn spherical volume-of-interest around the tumor lesion was used for 

measuring maximum standardized uptake value. Image parameters were obtained by Metavol 

package [14]. 

 

Gene ontology enrichment analysis 

The enrichment of the gene ontology terms in tumor metabolism-associated module was 

evaluated based on the hypergeometric test using ‘clusterProfiler’ R package [15]. The gene 

ontology biological process terms at false discovery rate under < 0.05 in each tumor 

metabolism-associated module were regarded as significantly enriched terms. 

 

LUAD molecular subtypes classification 

The LUAD centroid subtypes (bronchioid, magnoid and squamoid) were assigned to all 

samples of TCGA [16]. Previously published classifier employed the nearest centroid 

classification based on 506 genes, which included several missing gene expression data in 

TCGA samples. Thus, for subtype classification, common genes of the classifier and TCGA 

samples were selected and the Pearson correlation was used as the similarity metric. A 

subtype with the maximum correlation coefficient was assigned to each sample as the 

previous TCGA study [10].  

 

Glucose metabolism signatures 

Tumor metabolism index (TMI) was compared with gene signatures representing glucose 

metabolism. Glucose metabolism signatures were obtained by two different methods. Firstly, 

mean expression value of manually selected genes associated with glycolysis and 

gluconeogenesis was used as a metabolic signature [17]. Secondly, we used Reactome to 
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select genes of glycolysis pathway [18]. To obtain enrichment score, we used single sample 

gene set enrichment analysis (ssGSEA) which provide pathway activity for each sample [19]. 

The output of ssGSEA was normalized by z-score across samples and compared with TMI. 

The Spearman’s method was used for the correlation analysis.  

 

Validation in an independent cohort 

To verify the association between immune landscape, tumor metabolism, and prognosis, 

the analyses were additionally performed in an independent lung adenocarcinoma cohort [20] 

(GSE41271). The normalized gene expression data of GSE41271 was downloaded and TMI 

and cell type enrichment scores of all lung adenocarcinoma samples were calculated by the 

trained model, and xCell [21], respectively. To define the clusters based on TCGA data, we 

obtained centers of each cluster from cell types enrichment scores of TCGA data. We 

calculated Euclidean distance between cell types enrichment score of each sample of the 

independent data and center of each cluster, and then assigned the cluster with the lowest 

distance to each sample. TMI and ImmuneScore of clusters were compared by one-way 

ANOVA followed by post hoc Tukey’s test. The association of overall survival and variables 

including TMI, ImmuneScore, and clusters was analyzed by the Cox regression analysis. The 

survival rate of the groups was depicted with the Kaplan-Meier’s method and compared with 

the log-rank test. To define risk groups, TMI and ImmuneScore were dichotomized using the 

median value of each variable in the validation set.  
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Supplementary Figures 

 

Supplementary Figure 1. Tumor metabolism estimation model. (A) The neural network 

model predicted tumor metabolism estimated by FDG PET. The input of the neural network 

was gene expression data of two tumor metabolism-associated modules. As the training data 

consist of gene expression data with or without matched PET data, the parameters of neural 

network were updated by unsupervised and supervised training. The supervised training was 

aimed at minimizing the error between tumor metabolism predicted by the model and 

measured by FDG PET. The gene expression data without PET data were used for training 

the robust feature layer with unsupervised learning, denoising autoencoder. (B) After the 

training, the model was applied to TCGA data, an independent data with large samples, for 

validation. The performance of tumor metabolism estimation model in both the training set 

and TCGA data was presented (MAE: mean absolute error). (C) The histogram shows the 
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distribution of tumor metabolism index of all samples of TCGA projects estimated by our 

model. 
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Supplementary Figure 2. Identification of tumor metabolism-associated gene 

coexpression network modules. (A) Gene coexpression network modules identification 

from the training set using weighted gene coexpression network analysis. Total 10 gene 

network modules were identified, except the gray color representing genes not assigned to 

any module. (B) The p-value of the correlation test with training set was shown in the bar 

plot. The dotted line represents statistical significance threshold (false discovery rate-

corrected p-value = 0.05); magenta and brown modules were significantly correlated with 

maximum SUV. (C, D) The scatterplot shows the correlation between module eigenegene and 

maximum SUV in the training set (C) and TCGA data (D).  
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Supplementary Figure 3. Two dimensional tumor microenvironment landscape map 

with individual immune cell enrichment scores. The 2D projection of tumor 

microenvironment cellular landscape was visualized with each immune cell type enrichment 

score. The left panel showed the tumor microenvironment cell type-based clusters.  
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Supplementary Figure 4. Distribution of individual immune cell enrichment scores 

between cell type-based clusters. Scatter plots were drawn for each immune cell type 

enrichment score. The comparison between two paired clusters was performed by the 

nonparametric Dunn test (*: p < 0.05, **: p < 0.01, ***: p < 0.001).  
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Supplementary Figure 5. Independent validation of the association of TMI, 

