Supplementary Material

Dual Targeting of Acute Leukemia and Supporting Niche by CXCR4-Directed Theranostics

Stefan Habringer^{1,2#}, Constantin Lapa^{3#}, Peter Herhaus¹, Margret Schottelius⁴, Rouzanna Istvanffy¹, Katja Steiger⁵, Julia Slotta-Huspenina⁵, Andreas Schirbel³, Heribert Hänscheid³, Stefan Kircher⁷, Andreas K. Buck³, Katharina Götze^{1,2}, Binje Vick^{2,6}, Irmela Jeremias^{2,6}, Markus Schwaiger^{2,8}, Christian Peschel^{1,2}, Robert Oostendorp¹, Hans-Jürgen Wester⁴, Götz-Ulrich Grigoleit^{9*} and Ulrich Keller^{1,2*}

¹Internal Medicine III, Hematology and Medical Oncology, Technische Universität München, Munich, Germany

²German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany

³Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany

⁴Institute of Pharmaceutical Radiochemistry, Technische Universität München, Garching, Germany

⁵Institute of Pathology, Technische Universität München, Munich, Germany

⁶Research Unit Gene Vectors, Helmholtz Center Munich, Germany

⁷Institute for Pathology, University of Würzburg, Würzburg, Germany

⁸ Department of Nuclear Medicine, Technische Universität München, Munich, Germany

⁹Department of Internal Medicine II, Hematology and Medical Oncology, University Hospital Würzburg, Würzburg, Germany

^{#,*}These authors contributed equally.

Running title: CXCR4 theranostics for targeting acute leukemia

Keywords: acute leukemia / microenvironment / C-X-C chemokine receptor 4 / in vivo molecular imaging / theranostics

Funding: U.K., H.J.W., M. Schwaiger, M. Schottelius and R.A.J.O. received support from the Deutsche Forschungsgemeinschaft (DFG; SFB824, FOR2033, KE 222/7-1, OO 8/9-1). U.K. was further supported by Deutsche Krebshilfe (111305, 111944). This work received support from the German Cancer Consortium (DKTK).

Conflict of interest: H.J.W. is shareholder of Scintomics (Germany). All other authors have no relevant conflicts of interest to declare.

Corresponding author:

Ulrich Keller Email: ulrich.keller@tum.de Internal Medicine III Technische Universität München Ismaningerstraße 22 Munich, Germany Phone: +49-89-4140-7435 Fax: +49-89-4140-4879

Table S1

	ALL230	ALL0	AML356	AML346
Subtype	T-ALL	T-ALL	AML M5	AML M7
ID / RR	ID	ID	RR	RR
Age	4	17	5	1
Gender	m	m	m	w
Cytogenetics	46XY, t(11;14); (p32;q11)	N/A	N/A	del5q, del13q
	-			

Clinical characteristics of patients who provided primary material for PDX.

Table S2

Characteristics of	patients	treated with	Pentixather.
--------------------	----------	--------------	--------------

	Patient 1	Patient 2	Patient 3
Subtype	AML M1	tAML	AML M0
Age at diagnosis	46	65	38
Gender	Μ	F	Μ
Molecular genetics	NPM1mut, FLT3- ITD	FLT3-ITD, MLL- PTD, RUNX1mut	no mutation
Cytogenetics	46, XY	46, XY	45, XY, -7
Previous therapy	7+3 → MRD+ FLAG-IDA Flu-Bu and alloSCT (matched unrelated donor)	S-HAM \rightarrow MRD+ FLAMSA-Bu-Cy- ATG and alloSCT (matched related donor) \rightarrow CR, MLL- MLL+ relapse \rightarrow Azacytidine DLI	ICE → refractory HAM → refractory Azacytidine (bridging) TBI (12Gy)-Flu-Cy and alloSCT (haploidentical related donor) → CR
Comorbidities	none	Breast cancer	none
Organ dosimetry (pre-therapeutic estimates for ⁹⁰ Y-Pentixather)	Kidney: 4.7 Gy/GBq Liver: 2.4 Gy/GBq Spleen: 2.4 Gy/GBq BM: 2.3 Gy/Gbq	Kidney: 5.8 Gy/GBq Liver: 2.4 Gy/GBq Spleen: 3.0 Gy/GBq BM: 4.9 Gy/Gbq	Kidney: 7.9 Gy/GBq Liver: 3.0 Gy/GBq Spleen: 4.4 Gy/GBq BM: 1.7 Gy/Gbq

Fig. S1.

Fig. S1. PDX establishment. **a)** Schematic of PDX establishment. **b,c)** Progressive infiltration of Sp, BM and PB by ALL (B) and AML356 (C) PDX.

Fig. S2. PDX surface markers determined by flow cytometry. a) ALL230, b) ALL0 and c) AML356 d) AML346.

Fig. S3.

Fig. S3. P-AKT immunoblotting. OCI-AML3 and ALL230 showing AKT phosphorylation upon 100ng/µl CXCL12 pretreatment that can be blocked with 1 and 10µM AMD3100.

Fig. S4. Representative images of a healthy NSG control mouse imaged with Ga-Pentixafor (n=3 mice, different intensities for 1 mouse are shown).

Fig. S5.

Fig. S5. Pentixather therapy in AML xenografts with enforced CXCR4 expression. **a)** CXCR4 surface expression of OCI-AML3-eGFP and OCI-AML3-CXCR4 depicted as mean fluorescence intensity (MFI) relative to isotype antibody (n=3 replicates per cell line). **b)** Representative FACS plots of A). **c)** Spleen weight of OCI-AML3-eGFP/CXCR4 xenografts after 3d treatment with ctrl or Lu-P (n=4 for CXCR4, n=3 for eGFP)

Fig. S6. Lu-P therapy in AML346. **a)** spleen weight **b)** infiltration assessment by flow cytometry of AML346 mice treated with Lu-P for 7d. (n=4 mice per group). **c)** CXCR4 surface expression of AML346 compared to AML356.

Fig. S7.

b

Fig. S7. Flow cytometry gating strategy. a) LSKs and MPs; b) osteoblastic cells (OBCs) and MSCs.

Fig. S8.

Fig. S8. Representative images of cultured stromal cells.

Fig. S9.

Fig. S9. Lu-P treatment of primary human MSCs (for 10min, 1h, 6h). **a)** Viability of MSCs and CD34+ cells after co-culture. **b)** CD34 and CD38 expression of CD34+ cells after co-culture. **c)** Representative images of MSCs and CD34+ cells in co-culture. **d)** Colony forming unit assay with CD34+ cells after co-culture with MSCs from 3 healthy individuals. PI: propidium iodide, GEMM: granulocyte, erythrocyte, monocyte, megakaryocyte; GM: granulocyte, monocyte; G: granulocyte; M: monocyte; BFU-E: burst forming unit, erythrocyte.

Fig. S10.

Fig. S10. ⁶⁸Ga-Pentixafor PET imaging and planar whole-body scintigraphic images after injection of 200MBq Lu-P in **a**) patient 1 and **b**) patient 2 (activity injected for pre-therapeutic dosimetry).