Supplementary Information

A Novel DNA Aptamer for Dual Targeting of Polymorphonuclear Myeloid-derived Suppressor Cells and Tumor Cells

Haoran Liu^{1,2}, Junhua Mai², Jianliang Shen², Joy Wolfram^{2,3}, Zhaoqi Li^{2,4}, Guodong Zhang², Rong Xu⁵, Yan Li², Chaofeng Mu², Youli Zu⁶, Xin Li⁷, Ganesh L. Lokesh⁷, Varatharasa Thiviyanathan⁷, David E. Volk⁷, David G. Gorenstein⁷, Mauro Ferrari^{2,8}, Zhongbo Hu¹, Haifa Shen^{2,9,*}

- 1. College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- 2. Department of Nanomedicine, Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
- 3. Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
- 4. Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
- 5. Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- 6. Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
- Institute of Molecular Medicine and the Department of Nanomedicine and Biomedical Engineering, McGovern Medical School, The University of Texas Health Science Center at Houston, TX 77030, USA
- 8. Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
- 9. Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA

AUTHOR INFORMATION

The authors declare no competing financial interest.

All authors have given approval to the final version of this manuscript.

*Address correspondence to hshen@houstonmethodist.org

Supplementary Figure 1. Validation of T1 aptamer tumor accumulation in an orthotopic and metastatic MDA-MB-231 breast cancer mouse model. (A) Representative bioluminescent images of breast cancer (luciferase expressing) bone metastases. (B, C) Aptamer biodistribution in a metastatic (B) and orthotopic (C) model. Data is presented as mean \pm s.d. (n = 3). *, P < 0.05; **, P < 0.001; ***, P < 0.001.

Supplementary Figure 2. Representative flow cytometry graph of Cy5-labeled Scr and T1 aptamer binding (ice incubation) to macrophage cells (CD11b⁺F4/80⁺) isolated from MDA-MB-231 breast cancer tumors.

Supplementary Figure 3. T1-induced effects on cell migration and T1 stability. (A) Scratch assay in MDA-MB-231 cells. Scale bar, 50 μ m. (B) T1 stability evaluated by agarose gel electrophoresis. T1 was incubated in 2% fetal bovine serum (FBS) at 37 °C for various time points.

Supplementary Figure 4. Confocal fluorescence microscopy images of T1 uptake in MDA-MB-231 cells. T1 aptamer (red), phalloidin (green), and DAPI (blue). (**A**) Representative 3D image. (**B**) Representative images of control cells and dynasore-treated cells. Scale bar, 20 μm.

Supplementary Figure 5. Evaluation of T1 binding targets in a 4T1 orthotopic breast cancer model. Cy5-labeled aptamers were intravenously administered and analysis was performed 8 h post-injection. (A) Fluorescent images of organs captured with the IVIS 200 spectrum imaging system. Organs: Tu, tumor; Sp, spleen; Bn, bones; Sp, spine. Scale bar, 1 cm. (B) Representative flow cytometry graphs of PMN-MDSCs in blood, bone, tumor, and spleen samples.

Supplementary Figure 6. Binding of T1 to immune cells in mice bearing 4T1 orthotopic breast cancer tumors. Cy5-labeled aptamers were intravenously administered and analysis was performed 4 h post-injection (**A-D**) Representative flow cytometry graphs of M-MDSCs (A), B cells (B), T cells (C), and macrophages (D) from blood, bone, tumor, and spleen samples.

Supplementary Figure 7. Cytotoxic T cells (CD3⁺CD8⁺) in mice bearing 4T1 orthotopic breast cancer tumors. PBS, Dox, Scr-Dox, or T1-Dox (3 mg/kg) was administered intravenously on day 7, 14, 21, and 28 post-injection of cancer cells. (A) Representative flow cytometry graphs of cytotoxic T cells in tumor, blood, and spleen samples. (B) Statistical representation of flow cytometry results. Data is presented as mean \pm s.d. (n = 5). *, P < 0.05; **, P < 0.001; ***, P < 0.0001.

Supplementary Figure 8. Immunofluorescence staining of Ki-67 in orthotopic 4T1 breast cancer tumors treated with T1-Dox. PBS, Dox, Scr-Dox, or T1-Dox (3 mg/kg) was administered intravenously on day 7, 14, 21, and 28 post-injection of cancer cells. Ki-67 (green) and DAPI (blue). Scale bar, 100 µm.

Supplementary Figure 9. Mouse body weight in response to T1-Dox treatment in a 4T1 orthotopic breast cancer model. PBS, Dox, Scr-Dox, or T1-Dox (3 mg/kg) was administered intravenously on day 7, 14, 21, and 28 post-injection of cancer cells. Data is presented as mean \pm s.d. (n = 8).

Supplementary Figure 10. Hematoxylin and eosin (H&E) staining of major organs following T1-Dox treatment in a 4T1 orthotopic breast cancer model. PBS, Dox, Scr-Dox, or T1-Dox (3 mg/kg) was administered intravenously on day 7, 14, 21, and 28 post-injection of cancer cells. Scale bar, 200 µm.