

## B >Repebody rEgA

METITVSTPI KQIFPDDAFA ETIKANLKKK SVTDAVTQNE LNSIDQIIAN NSDIKSVQGI QYLPNVRYLA LGGNKLHDIS ALKELTNLTY LMLHYNQLQI LPNGVFDKLT NLKELYLSEN QLQSLPDGVF DKLTNLTELD LARNQLQSLP KGVFDKLTQL KDLRLYENQL KSVPDGVFDR LTSLQYIWLH DNPWDCTCPG IRYLSEWINK HSGVVRNSAG SVAPDSAKCS GSGKPVRSII CPTELHHHHH H TheoreticapI/Mw: 6.54 / 28269.22

**Figure S1. Matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectra of repebody rEgA (A) and complete amino acid sequence of the repebody rEgA (B).** (A) Mass spectra of rEgA presented in the mass-to-charge (m/z) range to 15 to 35 kDa. Measured peak is displayed with corresponding molecular mass. (B) The molecular weight of rEgA was calculated by using Expasy Compute pI/Mw tool.



**Figure S2. Competitive ELISA for prediction of the binding epitope of the repebody rEgA on EGFR**. For competition analysis, the repebody rEgA and cetuximab were co-incubated with an excess of soluble cetuximab and the repebody rEgA, respectively. The signal was measured at 450 nm. BSA was used as a negative control.



**Figure S3. MALDI-TOF mass spectra of NOTA-rEgA (A) and HPLC chromatogram of Cu-NOTA-rEgA /** <sup>64</sup>**Cu-NOTA-rEgA (B).** (A) Mass spectra of rEgA presented in the mass-to-charge (m/z) range to 10 to 70 kDa. Measured peaks are displayed with corresponding molecular mass. (B) Absorbance of Cu-NOTA-rEgA was measured at 218 nm (black line) and red line showed the radioactivity of <sup>64</sup>Cu-NOTA-rEgA.



**Figure S4. Stability test of <sup>64</sup>Cu-NOTA-rEgA** *in vitro* **(A)**, *in vitro* **with excess of EDTA (B)**, *in vivo* **(C)**. *In vitro* stability test without or with excess of EDTA (10 eq) was performed at 37°C for 48h. *In vivo* stability test was performed for 4 h. <sup>64</sup>Cu-NOTA-rEgA was greater than 95%, indicating a relatively high *in vitro / in vivo* stability.





Tumor-bearing mice (n = 5 per condition) were intraperitoneally treated with 30 mg/kg cetuximab, twice a week for 4 weeks. The treatment was initiated when the tumor size was approximately 100 mm<sup>3</sup>. Tumor volume was measured on the indicated days. (\* P < 0.001)



**Figure S6. Hematoxylin and eosin (H & E) and immunohistochemical (IHC) staining of excised colon cancers from AOM/DSS models**. EGFR expression of colonic cancers was assessed by IHC staining using an EGFR-specific antibody. Adenoca: Adenocarcinoma



**Figure S7. rEgA** *ex vivo* **stain of human cancer tissue**. Human colon cancer and normal mucosa tissues were stained *ex vivo* with rEgA-675 (case 11-15). N: Normal mucosa or colitis, C: Dysplasia or Adenocarcinoma.

| Protein-<br>fluorophore<br>conjugate | $\mathbf{A}_{\text{max}}$ | A <sub>280</sub> | 3      | CF   | 'ع     | Protein<br>concentration (M) | Moles of dye per mole<br>protein (F/P molar ratio) |
|--------------------------------------|---------------------------|------------------|--------|------|--------|------------------------------|----------------------------------------------------|
| rEgA-675                             | 0.24                      | 0.045            | 28920  | 0.09 | 220000 | 0.00000081                   | 1.3483                                             |
| rEgA-496                             | 0.096                     | 0.071            | 28920  | 0.35 | 84000  | 0.00000129                   | 0.8837                                             |
| Cetuximab-675                        | 0.109                     | 0.063            | 109720 | 0.09 | 220000 | 0.00000048                   | 1.0220                                             |

Table S1. Quantitation of the protein-dye conjugation by absorbance measurements

 $A_{max}$  = Absorbance (A) of a dye solution measured at the wavelength maximum ( $\lambda_{max}$ ) for the dye molecule.

