
Theranostics 2015, Vol. 5, Issue 5 
 

 
http://www.thno.org 

443 

TThheerraannoossttiiccss  
2015; 5(5): 443-455. doi: 10.7150/thno.11107 

Research Paper 

CFD Modeling and Image Analysis of Exhaled Aerosols 
due to a Growing Bronchial Tumor: towards 
Non-Invasive Diagnosis and Treatment of Respiratory 
Obstructive Diseases 
Jinxiang Xi1, , JongWon Kim1, Xiuhua A. Si2, Richard A. Corley3, Senthil Kabilan3, and Shengyu Wang4,5  

1. School of Engineering and Technology, Central Michigan University, Mt Pleasant, MI, 48858, USA. 
2. Department of Mechanical Engineering, California Baptist University, Riverside, CA, 92504, USA. 
3. Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA 99352, USA.  
4. Department of Pulmonary & Critical Care Medicine, First Affiliated Hospital of Xi'an Medical University, Shaanxi, China 710077.  
5. Department of Anesthesiology, Mayo Clinic, Rochester, MN, 55905, USA.  

 Corresponding author: Dr. Jinxiang Xi, School of Engineering and Technology, Central Michigan University, 1200 South Franklin Street, 
Mount Pleasant, MI 48858. Phone: (989) 774-2456; Fax:  (989) 774-4900; Email: xi1j@cmich.edu 

© 2015 Ivyspring International Publisher. Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited.  
See http://ivyspring.com/terms for terms and conditions. 

Received: 2014.11.18; Accepted: 2015.01.09; Published: 2015.02.06 

Abstract 

Diagnosis and prognosis of tumorigenesis are generally performed with CT, PET, or biopsy. Such 
methods are accurate, but have the limitations of high cost and posing additional health risks to 
patients. In this study, we introduce an alternative computer aided diagnostic tool that can locate 
malignant sites caused by tumorigenesis in a non-invasive and low-cost way. Our hypothesis is that 
exhaled aerosol distribution is unique to lung structure and is sensitive to airway structure vari-
ations. With appropriate approaches, it is possible to locate the disease site, determine the disease 
severity, and subsequently formulate a targeted drug delivery plan to treat the disease. This study 
numerically evaluated the feasibility of the proposed breath test in an image-based lung model with 
varying pathological stages of a bronchial squamous tumor. Large eddy simulations and a Lagran-
gian tracking approach were used to model respiratory airflows and aerosol dynamics. Respira-
tions of tracer aerosols of 1 µm at a flow rate of 20 L/min were simulated, with the distributions of 
exhaled aerosols recorded on a filter at the mouth exit. Aerosol patterns were quantified with 
multiple analytical techniques such as concentration disparity, spatial scanning and fractal analysis. 
We demonstrated that a growing bronchial tumor induced notable variations in both the airflow 
and exhaled aerosol distribution. These variations became more apparent with increasing tumor 
severity. The exhaled aerosols exhibited distinctive pattern parameters such as spatial probability, 
fractal dimension, and multifractal spectrum. Results of this study show that morphometric 
measures of the exhaled aerosol pattern can be used to detect and monitor the pathological states 
of respiratory diseases in the upper airway. The proposed breath test also has the potential to 
locate the site of the disease, which is critical in developing a personalized, site-specific drug de-
livery protocol. 

Key words: Aerosol breath test, computer aided diagnosis, theranostics, aerosol fingerprint, fractal 
dimension, obstructive respiratory diseases. 

Introduction 
Lung cancer is the leading cause of can-

cer-related mortality worldwide, which exceeds the 
combined number of deaths from breast cancer, colon 

cancer, and prostate cancer [1]. Approximately six out 
of ten people with lung cancers die within one year of 
diagnosis, due in large part to the current inability to 

