Accurate Quantification of Disease Markers in Human Serum Using Iron

Oxide Nanoparticle-linked Immunosorbent Assay

Linlin Zhang, Sheng Tong, Jun Zhou, Gang Bao

Supplementary Figures

Figure S1. Size-dependent detection sensitivity. The detection sensitivity of 18.8 nm FeO and 15 nm Fe₃O₄ conjugated probes was compared in a sandwich ILISA of purified human IgA. Data represent means \pm SD of three measurements.

Figure S2. Increase in sensitivity with two-step sandwich ILISA. The measured absorbance as a function of IgA concentration is shown with two-step and one-step ILISA assays, respectively. The increase in absorbance (and thus sensitivity) ranges from 2.5 to 4.0. Data represent means \pm SD of three measurements.

Figure S3. Antibody reduction. Antibodies were reduced with 2-MEA at the indicated concentrations. (a) Rabbit anti-human IgG antibody. (b) Rabbit anti-human IgM antibody. (c) Rabbit anti-human CRP antibody. (d) Goat anti-rabbit IgG antibody. (e) Rabbit anti-mouse IgG antibody. Red stars indicate the protein bands of half-IgG.

Figure S4. Comparison of signal intensity from the IONP probes at different 2-MEA concentrations. IONP probes constructed with antibody fragments generated at 2-MEA concentrations of 50 mM and 100 mM respectively were used and resulting signal (absorbance) was compared, indicating that the use of 2-MEA concentration of 100 mM gives better results. Data represent means \pm SD of three measurements.

Figure S5. Standard curves of purified IgG (a) and IgM (b). The red-dotted rectangle indicates the linear portion of the curve. Data represent means \pm SD of three measurements.