Theranostics 2017; 7(17):4301-4312. doi:10.7150/thno.21450

Research Paper

Long-term Effect of Biomineralized Insulin Nanoparticles on Type 2 Diabetes Treatment

Yun Xiao1,3, Xiaoyu Wang2, Ben Wang3, Xueyao Liu1, Xurong Xu2, Ruikang Tang1,2✉

1. Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China;
2. Qiushi Academy for Advanced Studies, Zhejiang University, Zhejiang University, Hangzhou, Zhejiang 310027, China;
3. Institute of Translational Medicine, Zhejiang University, Zhejiang University, Hangzhou, Zhejiang 310027, China.

Abstract

Intracellular insulin may exhibit a long-term effect in regulating protein synthesis, DNA synthesis, and gene transcription. However, the intracellular delivery of insulin is a great challenge. Here, we describe how a simple biomineralization modification of insulin can transport it into intact cells on a large scale, leading to a long-term therapeutic effect on diabetes mellitus. Using insulin-resistant HepG2 cell and diabetic KKAy mice as models, in vitro and in vivo assessments have demonstrated that biomineralized insulin nanoparticles can trigger glucose metabolism, and this improvement extends after the treatment. The potential exists to improve the current treatment of type 2 diabetes mellitus through biomineralized modifications of insulin. This study provides a new paradigm of biomimetic nanotechnology for biomedical applications.

Keywords: type 2 diabetes, biomineralization, insulin, intracellular delivery.

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.
How to cite this article:
Xiao Y, Wang X, Wang B, Liu X, Xu X, Tang R. Long-term Effect of Biomineralized Insulin Nanoparticles on Type 2 Diabetes Treatment. Theranostics 2017; 7(17):4301-4312. doi:10.7150/thno.21450. Available from http://www.thno.org/v07p4301.htm