 
Ivyspring  

International Publisher 



 Theranostics 2015, Vol. 5, Issue 5 

 
http://www.thno.org 

444 

detect and treat the cancers at their early stages. The 
inaccessibility of deep lung to conventional therapy 
also complicates the treatment process. Current 
methods of diagnosing lung diseases include chest 
X-ray, sputum cytology, CT/PET/SPET, and lung 
tissue biopsy [2]. These procedures are accurate, but 
are costly and require professional operations. In addi-
tion, these procedures are either invasive in nature or 
having radiation risks. Recently, an alternative diag-
nostic method using a patient’s exhaled breath has 
been under active studies. The rationale of this 
method is that exhaled breath contains unique volatile 
organic compounds (VOCs) if a carcinogenesis exists 
in the lung [3]. These unique VOCs can be considered 
as the “fingerprint” of the disease and used to deter-
mine the presence and type of the disease. For exam-
ples, non-small cell lung cancer is associated with a 
high production of isoprene [4], while asthma is asso-
ciated with nitric oxide [5], cystic fibrosis with chem-
okines [6], and chronic obstructive pulmonary disease 
(COPD) with antioxidants [7]. Recent developments 
on the VOC breath tests and breath devices for lung 
cancer diagnosis were review in [8,9]. These 
VOC-based breath tests are promising to reliably de-
tect lung carcinogenesis and are non-invasive in na-
ture. However, such tests only measure the presence 
of certain VOCs, not the location these VOCs are 
generated (carcinogenesis site), nor the level of airway 
remodeling. The site and degree of airway remodeling 
can be substantially different depending on the type 
of lung cancers. Therefore, any alternative method of 
diagnosis that can locate the site and gage the severity 
of the disease in a non-invasive and low-cost way will 
be highly desirable.  

A number of studies have explored the use of 
aerosols as a lung diagnostic tool, such as the aerosol 
bolus dispersion (ABD) method [10,11,12]. However, 
the ABD method provides no new information than 
traditional pulmonary function tests [12]. More re-
cently, Xi et al. [13] proposed a new aerosol breath test 
that holds the potential to detect lung diseases and 
their locations. This method arises from consistent 
observations of unique exhaled aerosol patterns in 
relation to lung structures [14,15,16]. We hypothesize 
that each lung has a signature aerosol fingerprint (AFP) 
pattern, as opposed to the gas fingerprint for 
VOC-based breath tests. Accordingly, a deviation 
from the AFP pattern of healthy lungs will suggest an 
airway remodeling or tumorigeneisis in the tested 
lungs. For tumors that are large in size or in the upper 
airways, such deviations are largely differentiable by 
visual analysis; however, the process can be tedious if 
there are many images to analyze. Furthermore, when 
the tumor is small or located deeper in the lung, visual 
analysis may not be feasible and computer-aided im-

age differentiation is needed.  
In order to develop an automated pipeline to 

quantify exhaled AFP profiles, Xi et al. [17] explored 
multiple analytical approaches that yield a more 
compact measure of the particle distributions. It was 
shown that fractal analysis could effectively distin-
guish the AFP patterns of diseased lung models from 
healthy models [17]. The monofractal dimension rep-
resents the complexity of an image by quantifying how 
much space is filled by the particles, while the mul-
tifractal spectrum measures both the complexity and 
heterogeneity (e.g., the distribution of empty spaces 
surrounding the particles) [18]. Fractal analysis has 
been demonstrated to be a robust tool to measure 
subtle changes in biological morphology [19], vascu-
lature [20], neural networks [21], metal structures [22], 
landscapes [23], and even the stock market [24]. It 
provides a simple model to describe complex systems 
with a minimal number of parameters (e.g., fractal 
dimension specifying the degree of irregularity or 
complexity). Human lungs are “space filling” fractal 
structures [25,26] with a fractal dimension of 1.57 
[27,28]. Considering that tracer particles sequentially 
fill and empty the fractal lung, it is expected that ex-
haled aerosol profiles also exhibit fractal characteris-
tics and are thus amenable to fractal analysis. Com-
pared to monofractal dimensions, a multifractal spec-
trum reveals more information regarding the space 
filling properties of the image pixels at different scales 
and is more appropriate to differentiate exhaled aer-
osol profiles [29].  

The methods of lung tumor diagnosis and 
treatment vary depending on the tumor’s location. 
Such methods include surgery, radiation therapy, 
chemotherapy, etc. Knowing the location and size of a 
tumor will be highly advantageous for treatment 
planning. Additionally, precise drug delivery to a 
diseased region will enhance the therapeutic outcome 
and minimize the unwanted side-effects in other re-
gions. Currently, such information (tumor location 
and size) can only be acquired using CT, PET, or MRI.  

In this study, the feasibility of the newly devel-
oped CFD-Fractal approach to measure the presence 
and progress of lung diseases will be evaluated. We 
will do this by applying the CFD-Fractal approach in 
a lung model with a growing bronchial squamous 
tumor. The exhaled aerosol patterns will be acquired 
via physiology-based modeling, and will be further 
characterized using statistical and fractal analysis. 
Multiple features of the aerosol pattern will be exam-
ined in their relationship to the tumor growth, which 
includes particle concentration shifting, spatial dis-
tribution probability, mono-fractal dimension, and 
multifractal spectrum. These factors could be imple-
mented to pinpoint the site a lung disease, gage the 
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disease severity, and subsequently devise a treatment 
plan with targeted drug delivery and a severi-
ty-pertinent dosage. The proposed approach will set 
the stage for the development of a theranostic (thera-
peutic-diagnostic) system to diagnose and treat lung 
diseases.  