 $A_{280}$  = Absorbance at 280 nm (A280).

 $\epsilon$  = Protein molar extinction coefficient.

CF = Correction factor; adjusts for the absorbance by the dye at 280 nm.

 $\varepsilon'$  = Molar extinction coefficient of the fluorescent dye.

Protein concentration (M) =  $\frac{A280 - (Amax \times CF)}{\epsilon} \times dilution$  factor

Moles of dye per mole protein =  $\frac{\text{Amax of the labeled protein}}{\epsilon' \times \text{protein concentration (M)}} \times \text{dilution factor}$ 

|      | Tumor-to-muscle            |                                  |                           |                             |                                  |  |
|------|----------------------------|----------------------------------|---------------------------|-----------------------------|----------------------------------|--|
|      | HT-29                      | HT-29 block                      | H1650                     | H1650 block                 | A549                             |  |
| 1 h  | $15.43 \pm 1.96$           | $3.80\pm0.27$                    | $15.04\pm4.41$            | $6.38\pm2.59$               | $6.52\pm0.80$                    |  |
| 6 h  | $18.73\pm4.49^{\dagger 1}$ | $3.68\pm0.83^{\texttt{1}}$       | $23.18\pm3.14^{\text{m}}$ | $7.48\pm2.68$               | $6.90\pm0.75^{\dagger\text{l}}$  |  |
| 24 h | $10.95 \pm 1.01$           | $4.45\pm0.55$                    | $13.33\pm3.25$            | $9.47 \pm 2.75$             | $3.64 \pm 0.68$                  |  |
| 48 h | $10.55\pm0.43$             | $5.27\pm0.96$                    | $10.21\pm2.16$            | $10.06 \pm 1.26$            | $3.21\pm0.78$                    |  |
|      | Tumor-to-blood             |                                  |                           |                             |                                  |  |
|      | HT-29                      | HT-29 block                      | H1650                     | H1650 block                 | A549                             |  |
| 1 h  | $4.72\pm0.70$              | $1.03\pm0.09$                    | $4.27\pm1.11$             | $1.82\pm0.11$               | $1.76\pm0.15$                    |  |
| 6 h  | $5.01\pm1.03^\dagger$      | $0.83\pm0.18^{\dagger\text{l}}$  | $5.01\pm0.85^{\text{ll}}$ | $1.86\pm0.12^{\dagger 1}$   | $1.16\pm0.05^{*\dagger\text{l}}$ |  |
| 24 h | $3.53\pm0.54$              | $1.20\pm0.19$                    | $4.01 \pm 1.19$           | $2.79\pm0.51$               | $0.81\pm0.18$                    |  |
| 48 h | $3.73\pm0.78$              | $1.86\pm0.59$                    | $2.72\pm0.57$             | $3.02\pm0.69$               | $1.00 \pm 0.11$                  |  |
|      | Tumor-to-liver             |                                  |                           |                             |                                  |  |
|      | HT-29                      | HT-29 block                      | H1650                     | H1650 block                 | A549                             |  |
| 1 h  | $0.50\pm0.07$              | $0.13\pm0.01$                    | $0.45\pm0.08$             | $0.16\pm0.04$               | $0.14\pm0.02$                    |  |
| 6 h  | $0.64\pm0.16$              | $0.17\pm0.04^{\dagger \text{l}}$ | $0.67\pm0.67^{*}$         | $0.34 \pm 0.15^{*\text{T}}$ | $0.18\pm0.02^{\ast}$             |  |
| 24 h | $0.51\pm0.14$              | $0.24\pm0.03$                    | $0.69\pm0.69$             | $0.53\pm0.17$               | $0.14\pm0.04$                    |  |
| 48 h | $0.56\pm0.14$              | $0.35\pm0.07$                    | $0.70\pm0.70$             | $0.62\pm0.15$               | $0.20\pm0.08$                    |  |

Table S2. Comparison of tumor-to-muscle, tumor-to-blood and tumor-to-liver uptake ratios of HT-29, H1650 (high expression of EGFR) and A549 (moderate expression of EGFR) tumors of <sup>64</sup>Cu-NOTA-rEgA at 1, 6, 24 and 48 h post-injection.

