Hyaluronic acid modified hollow Prussian blue nanoparticles loading 10-hydroxycamptothecin for targeting thermochemotherapy of cancer

Lijia Jing¹, shangmin shao³, Yang Wang³, Yongbo Yang¹, Xiuli Yue¹*, Zhifei Dai²*

¹ State Key Laboratory of Urban Water Resources and Environment, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China

² Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China.

³ Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry Education, Harbin, 150040, China

* Corresponding author: Xiuli Yue
Email: xiulidx@163.com
* Corresponding author: Zhifei Dai
Email: zhifei.dai@pku.edu.cn
Homepage: http://bme.pku.edu.cn/~daizhifei
Figure S1. $^1$H NMR spectra of HA-g-PEG in D$_2$O.
Figure S2. \( \text{N}_2 \) adsorption-desorption isotherm of solid PB nanoarticles and HPBNs@PAA/PAH/HA-g-PEG.
**Figure S3.** Cell viability of Hela cells determined by MTT method after incubation with HPBNs@PAA/PAH/PEG and HPBNs@PAA/PAH/HA-g-PEG at different concentrations for 48h.
Figure S4. Temperature change curves determined by thermographic probe after treatments of the nude mice tumor with saline, HPBNs@PAA/PAH/PEG and HPBNs@PAA/PAH/HA-g-PEG upon exposure to the 808 nm laser at a power density of 0.8W/cm².