Methods 
Mouth-throat airway model with growing 
bronchial tumor. 

An anatomically accurate mouth-throat airway 
model developed by Xi and Longest [14] was used to 
study the tumor-AFP relationship. The airway model 
had a circular mouth opening with a diameter of 21 
mm. The lung bifurcations extended up to G6 (Fig. 1). 
This model was originally based on MRI scans of a 
healthy adult male. Detailed dimensions of the airway 
geometry and procedures to develop this model was 
provided in Xi and Longest [14,30]. This model was 
designated as a healthy airway, and was further 
modified to generate diseased lung models with a 
growing squamous tumor. Squamous tumors grows 
from round cells, which replace damaged cells in the 
lung epithelium [31]. They may grow to large sizes and 
form cavities in the lungs. Squamous Tumors are of-
ten found in the conducting airways, either in major 
lobes or the main airway branches [31]. In this study, 
the squamous tumor is located at the left segmental 
branch and has five varying stages (Fig. 1). Detailed 
information regarding the location, size, and airway 
blockage rate of the squamous tumor is listed in Fig. 1.  

Numerical breath test protocol.  
This study consisted of two steps: image acqui-

sition via physiology-based simulation, and image 

analysis via statistical and fractal analysis. In order to 
acquire images of the exhaled aerosol fingerprints 
(AFPs), both inhalation and exhalation were simu-
lated, with a bolus of tracer particles being inhaled 
first and then exhaled. A blunt profile was used for 
the inlet airflow velocity, which provided a smooth 
core-flow-wall transition [32]. The inlet particle pro-
files were generated using a stochastic algorithm and 
had the same initial velocity profile as the airflow [33]. 
For each airway-tumor model, five particle inlet pro-
files were tested for later statistical analysis. To model 
the inhalation process, zero pressure was specified at 
the mouth opening and negative pressure was speci-
fied at branch exits. Tracer particles entered the 
mouth and were then recorded on the surfaces of the 
branch exists. During exhalations, the recorded parti-
cle profiles at the branch exits were reversed in direc-
tion and the particles were tracked in the expiratory 
flows. The exhaled particles were deposited on a filter 
at the mouth opening. 

In the second step, the collected aerosol profiles 
(or AFPs) were analyzed to determine any correlation 
with their perspective pathological conditions. The 
numerically predicted results were first visualized in 
terms of particle location distribution, particle con-
centration distribution, and relative concentration to 
the control case. The resulting images were then 
quantified using (1) statistical distribution in transla-
tional, radial, and circumferential directions to de-
scribe the spatial pattern of the AFPs, (2) regional and 
localized fractal analysis, and (3) multifractal analysis. 
The extracted features from the images will be used to 
classify the disease at different stages. The involved 
algorithms will be explained below.  

 

 
Fig. 1 Respiratory airway models with a squamous tumor on a left segmental bronchus. The bronchial tumor grows from a mild condition (stage A, 20% bronchial 
airway blockage) to a severe condition (stage E, 80% bronchial airway blockage).  
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Computational fluid-particle transport mod-
els.  

Isothermal and incompressible airflows were 
assumed for all simulations with steady breathing 
conditions. A large eddy simulation approach 
LES-WALE model was implemented to resolve the 
flow field; this model had been shown to be able to 
model laminar-to-turbulent transitions [34]. The 
transport and deposition of particles with a diameter 
(dp) were computed using the Lagrangian tracking 
approach [14]: 

    …(1) 

where ui is the fluid velocity, and vi is the particle ve-
locity. The particle residence time τp is defined as ρp 

dp2/18µ, with µ being the air viscosity and dp being the 
particle diameter. The drag factor f was calculated 
following Morsi and Alexander [35], and the Cun-
ningham factor Cc was calculated following Allen and 
Raabe [36]. In-house user-defined modules were im-
plemented to consider the near-wall damping effect 
[30] and the finite particle inertial effect [37].  

 ANSYS ICEM CFD (Ansys, Inc) was used to 
generate the computational mesh. A grid independent 
study was undertaken using four different grid den-
sities (i.e., 600k, 1.2 million, 2.0 million and 3.2 million 
elements); the height of the first-layer cells near the 
wall remain constant at 0.05 mm. The final mesh 
adopted contained 2 million cells.  

Fractal analysis.  
One approach to fractal analysis is to calculate 

the fractal dimension using the Box-counting method. 
The Box-counting fractal dimension (DB) is a measure 
of increasing details with decreasing resolution scales. 
It is calculated as the slope of the log-log plot between 
the box size (or scale, ɛ) and box count Nɛ, which is the 
number of grid boxes containing pixels. 

