Supplemental Data

Antibody	Manufacturer	Catalog #	Application
Ki67	Abcam	ab15580	IF
VwF	Abcam	ab6994	IF
αSA	Sigma	a6811	IF
PCNA	Abcam	AB29	WB
CD3	Abcam	ab16669	IF
CD81	Thermo	MA5-13548	WB
Goat Anti-Mouse IgG H&L (Alexa Fluor®			IF
488)	Abcam	ab150117	
Goat Anti-Mouse IgG H&L (FITC)	Abcam	ab6785	IF
Goat Anti-Rabbit IgG H&L (Texas Red ®)	Abcam	ab6719	IF
Goat anti-Mouse HRP	Thermo	31430	WB
Goat anti-Rabbit HRP	Thermo	31460	WB
Table S1. List of all antibodies used in this study and their application.			

Methods

Peptide to Exosome Labelling Ratio

Assuming an exosome radius of 90nm the surface area of a single exosome can be calculated

$$r_{XO} = 90 \text{ nm}$$

 $A_{surface} = 4 \pi r^2$
 $A_{XO Surface} = 101788 \text{ nm}^2$

In addition, the length of a peptide bond can be assumed as follows to give a predicted length of the CHP peptide as

$$l_{peptide\ bond} = 3.5$$
 Å or 0.35 nm
 $l_{CHP} = 9 \cdot l_{peptide\ bond}$

Assuming that the peptide occupies a circular shaped area, the maximum amount of space that can be occupied is calculated using the maximum hexagonal packing efficiency

$$\eta_{hexagonal} = \frac{1}{6} \sqrt{3} \pi$$
$$A_{packed} = A_{XO} \cdot \eta_{hexagonal}$$

Finally, it can be assumed that the peptide will only rarely be tangential to the surface of the exosome, but likely in a near vertical position. To account for this, the occupied radius is

$$r_{CHP} = \frac{l_{CHP}}{\sqrt{2}}$$

$$A_{single \ peptide} = r_{CHP}^2 \cdot \pi$$

$$n_{peptides \ per \ XO} = \frac{A_{packed}}{A_{single \ peptide}} = 5922.61 \approx 6000$$

Supplemental Figures

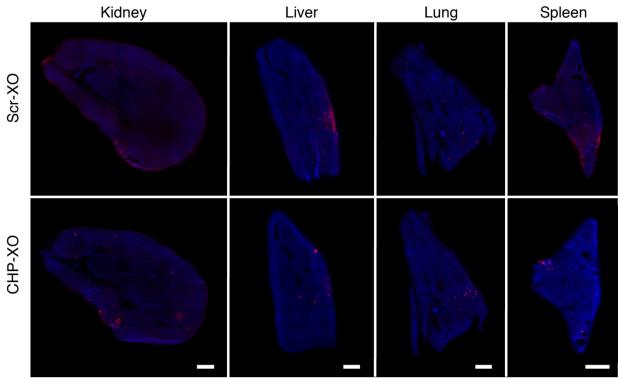


Figure S1. Ex vivo analysis of other organs. Additional images of organs analyzed for the ex

vivo targeting assay (kidney n=4, liver n=4, lung n=3, spleen n=5). Scale bar=1 mm.