Data was expressed mean  $\pm$  SD. \**P* < 0.05 vs. value at 1 h, †*P* < 0.05 vs. value at 24 h, \**P* < 0.05 vs. value at 48 h

| 1 h                | 6 h                                                                                                                                                                                                                                                                                      | 24 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $2.78\pm0.37$      | $2.61\pm0.46$                                                                                                                                                                                                                                                                            | $2.33\pm0.29$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $5.23\pm0.55$      | $5.03\pm\!\!0.92$                                                                                                                                                                                                                                                                        | $4.52\pm0.17$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $5.05 \pm 1.19$    | $5.83\pm2.0$                                                                                                                                                                                                                                                                             | $4.91\pm0.98$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $14.21\pm0.80$     | $15.33\pm0.97$                                                                                                                                                                                                                                                                           | $16.61\pm1.99$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $3.82\pm0.18$      | $3.98 \pm 0.17$                                                                                                                                                                                                                                                                          | $4.20\pm0.12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $2.59\pm0.54$      | $3.12\pm1.2$                                                                                                                                                                                                                                                                             | $3.40\pm0.80$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $11.79\pm\!0.23$   | $7.73\pm\!\!0.43^{*\dagger}$                                                                                                                                                                                                                                                             | $5.52\pm0.61$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $20.42\pm\!\!0.89$ | $13.94\pm1.48^{\ast}$                                                                                                                                                                                                                                                                    | $13.79\pm3.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $3.31\pm0.19$      | $3.29\pm0.66$                                                                                                                                                                                                                                                                            | $2.21\pm0.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $1.00\pm0.13$      | $0.87\pm0.14$                                                                                                                                                                                                                                                                            | $0.82\pm0.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $2.07\pm0.98$      | $2.19\pm0.47$                                                                                                                                                                                                                                                                            | $1.81\pm0.20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $0.40\pm0.06$      | $0.46\pm0.06$                                                                                                                                                                                                                                                                            | $0.59\pm0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $4.94\pm0.27$      | $3.20\pm0.52^*$                                                                                                                                                                                                                                                                          | $2.53\pm0.49$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $10.56\pm1.55$     | $14.31 \pm 2.68^{*\dagger}$                                                                                                                                                                                                                                                              | $7.89 \pm 2.61$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $3.80\pm0.07$      | $5.47\pm0.16^{\ast}$                                                                                                                                                                                                                                                                     | $3.52 \pm 1.90$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $10.51\pm0.28$     | $16.50\pm1.59^{*\dagger}$                                                                                                                                                                                                                                                                | $9.30\pm2.19$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $0.75\pm0.13$      | $0.94\pm0.18$                                                                                                                                                                                                                                                                            | $0.50\pm0.29$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    | 1 h $2.78 \pm 0.37$ $5.23 \pm 0.55$ $5.05 \pm 1.19$ $14.21 \pm 0.80$ $3.82 \pm 0.18$ $2.59 \pm 0.54$ $11.79 \pm 0.23$ $20.42 \pm 0.89$ $3.31 \pm 0.19$ $1.00 \pm 0.13$ $2.07 \pm 0.98$ $0.40 \pm 0.06$ $4.94 \pm 0.27$ $10.56 \pm 1.55$ $3.80 \pm 0.07$ $10.51 \pm 0.28$ $0.75 \pm 0.13$ | 1 h6 h $2.78 \pm 0.37$ $2.61 \pm 0.46$ $5.23 \pm 0.55$ $5.03 \pm 0.92$ $5.05 \pm 1.19$ $5.83 \pm 2.0$ $14.21 \pm 0.80$ $15.33 \pm 0.97$ $3.82 \pm 0.18$ $3.98 \pm 0.17$ $2.59 \pm 0.54$ $3.12 \pm 1.2$ $11.79 \pm 0.23$ $7.73 \pm 0.43^{*\dagger}$ $20.42 \pm 0.89$ $13.94 \pm 1.48^{*}$ $3.31 \pm 0.19$ $3.29 \pm 0.66$ $1.00 \pm 0.13$ $0.87 \pm 0.14$ $2.07 \pm 0.98$ $2.19 \pm 0.47$ $0.40 \pm 0.06$ $0.46 \pm 0.06$ $4.94 \pm 0.27$ $3.20 \pm 0.52^{*}$ $10.56 \pm 1.55$ $14.31 \pm 2.68^{*\dagger}$ $3.80 \pm 0.07$ $5.47 \pm 0.16^{*}$ $10.51 \pm 0.28$ $16.50 \pm 1.59^{*\dagger}$ $0.75 \pm 0.13$ $0.94 \pm 0.18$ |