   …(2) 

Besides DB, the multifractal spectrum is another 
powerful tool to study complex systems. The mul-
tifractal spectrum analysis relies on the fact that nat-
ural systems often possess a variety of scaling prop-
erties. To calculate the multifractal dimensions, a 
normalized measure µi(q, ɛ) was constructed with a 
family of scaling exponents, q, to explore different 
regions of the singularity measure [19],  

     …(3) 

Here Pi(ε) is the probability of pixels at the ith box 
with a size of ε, and Pi(ε)q raises the probability by an 

exponent q. The singularity strength α(q) and mul-
tifractal spectrum function f(α) with respect to  µi(q,ε) 
were given by 

      …(4) 

     …(5) 

The plot of α(q)~f(q) gave the multifractal spec-
trum of the image. An open source code ImageJ with 
FracLac plugin was used to calculate the multifractal 
parameters α(q) and f(q) [38]. 

Statistical analysis.  
 Exhaled aerosol data were presented as mean ± 

standard deviation (SD) based on the five breath tests 
for each model. Data analysis was performed using 
the SAS statistical package (SAS Institute, Inc.). 
Analysis of variance (ANOVA) test was used to 
compare the difference in exhaled aerosol patterns of 
different models in terms of their fractal dimensions. 
A difference was considered statistically significant if 
p was < 0.05. 

Results 
Airflow field. 

Figure 2 compares the expiratory airflows 
among the five cases in terms of streamlines, 
cross-sectional contours, and 2-D velocity plots. The 
presence of an airway obstruction substantially dis-
torts the streamlines near the diseased site (Fig. 2a) as 
well as the velocity distributions (Fig. 2b). This flow 
disturbance will be conveyed further downstream by 
the expiratory flow. As the tumor grows from case A 
to E, higher flow resistance is expected due to reduced 
flow area, which leads to a lower respiratory flow rate 
under the same breathing effort. Furthermore, the 
airway obstruction prevents respiratory aerosols from 
being inhaled and exhaled smoothly, and thus will 
noticeably alter the distribution of exhaled aerosols. 
Fig. 2c shows the velocity distributions at Slice 1-1’ 
among the five models in two different directions (a-a’ 
and b-b’). As expected, flow velocity decreases pro-
gressively as the tumor size increases. The difference 
in airflows gradually diminishes as the air moves to-
ward the mouth, with confluent flows from neigh-
boring branches. It is noted that particle profiles de-
pend on both local flows and upstream histories. The 
downstream airflows may appear similar; however, 
the particle profiles could still be different due to their 
time-integrative properties.  
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Fig. 2 Comparison of expiratory flows among the five models with a growing bronchial tumor in terms of (a) streamlines, (b) cross-sectional velocity contours, and 
(c) horizontal velocity profile. The presence of a bronchial tumor disturbs the characteristics of the expiratory flows, with Case E having the most prominent effect. 
The flow disturbances propagate downstream and are still noticeable after the carina ridge (Slice 3). Different exhaled aerosol profiles are expected due to these flow 
disturbances. 

 

Patterns of exhaled aerosol-fingerprints 
(AFPs) 

The exhaled particles collect into a pattern that is 
unique to the lung structure and can be considered as 
the “fingerprint” of the lung. The first row of Fig. 3 
displays particle distributions collected at the mouth 
for an aerosol size of 1 µm and a flow rate of 20 
L/min. Considering the overall particle patterns, 
there are both similarities and disparities among these 
five cases, the latter of which is presumably attributed 
to the growth of the tumor. Among many pattern 
disparities, two observations in Fig. 3 (particle distri-
bution, upper panel) are noteworthy. First, a vortex in 

the left lower part persists for all the five cases, while 
a weaker vortex in the right part progressively di-
minishes from Case A to E (upper panel Fig. 3). These 
two vortexes are asymmetric along the central line of 
the circle, which may result from the asymmetry of 
the right and left lungs. Second, there are noticeable 
variations of particle distributions in the two deline-
ated regions (i.e., dashed red circle and box), as shown 
in Fig. 3. In both regions, the amount of particles de-
creases as the tumor size increases from case A to case 
E. Furthermore, the distribution of particles in the 
right-middle region (dashed red box) becomes in-
creasingly dispersed from A to E.  
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Fig. 3 Visual and quantitative comparison of exhaled aerosol fingerprints (AFPs) among the lung models with a growing bronchial tumor. The first row shows particle 
distributions collected at the mouth. The second row shows the particle concentration distributions, and the third shows the concentration differences relative to 
Case A.  

