Supplementary Scheme 1

Synthesis of the PS quenched ABPs precursors 5 and 6. Fmoc, 9-fluorenylmethylcarbonyl; HOBT, 1-hydroxybenzotriazole; PyBOP, (benzotriazole-1-yl- oxy) tris (pyrrolidino) phosphonium hexafluorophosphate; DIEA, diisopropylethylamine;Boc, t-butyloxycarbonyl; DEA, Diethylamine; Cbz, carboxybenzyl; DIC, diisopropyl-carbodiimide; TFA, trifluoroacetic acid.

Supplementary Tables

Probe	PS	PS [eq.]	DCC [eq.]	TSTU [eq.]	Activation time	Precursor, 1eq.	Coupling time	%ACN elution	Color	Yield [%]	M/z
YBN2	Pheophorbide-a	1.2	1.4	1.4	40 minutes	5	30 minutes	71-75	turquoise	66	1954
YBN6	Visudyne	1.2	1.4	1.4	1 hour	5	1.5 hours	57-63	turquoise	81	(M/z+1)/2 1040
YBN13	Bacteriochlorin	1.1	1.1	1.4	2.5 hours	3, GB111-NH ₂	30 minutes	49-52	magenta	43	M/z+1 1291
YBN14	Bacteriochlorin	0.9	1.1	1.4	2 hours	6	over night	47-50	dark blue-purple	46	(M/z+2)/2 1249

Table 1. Synthesis conditions for PS coupling by activation to succinimide ester, method 1.

 Table 2. Synthesis conditions for PS coupling by coupling reagents, method 2

Probe	PS	PS [eq.]	DCC [eq.]	HOBT [eq.]	Precursor, 1eq.	Coupling time	Color	Yield [%]	Mw
YBN1	Pheophorbide-a	1.1	2	2	3, GB111-NH ₂	2.5 hours	dark green	77	M/z+1 1148
YBN3	Pyropheophorbide-a	1.1	2	2	3, GB111-NH ₂	2 hours	dark green	60	M/z+1 1090
YBN4	Pyropheophorbide-a	3	3	3	5	1 hour	turquoise	39	M/z+1 1897
YBN5	Visudyne	1.1	2	2	3, GB111-NH ₂	1.5 hours	light green	81	M/z+1 1274
YBN7	Chlorin-e6	1.1	2	2	3, GB111-NH ₂	1 hour	dark green	94	M/z+1 1152
YBN8	Chlorin-e6	3	3	3	5	1.5 hours	turquoise	49	M/z+1 1959

Table 3. R groups of YBN 1-8

R ₁	Non-Quenched R ₂ = H	Quenched R ₂ = Linker-QSY-21		
Pheophorbide-a	YBN1	YBN2		
Pyropheophorbide-a	YBN3	YBN4		
Visudyne	YBN5	YBN6		
Chlorin-e6	YBN7	YBN8		

 Table 4. Quenching efficiency of YBN1-8:

Quanahing Efficiency	Pheophorbide-a	Pyropheophorbide-a	Visudyne	Chlorin- <i>e</i> 6	
	YBN2	YBN4	YBN6	YBN8	
pH = 7.5	54	88	363	40	
pH = 5.5	363	26	164	14	

Cathepsins expression in cell lines: NIH 3T3, Raw 264.7, 4T1 and BMDM were harvested in RIPA lysis buffer (1% Tergitol-type NP-40, 0.1% SDS, 0.5% sodium deoxycholate). Equal protein amounts were separated on a 12.5% SDS-PAGE and immunoblotted on PVDF membrane. The following antibodies were used: Cathepsin B (1:1000)^[1], Cathepsin L (Santa Cruz Biotechnology, Inc, Santa Cruz, CA, USA, 1:500) Cathepsin S (R&D Systems Minneapolis, MN, USA 1:1000). Chemiluminescence was measured with a Chemi-Doc XRS imaging system and an Image Lab Software Bio-Rad, Hercules, CA, USA.

Refernce

1. Kos J, Smid A, Krasovec M, et al. Lysosomal proteases cathepsins D, B, H, L and their inhibitors stefins A and B in head and neck cancer. Biol Chem Hoppe Seyler. 1995; 376: 401-5.

Supplementary Figure S2

Evaluation of second generation probes for cell killing: 4T1 cells (7,000 cells/well, **a**) or bone marrow derived macrophages (BMDM, 22,300 cells/well, **b**) were cultured in 96 well plates one day prior to treatment. Triplicate samples of cells were incubated with 20 μ M YBN13 or YBN14 or free photosensitizer (final concentration of 0.1%DMSO was kept constant) in growth medium without phenol for 4 hours. Cells were illuminated from the bottom with a 45 mW light dose at 760 nm for 9 minutes, or kept in the dark. Cell survival was determined a day after illumination by a WST-1 assay, relative to DMSO dark control. Probes demonstrated efficient cell killing after light treatment.

Photodynamic therapy effect in tumor bearing mice. Tumors from control mice injected with DMSO vehicle or bacteriochlorin were frozen in OCT, sectioned, and stained with cleaved Caspaese-3 and F4/80 antibodies labeled with Cy5 and Cy3 respectively. Representative fluorescent scan acquired with an Olympus FV10i confocal microscope are presented, green- F4/80, Red- Cleaved Caspase-3, Blue- DAPI. Apoptosis indicated by cleaved caspase 3 was not detected in F4/80 macrophages of light treated tumors of DMSO vehicle or bacteriochlorin.

Compound structure, UV trace, mass spetrometry analysis of the major peak and maximal fluorescent absorption (when applicable).

3, GB111-NH₂

Relative Abundance