ImmuneScore and survival analysis. The validation of the analyses was performed by an 

independent cohort. TMI (A) and ImmuneScore (B) were different between clusters and the 

pattern of difference was consistent with the results of TCGA data (*: p < 0.05, **: p < 0.01, 

***: p < 0.001). (C) As TCGA data, C2 and C3 were associated with favorable prognosis. (D) 

The subjects with high ImmuneScore showed significantly better prognosis. (E) A trend of 

poor prognosis in high TMI tumors was found as results of TCGA data.  
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Supplementary Tables 

Supplementary Table 1. Demographic and baseline clinical characteristics of TCGA 

LUAD data 

Variables  TCGA LUAD data (n = 490) 

    Available data 

Sex Female:Male  265:225 (54.1%:45.9%) 490 

     

Age 

(years) 
  

65.9 ± 10.0 

(38.5 – 88.8) 
459 

     

Race 

American Indian  1 (0.2%) 

427 Asian  8 (1.7%) 

Black  49 (10.3%) 

 White  369 (87.8%)  

     

Stage 

1  262 (54.4%) 

482 
2  116 (24.1%) 

3  81 (16.8%) 

4  23 (4.7%) 

     

Status Death:Alive  311 : 179 (63.5% : 36.5%) 490 

     

Survival time 

(months) 
 

21.8 

 (0.1 – 241.6) 
481 

TCGA = The Cancer Genome Atlas; LUAD = Lung Adenocarcinoma 
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Supplementary Table 2. Top 10 GO biological process terms of the two tumor 

metabolism-associated modules 

 
ID Biological process Count q-value 

Magenta 

module 

GO:0030198 Extracellular matrix organization 55 1.1×10-25 

GO:0043062 Extracellular structure organization 55 1.1×10-25 

GO:0030574 Collagen catabolic process 24 1.5×10-18 

GO:0044243 
Multicellular organism catabolic 

process 
24 1.7×10-17 

GO:0032963 Collagen metabolic process 26 1.5×10-15 

GO:0044259 
Multicellular organismal 

macromolecule metabolic process 
26 4.3×10-15 

GO:0044236 
Multicellular organism metabolic 

process 
26 1.2×10-13 

GO:0030199 Collagen fibril organization 15 6.7×10-12 

GO:0048514 Blood vessel morphogenesis 39 1.3×10-7 7 

GO:0001525 Angiogenesis 35 2.0×10-7 

Brown 

module 

GO:0060485 Mesenchyme development 15 1.2×10-6 

GO:0030198 Extracellular matrix organization 15 2.7×10-5 

GO:0043062 Extracellular structure organization 15 2.7×10-5 

GO:0050673 Epithelial cell proliferation 15 2.7×10-5 

GO:0001503 Ossification 15 5.6×10-5 

GO:0001501 Skeletal system development 17 7.0×10-5 

GO:0050678 
Regulation of epithelial cell 

proliferation 
13 8.5×10-5 

GO:0048762 Mesenchymal cell differentiation 10 4.2×10-4 

GO:0001837 Epithelial to mesenchymal transition 8 5.0×10-4 

GO:0006024 
Glycosaminoglycan biosynthetic 

process 
8 5.0×10-4 

GO = Gene Ontology 
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Supplementary Table 3. Tumor metabolism index of each cluster and result of post 

hoc analysis 

  

C1 

(n = 240) 

C2 

(n = 109) 

C3 

(n = 77) 

C4 

(n = 64) 

Tumor Metabolism Index 

(Mean +- SD) 4.71±1.37 3.51±1.24 5.25±1.44 4.50±1.34 

p-value for statistical comparison 

(Tukey's post hoc test)         

C1   <1E-8 0.01 0.68 

C2     <1E-8 <0.0001 

C3       0.005 

C4      
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Supplementary Table 4. ImmuneScore of each cluster and result of post hoc analysis 

  

C1 

(n = 240) 

C2 

(n = 109) 

C3 

(n = 77) 

C4 

(n = 64) 

ImmuneScore 

(Mean +- SD) 0.12±0.10 0.14±0.09 0.15±0.08 0.28±0.13 

p-value for statistical comparison 

(Tukey's post hoc test)         

C1   0.35 0.02 <1E-8 

C2    0.57 <1E-8 

C3     <1E-8 

C4      

 

  



 

16 

 

Supplementary References 

1. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI 

GEO: archive for functional genomics data sets—update. Nucleic Acids Res. 2013;41:D991-5. 