 
Particle distributions may not accurately repre-

sent their concentration due to particle overlapping. 
The relative concentrations of particles (i.e., the ratio 
of local particle concentration to the overall concen-
tration) are shown in the second row of Fig. 3. Blue 
represents zero particle concentration and red repre-
sents high particle concentrations. For a given model, 
the particle (first row) and concentration (second row) 
distributions resemble each other in terms of the 
overall pattern. However, the concentration image is 
able to identify the peak particle accumulations (red 
color), which is otherwise unidentifiable in the parti-
cle distribution image. In this study, both the left 
vortex and the lower-right corner (red dashed circle) 
have high concentrations of particles. The left vortex 
is observed to remain consistent in its intensity for the 
five cases; however, the concentrations at lower-right 
corner decrease progressively from case A to case E. A 
similar decrease is also noted in the right-middle re-
gion, as indicated in the red dashed rectangle in Fig. 
3a. These variations can be used as indicators for the 
growth of the bronchial tumor and will be analyzed in 
the following sections.  

To highlight the variation of the aerosol finger-
prints with increasing tumor size, concentrations rel-
ative to the baseline condition (Model A) are plotted 
in the third row of Fig. 3 by subtracting the concen-
tration of Case A from Case B through E. In doing so, 

image A-A should have zero concentrations every-
where (not shown). The other four images (B-A, C-A, 
D-A, E-A) exhibit both positive (red) and negative 
values (blue), with blue representing the peak con-
centration of the control case and red representing the 
peak concentration of the tested case (Fig. 3). There-
fore, if there are two adjacent spots having a similar 
pattern but opposite colors (blue vs. red), the migra-
tion between the two spots should be caused by the 
progression of the tumor. In turn, this migration could 
be used to either diagnose that disease or to monitor 
the variation/growth of the tumor. Considering the 
lower-right corner (dotted circle), the tumor growth 
caused the blue spots in the control case to shift up-
ward and become less concentrated (lower panel in 
Fig. 3). 

Spatial scanning of aerosol profiles. 
The exhaled aerosol profiles of the five cases 

were further compared using a variety of methods, 
including spatial scanning, fractal dimension, and 
multifractal analysis. Figure 4 shows the results of 
spatial scanning of AFP images in different directions 
(i.e., distribution probability). For example, the AFP 
image in Fig. 4a was evenly divided into 50 bins along 
the horizontal direction. The number of particles in 
each bin was counted and normalized by the total 
number of exhaled particles and the area of the bin, 
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yielding a probability of particle distribution 
(%/mm2) at x/X. This approach was equivalent to 
scanning the AFP image in the x direction with a res-
olution of D/50, with D being the diameter of the 
image. In order to quantify the spatial characteristics 
of the exhaled particle patterns, the images were 
scanned in four directions: horizontal, vertical, radial, 
and circumferential (rose plot). To avoid figure over-
crowding, only three (A, C, E) out of the five cases 
were presented in Fig. 4. Generally, each case exhibits 
a unique profile of spatial distributions and, therefore, 
is applicable to supplement the classification of air-
way anomalies. Furthermore, the profile variation 
among groups is more pronounced in certain areas 
than others; these more pronounced areas can be se-
lected as regions of interest (ROI) for further analysis. 
Considering Figs. 4a and 4b, the profiles in the se-

lected ranges (ellipse in Fig. 4a, and rectangle in Fig. 
4b) appear to shift in an orderly manner with respect 
to the tumor size. These two ranges (i.e., z/Z and x/X) 
collectively identify an ROI in the image in the Carte-
sian coordinate system, which corresponds to the 
right-middle corner. As discussed in Fig. 3, the 
right-middle zone is one of the two ROIs identified 
with noticeable aerosol variations. Similar orderly 
variations at selected ranges are also noted in Figs. 4c 
and 4d, for instance, at r/R ≈ 0.4 and 0.8, and at θ ≈ 
300o. These values correspond to the right-middle and 
lower-right regions in the polar coordinate system, 
respectively. Therefore, the spatial scanning of parti-
cle distributions appears to be an adequate index to 
compare the AFP images among different groups and 
identify possible ROIs in two mutually orthogonal 
directions.  