Table S3. Biodistribution of <sup>64</sup>Cu-NOTA-rEgA.

<sup>64</sup>Cu-NOTA-rEgA injected into mice bearing implanted H1650 xenografts, as determined by γ-counting. Values are mean and standard deviation (n = 6). \*P < 0.05 vs. value at 1 h, †P < 0.05 vs. value at 24 h

| Case | Location of<br>tumor  | Stage and Lesion<br>Characteristics | Treatment                 | Pathology                                                  |
|------|-----------------------|-------------------------------------|---------------------------|------------------------------------------------------------|
| 1    | Sigmoid colon         | Advanced, T4N2M1                    | Surgery +<br>Chemotherapy | Adenocarcinoma, moderately differentiated                  |
| 2    | Sigmoid colon         | Advanced, T4N2M0                    | Surgery +<br>Chemotherapy | Adenocarcinoma, moderately differentiated                  |
| 3    | Ascending colon       | Benign sessile polyp, 15mm          | Endoscopic resection      | Tubular adenoma with low grade dysplasia                   |
| 4    | Rectum                | Advanced, T4N2M1                    | Chemotherapy              | Adenocarcinoma, poorly differentiated                      |
| 5    | Rectosigmoid junction | Advanced, T3N1M0                    | Surgery +<br>Chemotherapy | Adenocarcinoma, moderately differentiated                  |
| 6    | Sigmoid colon         | Advanced, T3N3M1                    | Chemotherapy              | Adenocarcinoma,                                            |
| -    |                       |                                     |                           | moderately differentiated                                  |
| 7    | Sigmoid colon         | Advanced, T3N0M1                    | Surgery +<br>Chemotherapy | Adenocarcinoma, well differentiated                        |
| 8    | Cecum                 | Early, Malignant polyp, 28mm        | Endoscopic resection      | Adenocarcinoma, well differentiated                        |
| 9    | Ascending colon       | Benign, pedunculated polyp,<br>15mm | Endoscopic resection      | Hyperplastic polyp                                         |
| 10   | Hepatic flexure       | Advanced, T2N0M0                    | Surgery                   | Adenocarcinoma with papillary feature, well differentiated |
| 11   | Rectum                | Advanced, T3N0M0                    | Surgery                   | Adenocarcinoma, poorly differentiated                      |
| 12   | Sigmoid colon         | Early malignant polyp, 25mm         | Endoscopic resection      | Adenocarcinoma, well differentiated                        |
| 13   | Rectum                | Early malignant polyp, 20mm         | Endoscopic resection      | Tubular adenoma with High grade dysplasia                  |
| 14   | Sigmoid colon         | Advanced, T3N0M0                    | Surgery                   | Adenocarcinoma, moderately differentiated                  |
| 15   | Sigmoid colon         | Early malignant polyp, 30mm         | Endoscopic<br>resection   | Tubulovillous adenoma with High grade<br>dysplasia         |

## Table S4. Characteristics and Pathologic data of human *ex vivo* rEgA-stained cancer tissues.