2. Gevaert O, Xu J, Hoang CD, Leung AN, Xu Y, Quon A, et al. Non–small cell lung 

cancer: identifying prognostic imaging biomarkers by leveraging public gene expression 

microarray data—methods and preliminary results. Radiology. 2012;264:387-96. 

3. Nair VS, Gevaert O, Davidzon G, Napel S, Graves EE, Hoang CD, et al. Prognostic 

PET 18F-FDG uptake imaging features are associated with major oncogenomic alterations in 

patients with resected non-small cell lung cancer. Cancer Res. 2012;72:3725-34. 

4. Yamauchi M, Yamaguchi R, Nakata A, Kohno T, Nagasaki M, Shimamura T, et al. 

Epidermal growth factor receptor tyrosine kinase defines critical prognostic genes of stage I 

lung adenocarcinoma. PloS one. 2012;7:e43923. 

5. Okayama H, Kohno T, Ishii Y, Shimada Y, Shiraishi K, Iwakawa R, et al. Identification 

of genes upregulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas. 

Cancer Res. 2012;72:100-11. 

6. Davis S, Meltzer PS. GEOquery: a bridge between the Gene Expression Omnibus 

(GEO) and BioConductor. Bioinformatics. 2007;23:1846-7. 

7. Gautier L, Cope L, Bolstad BM, Irizarry RA. affy—analysis of Affymetrix GeneChip 

data at the probe level. Bioinformatics. 2004;20:307-15. 

8. Gentleman R, Carey V, Huber W, Hahne F. Genefilter: Methods for filtering genes 

from microarray experiments. R package version. 2011;1. 

9. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data 

using empirical Bayes methods. Biostatistics. 2007;8:118-27. 

10. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung 

adenocarcinoma. Nature. 2014;511:543-50. 

11. Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al. TCGAbiolinks: 

an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 

2016;44:e71. 

12. Albertina B, Watson, M., Holback, C. et al. Radiology Data from The Cancer Genome 

Atlas Lung Adenocarcinoma [TCGA-LUAD] collection. The Cancer Imaging Archive. 2016. 

13. Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, et al. The Cancer Imaging 

Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging. 

2013;26:1045-57. 

14. Hirata K, Kobayashi K, Wong K-P, Manabe O, Surmak A, Tamaki N, et al. A semi-

automated technique determining the liver standardized uptake value reference for tumor 

delineation in FDG PET-CT. PloS one. 2014;9:e105682. 

15. Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing 

biological themes among gene clusters. OMICS. 2012;16:284-7. 

16. Wilkerson MD, Yin X, Walter V, Zhao N, Cabanski CR, Hayward MC, et al. 

Differential pathogenesis of lung adenocarcinoma subtypes involving sequence mutations, 

copy number, chromosomal instability, and methylation. PloS one. 2012;7:e36530. 

17. Gaude E, Frezza C. Tissue-specific and convergent metabolic transformation of cancer 

correlates with metastatic potential and patient survival. Nat Commun. 2016;7:13041. 

18. Joshi-Tope G, Gillespie M, Vastrik I, D'Eustachio P, Schmidt E, de Bono B, et al. 

Reactome: a knowledgebase of biological pathways. Nucleic Acids Res. 2005;33:D428-32. 

19. Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, et al. Systematic RNA 



 

17 

 

interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature. 

2009;462:108-12. 

20. Sato M, Larsen JE, Lee W, Sun H, Shames DS, Dalvi MP, et al. Human lung epithelial 

cells progressed to malignancy through specific oncogenic manipulations. Mol Cancer Res. 

2013;11:638-50. 

21. Aran D, Hu Z, Butte AJ. xCell: Digitally portraying the tissue cellular heterogeneity 

landscape. Genome Biol. 2017;18:220. 
 

 