 

 
Fig. 4 Statistical analysis of exhaled particle distributions at different directions: (a) horizontal, (b) vertical, (c) radial, and (d) circumferential (rose plot). The 
patterns of exhaled particles among the lung models with a growing tumor can be distinguished by comparing the spatial distributions of particles in two mutually 
orthogonal directions. 
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Box-counting fractal and multifractal analysis  
Box-counting fractal analysis of exhaled aerosols 

was conducted in both the entire sample image and 
the selected regions of interest (ROI). The FD standard 
deviation for each case was calculated from five test 
cases with stochastically generated inlet particle pro-
files (n = 5). Significance was indicated by * (p < 0.05) 
and ** (p < 0.01). Considering the entire image in Fig. 
5a, the FD values change erratically, and a consistent 
variation of the FD with growing tumor sizes has not 
been found. In contrast, there is a consistent decline in 
FD with increasing tumor sizes for the two selected 
regions of interest (ROI_1 and ROI_2). This observa-
tion corroborates the prior report that diseased lungs 
have decreased FD values compared to FD values in 

healthy controls [39]. In contrast to the insignificant 
variations of FD for the entire area, the FD values vary 
significantly among the five cases in the two selected 
ROIs. Specifically, the FD variation of Case E differs 
most significantly (P < 0.01) from the control case 
(Case A). As a result, the ROI-based FD appears to be 
a sensitive index to measure tumor severity and 
monitor tumor progression. In order to further char-
acterize these APF images, each image was divided 
into a 6×6 lattice, and the FD value on each grid was 
calculated and displayed in Fig. 5b. For each grid, the 
color code was based on the FD magnitude. Again, 
the color patterns for the five models are different 
from each other, and are unique to each tumor stage. 

 
 
 

 
Fig. 5 Box-counting fractal analysis of exhaled particle distributions at different scales. FDs (±SD, n = 5) for the five lung models with a growing tumor are shown in 
(a) for the entire image and selected region of interest (ROI). (b) shows the local FD distribution on a 6×6 lattice. The color code is based on the magnitude of the 
lattice fractal dimension. The color pattern is unique for each stage.  
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Fig. 6 Multifractal analysis of exhaled particle concentrations. The 3-D plots of particle concentrations are shown in (a). Comparison of the multifractal spectra 
among the five models are shown in (b) for the first region of interest (ROI_1) and (c) for the second region of interest (ROI_2).  

 
Figure 6 shows the 3-D plots and the multifractal 

spectra for the exhaled AFP images from the five lung 
models considered. The 3-D plots of exhaled aerosol 
concentrations exhibit distinct patterns among the 
five models (Fig. 6a), and have two interesting ob-
servations. First, the peaks in the left corner (solid 
black arrow) progressively decrease in height as the 
tumor size increases from case A to E. Second, the 
left-middle portion (red rectangle) becomes less con-
densed and more homogenous from Case A to E. 
These two regions were selected as the regions of in-
terest in this study for both box-counting and mul-
tifractal analysis (Figs. 5 &. 6). A range of (-1,1) of the 
exponent q was used to scale the probability of parti-
cle distributions. Overall, the multifractal spectra 
among the five cases show distinctly different shape 
and symmetry in both ROIs considered (Figs. 6b & 
6c), lending further evidence that multifractal spectra 
can be used to classify the structure-induced aerosol 
variations. However, the multifractal spectra are quite 
different between these two ROIs. As shown in Figs. 
6b vs. 6c, the f(α)-spectra of ROI_1 converge to a single 
point (q= 0), while the f(α)-spectra of ROI_2 are more 
symmetric. In this case, the ROI_2 is considered to be 
multifractal, while the ROI_1 is mono- or non-fractal. 
Furthermore, the difference (αmax – αmin) indicates the 
heterogeneity of the image pattern. As the tumor 
grows from size A to E, this difference persistently 
decreases for both ROIs considered, suggesting a re-
duction of heterogeneity with disease. This observa-

tion coincides with findings in previous studies 
[20,40] that a pattern with a narrower range of α gen-
erally has lower lacunarity, which is another index of 
the pattern heterogeneity. Examples of such patterns 
include soils with low porosity [40] and vascular beds 
with lower emptiness [20]. 

Discussion  
This study described an alternative method for 

diagnosis of obstructive lung diseases based on ex-
haled aerosols. The performance of this method was 
numerically evaluated using a coupled CFD-fractal 
approach for a growing bronchial tumor, whose ex-
haled aerosols exhibited distinctive patterns. The ex-
tracted features of the exhaled aerosol patterns in this 
study could be further used for automated classifica-
tion of obstructive lung diseases. 

One highly desirable advantage of the proposed 
methodology in this study is its potential to identify 
the location of a lung tumor. This methodology has 
two steps: (a) disease detection, and (b) disease local-
ization with selectively released aerosols. The AFP 
pattern varies at different disease stages. Hence, one 
can compare two AFP patterns acquired at different 
times and determine whether any airway structure 
change is present or not. After such a change is de-
tected, aerosols will be selectively released that target 
only the suspected region to probe its condition [41]. 
Such aerosols (we term them as detective aerosols) 
can be chemical-sensitive, which change color when 
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coming into contact with the signature VOCs of the 
disease. Due to selective particle releasing, a much 
higher concentration of detective aerosols reaches the 
disease site and is expected to collect sufficient clues 
to determine the presence and satge of small airway 
diseases. Furthermore, if there are high concentrations 
of detective aerosols that have changed color, it is 
considered that these aerosols have been delegated to 
the correct location, and the suspected disease loca-
tion is verified. To demonstrate this method, we re-
lease particles only from the tumor-affected bronchi-
oles (bronchioles 5−9 in Fig. 7a) and plot the exhaled 
particle profiles in Fig. 7b. It is observed that these 
profiles are distinct from one other, and at the same 
time, share certain common features. The differences 
indicate the stage of the tumor, while the common 
features reveal the location and type of the tumor. 
With increasing airway obstruction, the amount of red 
particles exhaled decreases dramatically from Case A 
to E. In the extremely obstructive scenario (Case E, 
80% constriction), very few particles were exhaled. 
Since the amount of exhaled particles reflected the 
airway constriction level, they could be used to mon-
itor the growth or metastasis of the tumor by com-
paring exhaled fingerprints collected at different pe-
riods. On the other hand, particles from the tu-
mor-affected region deposit primarily in one specific 
region (the diagonal of the circle) even for different 
tumor sizes. This specific region (a common feature 
among groups) can be regarded as the signature of the 
lower-left lobe region and used to locate the tumor. 
This principle is exemplified in a nose-lung model of a 
Sprague Dawley rat [42] that retains up to 28 bifurca-
tion generations and 1,272 outlets (Fig. 8a). The res-
piratory flow rate is 434 ml/min. For both inhalations 
and exhalations, ventilations to different lobes (i.e., 
left, right caudal, accessory, and right upper lobes) are 
associated with specific zones at the cylinder inlet 
(Figs. 8b and 8c). Furthermore, these zones are ap-
parently different among the four lobes, indicating 
that a strong correlation exists between lobar ventila-
tions and inlet airflow zones. From Fig. 8b, airflows 
from the left lobe (first panel) are exhaled to the en-
vironment at the left side of the cylinder; in contrast, 
airflows from the right upper lobe (second panel) exits 
at the right side of the cylinder, and airflows from the 
accessory lobe (third panel) exits at the middle of the 
cylinder. If aerosols are also exhaled, the distributions 
of collected particles at the cylinder can be used to 
find which lobe these particles come from; in addition, 
variations of the exhaled aerosol distributions from 
one lobe at different times can be used to monitor the 
health condition of that lobe.  

Once the tumor location and severity were 
diagnosed, a personalized treatment plan can be 

developed that target drug particles at the tumor with 
a dosage pertinnet to the type and severity of the 
tumor. To show this clinical potential, we plot the 
release positions of inhaled particles that will deposit 
onto the tumor located at the left segmental bronchus 
(Fig. 7a). The particle size considered here is 2.5 µm, 
which is typical of pulmonary medicines. These re-
lease positions are obtained by first releasing particles 
non-selectively into the entire mouth, identifying all 
particles that deposit on the ROI, and then finding the 
release locations of these particles at the mouth inlet. 
In this example, we delineate one drug release zone 
(dashed blue ellipse) that potentially delivers all ad-
ministrated drugs to the tumor for the five cases (Figs. 
7c). In principle, if therapeutic agents are released 
only from this zone, all particles should deposit onto 
the disease site, thereby realizing precise drug deliv-
ery [33,41,43]. This principle is also supported by our 
numerical experiments in the rat model, where in-
haled air from a pre-specified region at the inlet will 
be ventilated to a different lobe (Fig. 8c). If the princi-
ple were proved feasible, a combined theronostic de-
vice could be developed with functions of both lung 
diagnosis and targeted pulmonary drug delivery.  

Other advantages of the proposed breath test in-
clude non-invasiveness, real-time diagnosis feedback, 
easy-of-use, and low cost for lung disease patients. 
This breath test is particularly suitable for screening 
respiratory diseases in those with high levels of oc-
cupational exposures, such as coal-mine workers. 
Considering the advantages of being low-cost and 
easy-to-perform, the risk-prone population can con-
duct the test more frequently to reduce the risk of 
respiratory diseases. Regular tests will develop a rec-
ord of the patient’s lung health. Disease localization 
with the selective aerosol release approach will help 
to pinpoint a disease site and develop a pa-
tient-specific treatment plan, such as targeted pul-
monary drug delivery. 

We anticipate that this new breath test will work 
best for lung abnormalities where the airway obstruc-
tion is not small, and will be suitable for diagnosis and 
treatment of diseases such as COPD, asthma, and 
non-small-cell lung cancer. The bronchial squamous 
tumor considered in this study obstructs the air inha-
lation to the lower-left lobe in a wide range from 20% 
to 80%, and could be a representative case of acute or 
chronical obstructive respiratory diseases. The mag-
nitude of structural variations considered in this 
study (Fig. 1) was also typical and represented a fit-
ting assessment of the performance of the proposed 
AFP-based breath test. In some COPD or asthmatic 
patients, airway constrictions could be much more 
severe than the scenarios considered in this study. 
Fatal asthma, for instance, can have 44% closure of the 
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entire airway [39]. In this sense, a more pronounced 
variation of fractal measures is expected in clinical 

practices, which should be more feasible for diagnos-
tic purposes using the proposed methodology.  

 

 
Fig. 7 Aerosol-fingerprint concept for non-invasive diagnosis and target-treatment of respiratory obstructive diseases. (a) shows the location of the bronchial tumor 
and affected bronchioles (6 – 10). (b): the exhaled particles from the affected bronchioles (6 – 10) collect into a unique pattern at the mouth for each of the five cases 
considered, and can be used to locate the position and evaluate the severity of lung disease. (c) shows the initial release positions of the particles that deposit around 
the tumor (gray region in (a)). Releasing therapeutic particles from these positions (blue dashed ellipse) will deliver them directly to the tumor, thereby realizing target 
drug delivery.  

 
Fig. 8 Ventilation to each lobe is correlated with airflow from specific locations at the inlet in a (a) Sprague Dawley rat model for both (b) exhalation and (c) inhalation 
breathing conditions. The respiratory flow rate is 434 ml/min. The lobes considered, from the left to right, are the left, right caudal, accessory, and right upper lobes, 
respectively. 
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From Figs. 3−6, the exhaled AFPs and their 
morphometric measures vary remarkably with the 
size of the growing bronchial tumor. Moreover, the 
ROI-based mono-fractal dimensions and multifractal 
spectra are found to significantly correlate with the 
growing tumor. It is noted, however, that these cor-
relations are highly nonlinear and ROI-dependent 
(Figs. 5 and 6). For a given exhaled aerosol pattern, it 
is not sufficient by itself to tell the tumor size or trace 
back to the tumor site. The eventual breath test must 
consist of two steps: (1) extraction of AFP image fea-
tures, as presented in this study, and (2) classification 
of diseases based on the AFP images. To stage or lo-
calize a suspected lung disease, a database of im-
age-diseases is required; a classification method (e.g., 
support vector machine classifier) will be trained to 
correlate the images with their respective diseases. In 
future studies, such a database and classifier will be 
developed and their diagnosis reliability will be test-
ed. 

Ideal breathing conditions have been assumed in 
assessing the proposed methodology feasibility, e.g.: 
same flow rates for all pathological lung models. A 
patient with respiratory distresses typically breathes 
differently. To reliably detect an airway abnormality, 
it is desirable that the exhaled AFP patterns remain 
similar over a certain range of breathing conditions. In 
practice, the respiration bias can be minimized by 
activating the exhalation sampling only when the pa-
tient breathes within the acceptable range. Future 
studies of respiration influences are needed, which 
will help to determine the detection sensitivity, the 
tolerance of breathing deviations, and the optimal 
breathing maneuvers for the breath test [44]. Other 
limitations include constant breathing, no hygro-
scopic growth, zero particle charges, non-compliant 
walls, and a small sample size. Previous studies have 
emphasized the influences of tidal breathing [45], hy-
groscopic growth [46,47], particle charge effects 
[48,49], dynamic glottis [50], and intersubjective var-
iability [51,52] on the dynamics of respiratory aero-
sols. Each factor above affect the physical realism of 
the simulation results and should be considered in 
future studies. Concerning the sample size, tumor 
models considered hereof are from one healthy lung; 
a large cohort of lung models is needed to consider 
inter-subject variability. Future studies with more 
realistic physiological parameters, as well as compli-
mentary in vitro and in vivo tests, are necessary to es-
tablish the clinical feasibility of this new theranostic 
protocol for respiratory obstructive diseases. 

In summary, we numerically demonstrated the 
feasibility of a new breath test to diagnose obstructive 
lung diseases based on a coupled CFD-fractal analysis 
of exhaled aerosols. For an airway with a growing 

bronchial tumor, the proposed CFD-fractal method 
was shown to adequately quantify and differentiate 
the exhaled aerosol patterns. The CFD-fractal analysis 
provided a useful method in deciphering the com-
plexity of exhaled fingerprints, and thus could be 
used to detect the presence of a disease, monitor its 
pathogenesis, or track the therapeutic outcomes of an 
intervention protocol. 
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